Modeling Water Sorption Capacity of Silica Gel †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sztekler, K.; Kalawa, W.; Mlonka-Medrala, A.; Nowak, W.; Mika, L.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Debniak, M. The Effect of Adhesive Additives on Silica Gel Water Sorption Properties. Entropy 2020, 22, 327. [Google Scholar] [CrossRef] [PubMed]
- Hanif, S.; Adiputra, S.; Yaningsih, I.; Budiana, E.P. Adsorption Characteristics of Silica Gel-Water Pairs in Personal Protection Equipment. Mek. Maj. Ilm. Mek. 2023, 22, 50–58. [Google Scholar] [CrossRef]
- Dini, S.; Bell, L.N. Experimental Data on Water Vapour Adsorption on Silica Gel in Fully Packed Bed Configurations. Energy 2020, 34, 106736. [Google Scholar] [CrossRef]
- Chen, C.; Salinger, J.L.; Essig, M.E.; Walton, I.M.; Fulvio, P.F.; Walton, K.S. Hierarchical Silica Composites for Enhanced Water Adsorption at Low Humidity. ACS Appl. Mater. Interfaces 2024, 16, 40275–40285. [Google Scholar] [CrossRef] [PubMed]
- Besbes, M.; Fakhfakh, N.; Benzina, M. Characterization of silica gel prepared by using sol-gel process. Phys. Procedia 2009, 2, 1087–1095. [Google Scholar] [CrossRef]
- Choma, J.; Kloske, M.; Jaroniec, M. An improved methodology for adsorption characterization of unmodified and modified silica gels. J. Colloid Interface Sci. 2003, 266, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Todorova, E.; Chernev, G.; Okolie, N.; Salvado, I.M. Structure and Properties of Innovative Silica Hybrid Materials Synthesized for Environmental Applications. Biotechnol. Biotechnol. Equip. 2015, 29, 44–51. [Google Scholar] [CrossRef]
- Ravutsov, M.; Mitrev, Y.; Shestakova, P.; Lazarova, H.; Simeonov, S.; Popova, M. CO2 Adsorption on Modified Mesoporous Silicas: The Role of the Adsorption Sites. Nanomaterials 2021, 11, 2831. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.; Gauvin, C.; Ladhari, S.; Nguyen-Tri, P. Advanced Functional Materials for Intelligent Thermoregulation in Personal Protective Equipment. Polymers 2021, 13, 3711. [Google Scholar] [CrossRef] [PubMed]
- Arifin, Z.; Prasetyo, S.D.; Ubaidillah, U.; Suyitno, S.; Tjahjana, D.D.D.P.; Juwana, W.E.; Rachmanto, R.A.; Prabowo, A.R.; Apribowo, C.H.B. Helmet Stick Design for BC3 Paramlympic Boccia Games. Math. Model. Eng. Probl. 2022, 9, 637–644. [Google Scholar] [CrossRef]
- Singh, N.; Gunjan, V.K.; Chaudhary, G.; Kaluri, R.; Victor, N.; Lakshmanna, K. IoT Enabled Helmet to Safeguard the Health of Mine Workers. Comput. Commun. 2022, 193, 1–9. [Google Scholar] [CrossRef]
- Cook, T.M. Personal Protective Equipment During the Coronavirus Disease (COVID-19) Pandemic—A Narrative Review. Anaesthesia 2020, 75, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Ejiko, S.O.; Ejiko, S.O.; Filani, A.O. Mathematical Modeling: A Useful Tool for Engineering Research and Practice. Int. J. Math. Trends Technol. 2021, 67, 46–60. [Google Scholar] [CrossRef]
- Ortiz, Z. Exploring the Theory of Mathematical Modelling: Unlocking the Power of Abstraction. J. Phys. Math. 2023, 14, 434. [Google Scholar]
