A Brief Review on the Exploration of Nanocomposites and Their Properties Through Computational Methods for Biological Activity Evaluation †
Abstract
1. Introduction
2. Molecular Docking Studies
3. DFT Studies
4. Nanotoxicology Studies
5. Challenges and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes Souza, F., Jr.; Bhansali, S.; Pal, K.; Silveira Maranhão, F.D.; Santos Oliveira, M.; Valladão, V.S.; Silva, G.B. A 30-year review on nanocomposites: Comprehensive bibliometric insights into microstructural, electrical, and mechanical properties assisted by artificial intelligence. Materials 2024, 17, 1088. [Google Scholar] [CrossRef]
- Musa, A.A.; Bello, A.; Adams, S.M.; Onwualu, A.P.; Anye, V.C.; Bello, K.A.; Obianyo, I.I. Nano-enhanced polymer composite materials: A review of current advancements and challenges. Polymers 2025, 17, 893. [Google Scholar] [CrossRef]
- Krishna, S.; Patel, C.M. Computational and experimental study of mechanical properties of nylon 6 nanocomposites reinforced with nanomilled cellulose. Mech. Mater. 2020, 143, 103318. [Google Scholar] [CrossRef]
- Singh, V.; Patra, S.; Murugan, N.A.; Toncu, D.C.; Tiwari, A. Recent trends in computational tools and data-driven modeling for advanced materials. Mater. Adv. 2022, 3, 4069–4087. [Google Scholar] [CrossRef]
- Yang, R.X.; McCandler, C.A.; Andriuc, O.; Siron, M.; Woods-Robinson, R.; Horton, M.K.; Persson, K.A. Big data in a nano world: A review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano 2022, 16, 19873–19891. [Google Scholar] [CrossRef]
- Dahiya, M.; Khanna, V.; Gupta, N. Computational studies of graphene reinforced nanocomposites: Techniques, parameters, and future perspectives. ECS J. Solid State Sci. Technol. 2024, 13, 061005. [Google Scholar] [CrossRef]
- Gustavsen, K.R.; Feng, T.; Huang, H.; Li, G.; Narkiewicz, U.; Wang, K. DFT calculation of carbon-doped TiO2 nanocomposites. Materials 2023, 16, 6117. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, L.; Wang, R.; Zhang, S.; Fu, L.; Li, M.; Xiao, Q. Advances in Monte Carlo method for simulating the electrical percolation behavior of conductive polymer composites with a carbon-based filling. Polymers 2024, 16, 545. [Google Scholar] [CrossRef]
- Rezić, I.; Somogyi Škoc, M. Computational methodologies in synthesis, preparation and application of antimicrobial polymers, biomolecules, and nanocomposites. Polymers 2024, 16, 2320. [Google Scholar] [CrossRef]
- Yan, X.; Yue, T.; Winkler, D.A.; Yin, Y.; Zhu, H.; Jiang, G.; Yan, B. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem. Rev. 2023, 123, 8575–8637. [Google Scholar] [CrossRef]
- Khan, S.; Almuqrin, A.; Seneviratne, J.; Pant, K.K.; Ziora, Z.; Blaskovich, M.A. Antibiofilm efficacy of a green graphene oxide–silver nanocomposite against mixed microbial species biofilms: An in-vitro and in-silico approach. RSC Sustain. 2025, 3, 5249–5259. [Google Scholar] [CrossRef]
- Aziz, T.; Imran, M.; Haider, A.; Shahzadi, A.; Abidin, M.Z.U.; Ul-Hamid, A.; Nabgan, W.; Algaradah, M.M.; Fouda, A.M.; Ikram, M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv. 2023, 13, 28008–28020. [Google Scholar] [CrossRef]
- Ali, E.A.; Abo-Salem, H.M.; Arafa, A.A.; Nada, A.A. Chitosan Schiff base electrospun fabrication and molecular docking assessment for nonleaching antibacterial nanocomposite production. Cellulose 2023, 30, 3505–3522. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Y.; He, L.; Wang, J.; Xiong, J. Molecular docking reveals chitosan nanoparticle protection mechanism for dentin against collagen-binding bacteria. J. Mater. Sci. Mater. Med. 2022, 33, 43. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Shahzadi, I.; Haider, A.; Ul-Hamid, A.; Ullah, H.; Khan, S.; Ikram, M. Efficient dye degradation and antimicrobial behavior with molecular docking performance of silver and polyvinylpyrrolidone-doped Zn–Fe layered double hydroxide. ACS Omega 2024, 9, 5068–5079. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Atiq, I.; Rafiq Butt, A.; Shahzadi, I.; Ul-Hamid, A.; Haider, A.; Nabgan, W.; Medina, F. Graphene oxide/polyvinylpyrrolidone-doped MoO3 nanocomposites used for dye degradation and their antibacterial activity: A molecular docking analysis. Front. Chem. 2023, 11, 1191849. [Google Scholar] [CrossRef] [PubMed]
