Analysis of Gluten Protein After Replacing Some of the Wheat Flour with Amaranth Flour in Muffins †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 2009, 60, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Gojković Cvjetković, V.; Marjanović-Balaban, Ž.; Srdić Gojković, B.; Rajić, D.; Vukić, M.; Smiljanić, M. Pseudocereals in a gluten-free diet. J. Eng. Process. Manag. 2024, 16, 20–28. [Google Scholar] [CrossRef]
- Singh, N.; Samarth, R.M.; Vashishth, A.; Pareek, A. Amaranthus as a potential dietary supplement in sports nutrition. CYTA J. Food. 2024, 22, 2375253. [Google Scholar] [CrossRef]
- Yilma, M.K.; Eifa, A.; Belayneh, M.; Orsango, A.Z. Effect of amaranth-containing dietary intervention in improving hemoglobin concentration: A systematic review and meta analysis. Public Health Rev. 2025, 45, 1607597. [Google Scholar] [CrossRef] [PubMed]
- Macharia-Mutie, C.W. Efficacy of Amaranth Grain (Amaranthus cruentus) on Anaemia and Iron Deficiency in Kenyan Pre-School Children. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2012. [Google Scholar]
- Jan, N.; Hussain, S.Z.; Naseer, B.; Bhat, T.A. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chem. 2023, 18, 100687. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Akubugwo, I.; Obasi, N.; Chinyere, G.; Ugbogu, A. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afipko, Nigeria. Afr. J. Biotechnol. 2007, 6, 2833–2839. [Google Scholar] [CrossRef]
- Igbinedion, S.O.; Ansari, J.; Vasikaran, A.; Gavins, F.N.; Jordan, P.; Boktor, M.; Alexander, J.S. Non-celiac gluten sensitivity: All wheat attack is not celiac. World J. Gastroenterol. 2017, 23, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Malik, T.; Singh, A.; Thakur, S.; Kumar, P. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity. Food Chem. Adv. 2024, 4, 100627. [Google Scholar] [CrossRef]
- Białek, M.; Rutkowska, J.; Adamska, A.; Bajdalow, E. Partial replacement of wheat flour with pumpkin seed flour in muffins offered to children. CyTA J. Food 2016, 14, 391–398. [Google Scholar] [CrossRef]
- Wieser, H.; Antes, S.; Seilmeier, W. Quantitative Determination of Gluten Protein Types in Wheat Flour by Reversed-Phase High-Performance Liquid Chromatography. Cereal Chem. 1998, 75, 644–650. [Google Scholar] [CrossRef]
- Gojković Cvjetković, V.; Grujić, R.; Marjanović-Balaban, Ž.; Stanojević, L.J.; Stanojević, J.; Cakić, M. Gliadin analysis by reversed-phase high performance liquid chromatography. Adv. Technol. 2019, 8, 30–36. [Google Scholar] [CrossRef]
- Nasir, S.; Allai, F.M.; Gani, M.; Ganaie, S.; Gul, K.; Jabeen, A.; Majeed, D. Physical, textural, rheological and sensory characteristics of Amaranth-Based wheat flour bread. Int. J. Food Sci. 2020, 2020, 8874872. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Villegas, P.; Perez-Carrillo, E.; Picazo García, C.; Camacho, M.C. Effect of wheat flour substitution and popped amaranth flour content on the rheological, physicochemical and textural properties of hot-press wheat-oat- quinoa-amaranth composite flour tortillas. CYTA—J. Food 2021, 19, 571–578. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features. Foods 2021, 10, 1539. [Google Scholar] [CrossRef] [PubMed]
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of gliadin protein | 0 | 3 | 19.33 | 1.53 | 0.88 | 18.00 | 21.00 |
2 | 3 | 20.00 | 1.00 | 0.58 | 19.00 | 21.00 | |
4 | 3 | 20.33 | 1.15 | 0.67 | 19.00 | 21.00 | |
ω5 gliadins | 0 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 |
2 | 3 | 4.00 | 1.00 | 0.58 | 3.00 | 5.00 | |
4 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 | |
ω1,2 gliadins | 0 | 3 | 3.33 | 1.15 | 0.67 | 2.00 | 4.00 |
2 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
4 | 3 | 2.33 | 0.58 | 0.33 | 2.00 | 3.00 | |