- Yao, M.K.; Soumahoro, N.S.E.; Koffi, K.U. Prediction of Organic Pollution of Waters from the Déganobo Lake System: A Modeling Study. Science Letters 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Kalantary, S.; Jahani, A.; Jahani, R. MLR and ANN Approaches for Prediction of Synthetic/Natural Nanofibers Diameter in the Environmental and Medical Applications. Sci. Rep. 2020, 10, 8117. [Google Scholar] [CrossRef] [PubMed]
- Pourramezan, M.R.; Rohani, A.; Abbaspour-Fard, M.H. Comparative Analysis of Soft Computing Models for Predicting Viscosity in Diesel Engine Lubricants: An Alternative Approach to Condition Monitoring. ACS Omega 2024, 9, 1398–1415. [Google Scholar] [CrossRef] [PubMed]
N | W (g/g) | SpBET (g/m2) | Vp (cm3/g) | d (nm) | RH (%) |
---|---|---|---|---|---|
1. | 7.01 | 682.90 | 0.41 | 2.3 | 20.00 |
2. | 18.90 | 682.90 | 0.44 | 2.3 | 40.00 |
3. | 27.30 | 682.90 | 0.41 | 2.3 | 60.00 |
4. | 4.60 | 589.90 | 0.66 | 4.2 | 20.00 |
5. | 9.00 | 589.90 | 0.66 | 4.2 | 40.00 |
6. | 20.50 | 589.90 | 0.66 | 4.2 | 60.00 |
7. | 4.10 | 431.20 | 0.85 | 7.6 | 20.00 |
8. | 6.40 | 431.20 | 0.85 | 7.6 | 40.00 |
9. | 11.80 | 431.20 | 0.85 | 7.6 | 60.00 |
10. | 4.15 | 516.40 | 0.74 | 5.5 | 20.00 |
11. | 7.86 | 516.40 | 0.74 | 5.5 | 40.00 |
12. | 16.70 | 516.40 | 0.74 | 5.5 | 60.00 |
N | W (g/g) | SpBET (g/m2) | Vp (cm3/g) | d (nm) | RH (%) | |
---|---|---|---|---|---|---|
Pearson Correlation Coefficient | w | 1.000 | 0.508 | −0.524 | −0.503 | 0.792 |
SpBET | 0.508 | 1.000 | −0.977 | −0.997 | 0.000 | |
Vp | −0.524 | −0.977 | 1.000 | 0.970 | 0.000 | |
d | −0.503 | −0.997 | 0.970 | 1.000 | 0.000 | |
RH | 0.792 | 0.000 | 0.000 | 0.000 | 1.000 | |
Sig. (1-tailed) | w | 0.046 | 0.040 | 0.048 | 0.001 | |
SpBET | 0.046 | 0.000 | 0.000 | 0.500 | ||
Vp | 0.040 | 0.000 | 0.000 | 0.500 | ||
d | 0.048 | 0.000 | 0.000 | 0.500 | ||
RH | 0.001 | 0.500 | 0.500 | 0.500 | ||
N | w | 12 | 12 | 12 | 12 | 12 |
SpBET | 12 | 12 | 12 | 12 | 12 | |
Vp | 12 | 12 | 12 | 12 | 12 | |
d | 12 | 12 | 12 | 12 | 12 | |
RH | 12 | 12 | 12 | 12 | 12 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|---|
B a | Std. Error | Beta | ||||
1 | (Constant) | −24.711 | 5.361 | −4.610 | 0.001 | |
RH | 0.353 | 0.050 | 0.792 | 7.033 | 0.000 | |
SpBET | 0.040 | 0.009 | 0.508 | 4.513 | 0.001 | |
2 | (Constant) | 13.522 | 3.774 | 3.582 | 0.006 | |
RH | 0.353 | 0.046 | 0.792 | 7.606 | 0.000 | |
Vp | −24.124 | 4.791 | −0.524 | −5.035 | 0.001 |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
---|---|---|---|---|
1 | 0.941 a | 0.886 | 0.860 | 2.83731 |
2 | 0.950 b | 0.902 | 0.881 | 2.62340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kešelj, D.; Lazić, D.; Bogićević, Ž.; Petrović, Z.; Drljača, D. Modeling Water Sorption Capacity of Silica Gel. Eng. Proc. 2025, 99, 8. https://doi.org/10.3390/engproc2025099008
Kešelj D, Lazić D, Bogićević Ž, Petrović Z, Drljača D. Modeling Water Sorption Capacity of Silica Gel. Engineering Proceedings. 2025; 99(1):8. https://doi.org/10.3390/engproc2025099008
Chicago/Turabian StyleKešelj, Dragana, Dragica Lazić, Željana Bogićević, Zoran Petrović, and Dijana Drljača. 2025. "Modeling Water Sorption Capacity of Silica Gel" Engineering Proceedings 99, no. 1: 8. https://doi.org/10.3390/engproc2025099008
APA StyleKešelj, D., Lazić, D., Bogićević, Ž., Petrović, Z., & Drljača, D. (2025). Modeling Water Sorption Capacity of Silica Gel. Engineering Proceedings, 99(1), 8. https://doi.org/10.3390/engproc2025099008