- El-Tantawy, A.I.; Elmongy, E.I.; Elsaeed, S.M.; Abdel Aleem, A.A.H.; Binsuwaidan, R.; Eisa, W.H.; Salman, A.U.; Elharony, N.E.; Attia, N.F. Synthesis, characterization, and docking study of novel thioureidophosphonate-incorporated silver nanocomposites as potent antibacterial agents. Pharmaceutics 2023, 15, 1666. [Google Scholar] [CrossRef]
- Riaz, S.; Ikram, M.; Naz, S.; Shahzadi, A.; Nabgan, W.; Ul-Hamid, A.; Al-Shanini, A. Bactericidal action and industrial dye degradation of graphene oxide and polyacrylic acid-doped SnO2 quantum dots: In silico molecular docking study. ACS Omega 2023, 8, 5808–5819. [Google Scholar] [CrossRef]
- Abada, E.; Galal, T.M.; Alhejely, A.; Mohammad, A.M.; Alruwaili, Y.; Almuhayawi, M.S.; Selim, S. Bio-preparation of CuO@ZnO nanocomposite via spent mushroom substrate and its application against Candida albicans with molecular docking study. BioResources 2024, 19, 6670–6689. [Google Scholar] [CrossRef]
- Ilikci-Sagkan, R.; Istifli, E.S.; Liman, R.; Atacan, K.; Bas, S.Z.; Ozmen, M. Effect of silver–graphene oxide–cobalt oxide nanocomposite on cytotoxic levels in MRC-5 and HepG2 cell lines and molecular docking studies. J. Clust. Sci. 2024, 35, 1481–1491. [Google Scholar] [CrossRef]
- Jabeen, S.; Modanwal, S.; Mishra, N.; Siddiqui, V.U.; Bala, S.; Khan, T. Quantum chemical and molecular docking studies of boron-doped and reduced graphene oxide supported nanocomposite. Int. J. Nano Dimens. 2024, 15, 16. [Google Scholar] [CrossRef]
- Chitrarasu, S.; Selvam, A.; Yogapriya, M.; Boopathi, K.; Selvapriya, K. Synthesis of CeO2–GO nanocomposite and its impact on Sod1 protein through computation study: Molecular docking. Orient. J. Chem. 2023, 39, 523. [Google Scholar] [CrossRef]
- Selim, S.; Abdelghany, T.M.; Almuhayawi, M.S.; Nagshabandi, M.K.; Tarabulsi, M.K.; Elamir, M.Y.M.; Alharbi, A.A.; Al Jaouni, S.K. Biosynthesis and activity of Zn–MnO nanocomposite in vitro with molecular docking studies against multidrug-resistant bacteria and inflammatory activators. Sci. Rep. 2025, 15, 2032. [Google Scholar] [CrossRef] [PubMed]
- Riaz, N.; Fen, D.A.C.S.; Khan, M.S.; Naz, S.; Sarwar, R.; Farooq, U.; Bustam, M.A.; Batiha, G.E.-S.; El Azab, I.H.; Uddin, J.; et al. Iron–zinc co-doped titania nanocomposite: Photocatalytic and photobiocidal potential in combination with molecular docking studies. Catalysts 2021, 11, 1112. [Google Scholar] [CrossRef]
- Russelraj, A.; Stalin, S.; Jino, K.V. Analysing the effect of quinalphos pesticide on fish health through molecular docking studies and their eradication by photocatalytic degradation using Fe/S/TiO2 nanocomposite. J. Water Environ. Nanotechnol. 2024, 9, 99–111. [Google Scholar] [CrossRef]
- Islam, M.R.; Farzana, N.; Akhond, M.R.; Rahaman, M.; Islam, M.J.; Syed, I.M. DFT-aided experimental investigation on the electrochemical performance of hetero-interface-functionalized CuO nanoparticle-decorated MoS2 nanoflowers for energy storage applications. Mater. Adv. 2024, 5, 2491–2509. [Google Scholar] [CrossRef]
- Adekoya, O.C.; Adekoya, G.J.; Sadiku, R.E.; Hamam, Y.; Ray, S.S. Density functional theory interaction study of a polyethylene glycol-based nanocomposite with cephalexin drug for the elimination of wound infection. ACS Omega 2022, 7, 33808–33820. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Meikhail, M.S.; Oraby, A.H.; Aboelwafa, M.A. Experimental and DFT studies on the structural and optical properties of chitosan/polyvinylpyrrolidone/ZnS nanocomposites. Polym. Bull. 2023, 80, 13279–13298. [Google Scholar] [CrossRef]
- Adedoja, O.S.; Sadiku, E.R.; Hamam, Y. Density functional theory investigation of the energy storage potential of graphene–polypyrrole nanocomposites as high-performance electrodes for Zn-ion batteries. Polym. Eng. Sci. 2023, 63, 3398–3410. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, T. A DFT study of polyaniline/ZnO nanocomposite as a photocatalyst for the reduction of methylene blue dye. J. Mol. Liq. 2019, 293, 111528. [Google Scholar] [CrossRef]
- Abbasi, A.; Sardroodi, J.J. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices. Appl. Surf. Sci. 2018, 436, 27–41. [Google Scholar] [CrossRef]
- Mahmood, A.; Shi, G.; Wang, Z.; Rao, Z.; Xiao, W.; Xie, X.; Sun, J. Carbon quantum dots–TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: Experimental and DFT studies of adsorption and electronic structure of the interface. J. Hazard. Mater. 2021, 401, 123402. [Google Scholar] [CrossRef]
- Abdel-Bary, A.S.; Tolan, D.A.; Nassar, M.Y.; Taketsugu, T.; El-Nahas, A.M. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 2020, 154, 621–633. [Google Scholar] [CrossRef]
- Eskandari, M.; Najafi Liavali, M.; Malekfar, R.; Taboada, P. Investigation of optical properties of polycarbonate/TiO2/ZnO nanocomposite: Experimental and DFT calculations. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5283–5292. [Google Scholar] [CrossRef]
- Pathak, G.; Mangla, S.; Gupta, G.K.; Bhan, V.; Kapoor, R.K. Toxicological assessment and risk management of nanoparticles mediated composite materials—Critical review: State of the art. Discov. Polym. 2025, 2, 12. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, X.; Hong, H.; Chen, J.; Zhao, Q.; Wu, F. Computational nanotoxicology models for environmental risk assessment of engineered nanomaterials. Nanomaterials 2024, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Akhter, H.; Ritu, S.S.; Siddique, S.; Chowdhury, F.; Chowdhury, R.T.; Akhter, S.; Hakim, M. In silico molecular docking and ADMET prediction of biogenic zinc oxide nanoparticles: Characterization, and in vitro antimicrobial and photocatalytic activity. RSC Adv. 2024, 14, 36209–36225. [Google Scholar] [CrossRef]
- Boominathan, V.; Kalyanaraman, R.; Francis, R.; Chandran, J.; Tharumasivam, S.V. In silico investigations of Al2O3 and NiO nanoparticles interactions with antioxidant enzymes of fresh water fish O. mossambicus. Uttar Pradesh J. Zool. 2024, 45, 525–536. [Google Scholar] [CrossRef]
- Mohammadjani, N.; Karimi, S.; Zorab, M.M.; Ashengroph, M.; Alavi, M. Comparative molecular docking and toxicity between carbon-capped metal oxide nanoparticles and standard drugs in cancer and bacterial infections. BioImpacts 2023, 14, 27778. [Google Scholar] [CrossRef]
- Latif, M.; Nawaz, R.; Aziz, M.H.; Asif, M.; Noor, F.; Aligayev, A.; Ali, S.M.; Alam, M.; Papanikolaou, S.; Huang, Q. Evaluation of tetracycline photocatalytic degradation using NiFe2O4/CeO2/GO nanocomposite for environmental remediation: In silico molecular docking, antibacterial performance, degradation pathways, and DFT calculations. arXiv 2025, arXiv:2503.05751. [Google Scholar] [CrossRef]
- Khan, T. An insight into in silico strategies used for exploration of medicinal utility and toxicology of nanomaterials. Comput. Biol. Chem. 2025, 108, 108435. [Google Scholar] [CrossRef] [PubMed]
- Sholl, D.S.; Steckel, J.A. Density Functional Theory: A Practical Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput.-Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]



| S. No. | Nanomaterial | Target Protein | Role of Protein | Software Used | Major Findings | Reference |
|---|---|---|---|---|---|---|
| 1 | Boron-doped reduced graphene oxide | Bovine Serum Albumin (BSA) | Transport and binding of molecules | AutoDock Vina 4.2 | Revealed strong binding affinity, suggesting potential for drug delivery applications. | [21] |
| 2 | CeO2–GO | Superoxide Dismutase 1 (SOD1) | Reactive oxygen species detoxification | AutoDock Vina v1.2.x | Showed interaction with both mutated and non-mutated forms, suggesting therapeutic potential. | [22] |
| 3 | Zn-MnO | Methicillin-resistant Staphylococcus aureus (MRSA) enzymes | Antibiotic resistance mechanisms | Molecular Orbital Environment (MOE) | Revealed binding interactions with multiple MRSA enzymes, suggesting antimicrobial activity. | [23] |
| 4 | Fe-Zn-TiO2 | DIPA and bacterial proteins (E. coli, S. aureus) | Photocatalytic degradation and binding | AutoDock Vina | Exhibited effective degradation of pollutants and strong binding to bacterial proteins. | [24] |
| 5 | Fe3S4/TiO2 | Quinalphos pesticide and fish health proteins | Binding and degradation | AutoDock Vina | Identified effective binding sites for pesticide degradation and potential impact on fish health. | [25] |
| S. No. | Nanocomposite | DFT Method/Software Used | Parameters Calculated | Major Findings | Reference |
|---|---|---|---|---|---|
| 1 | Polyaniline/ZnO | B3LYP functional and 6–311G (d,p) basis set | Band gap, HOMO-LUMO | Favourable band alignment and charge transfer capability in the composite, correlating with experimentally enhanced dye reduction | [30] |
| 2 | TiO2/WSe2 | Quantum ESPRESSO software package | Adsorption energy, charge transfer, DOS, band structure, and charge density difference | O3 molecules exhibit strong chemisorption on the TiO2/WSe2 interface with significant charge transfer, leading to noticeable modulation in electronic properties, suggesting the nanocomposite’s high potential as an efficient gas-sensing material for ozone detection | [31] |
| 3 | Carbon quantum dots-TiO2 | B3LYP functional and 6–311G (d,p) basis set | Adsorption energy, electronic density, band structure changes, charge separation | Decorating TiO2 with an optimal amount (~0.5 wt%) of CQDs yields enhanced photodegradation of aromatic VOCs (64% vs. 44% for bare TiO2), attributed to better light absorption, stronger adsorption of VOC molecules, and improved electron–hole separation mediated by the newly introduced interface states | [32] |
| 4 | (CS/M/S/GO) | Gas-phase and implicit solvation/water medium | Binding (interaction) energies, ionization energies, conformational energies, dipole moments, and frontier orbital (HOMO–LUMO) properties | The modelled nanocomposite shows favourable binding with cisplatin (i.e., strong interaction) and that functionalization enhances the interaction and stability of the drug–carrier complex in both gas and aqueous environments. | [33] |
| 5 | Polycarbonate/TiO2/ZnO | B3LYP functional and 6–311G (d,p) basis set | HOMO–LUMO gap | Incorporation of TiO2 and ZnO nanoparticles into the polycarbonate matrix led to a decrease in the optical band gap and increased absorption in the UV-visible region. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, N.; Veg, E.; Khan, T. A Brief Review on the Exploration of Nanocomposites and Their Properties Through Computational Methods for Biological Activity Evaluation. Mater. Proc. 2025, 25, 1. https://doi.org/10.3390/materproc2025025001
Fatima N, Veg E, Khan T. A Brief Review on the Exploration of Nanocomposites and Their Properties Through Computational Methods for Biological Activity Evaluation. Materials Proceedings. 2025; 25(1):1. https://doi.org/10.3390/materproc2025025001
Chicago/Turabian StyleFatima, Nashra, Ekhlakh Veg, and Tahmeena Khan. 2025. "A Brief Review on the Exploration of Nanocomposites and Their Properties Through Computational Methods for Biological Activity Evaluation" Materials Proceedings 25, no. 1: 1. https://doi.org/10.3390/materproc2025025001
APA StyleFatima, N., Veg, E., & Khan, T. (2025). A Brief Review on the Exploration of Nanocomposites and Their Properties Through Computational Methods for Biological Activity Evaluation. Materials Proceedings, 25(1), 1. https://doi.org/10.3390/materproc2025025001