α + β gliadins | 0 | 3 | 5.00 | 1.00 | 0.58 | 4.00 | 6.00 |
2 | 3 | 6.67 | 1.53 | 0.88 | 5.00 | 8.00 | |
4 | 3 | 6.00 | 1.00 | 0.58 | 5,00 | 7.00 | |
γ gliadins | 0 | 3 | 7.67 | 0.58 | 0.33 | 7.00 | 8.00 |
2 | 3 | 5.67 | 0.58 | 0.33 | 5.00 | 6.00 | |
4 | 3 | 8.33 | 1.15 | 0.67 | 7.00 | 9.00 | |
ANOVA (TQP) | F(2.6) = 0.50, Sig. = 0.63 > 0.05, eta square = 1.55/10.89 = 0.14 | ||||||
ANOVA (ω5) | F(2.6) = 0.60, Sig. = 0.58 > 0.05, eta square = 0.67/4.00 = 0.17 | ||||||
ANOVA (ω1,2) | F(2.6) = 1.44, Sig. = 0.31 > 0.05, eta square = 2.89/8.89 = 0.32 | ||||||
ANOVA (α + β) | F(2.6) = 1.46, Sig. = 0.30 > 0.05, eta square = 4.22/12.89 = 0.33 | ||||||
ANOVA (γ) | F(2.6) = 8.67, Sig. = 0.02 < 0.05, eta square = 11.55/15.55 = 0.74 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of gliadin protein | 0 | 3 | 18.00 | 1.00 | 0.58 | 17.00 | 19.00 |
2 | 3 | 19.67 | 1.53 | 0.88 | 18.00 | 21.00 | |
4 | 3 | 18.00 | 1.00 | 0.58 | 17.00 | 19.00 | |
ω5 gliadins | 0 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 |
2 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
4 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
ω1,2 gliadins | 0 | 3 | 2.33 | 0.58 | 0.33 | 2.00 | 3.00 |
2 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 | |
4 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
α + β gliadins | 0 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 |
2 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
4 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
γ gliadins | 0 | 3 | 8.67 | 0.58 | 0.33 | 8.00 | 9.00 |
2 | 3 | 9.33 | 1.15 | 0.67 | 8.00 | 10.00 | |
4 | 3 | 8.33 | 0.58 | 0.33 | 8.00 | 9.00 | |
ANOVA (TQP) | F(2.6) = 1.92, Sig. = 0.23 > 0.05, eta square = 5.55/14.22 = 0.39 | ||||||
ANOVA (ω5) | F(2.6) = 0.57, Sig. = 0.59 > 0.05, eta square = 0.89/5.55 = 0.16 | ||||||
ANOVA (ω1,2) | F(2.6) = 2.67, Sig. = 0.15 > 0.05, eta square = 3.55/7.55 = 0.47 | ||||||
ANOVA (α + β) | F(2.6) = 0.37, Sig. = 0.70 > 0.05, eta square = 0.67/6.00 = 0.11 | ||||||
ANOVA (γ) | F(2.6) = 1.17, Sig. = 0.37 > 0.05, eta square = 1.55/5.55 = 0.28 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of gliadin protein | 0 | 3 | 12.00 | 1.00 | 0.58 | 11.00 | 13.00 |
2 | 3 | 18.33 | 3.21 | 1.85 | 16.00 | 22.00 | |
4 | 3 | 14.00 | 1.73 | 1.00 | 12.00 | 15.00 | |
ω5 gliadins | 0 | 3 | 2.67 | 0.58 | 0.33 | 2.00 | 3.00 |
2 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
4 | 3 | 2.33 | 0.58 | 0.33 | 2.00 | 3.00 | |
ω1,2 gliadins | 0 | 3 | 2.00 | 0.00 | 0.00 | 2.00 | 2.00 |
2 | 3 | 1.67 | 0.58 | 0.33 | 1.00 | 2.00 | |
4 | 3 | 2.67 | 0.58 | 0.33 | 2.00 | 3.00 | |
α + β gliadins | 0 | 3 | 0.33 | 0.58 | 0.33 | 0.00 | 1.00 |
2 | 3 | 2.67 | 0.58 | 0.33 | 2.00 | 3.00 | |
4 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 | |
γ gliadins | 0 | 3 | 7.00 | 1.00 | 0.58 | 6.00 | 8.00 |
2 | 3 | 11.00 | 1.00 | 0.58 | 10.00 | 12.00 | |
4 | 3 | 6.00 | 0.00 | 0.00 | 6.00 | 6.00 | |
ANOVA (TQP) | F(2.6) = 6.58, Sig. = 0.03 < 0.05, eta square = 62.89/91.55 = 0.69 | ||||||
ANOVA (ω5) | F(2.6) = 0.60, Sig. = 0.58 > 0.05, eta square = 0.67/4.00 = 0.16 | ||||||
ANOVA (ω1,2) | F(2.6) = 3.50, Sig. = 0.09 > 0.05, eta square = 1.55/2.89 = 0.54 | ||||||
ANOVA (α + β) | F(2.6) = 22.33, Sig. = 0.001 < 0.05, eta square = 14.89/16.89 = 0.88 | ||||||
ANOVA (γ) | F(2.6) = 31.50, Sig. = 0.000 < 0.05, eta square = 42.00/46.00 = 0.91 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of gliadin protein | 0 | 3 | 13.67 | 0.58 | 0.33 | 13.00 | 14.00 |
2 | 3 | 15.33 | 1.53 | 0.88 | 14.00 | 17.00 | |
4 | 3 | 13.67 | 0.58 | 0.33 | 13.00 | 14.00 | |
ω5 gliadins | 0 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 |
2 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
4 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
ω1,2 gliadins | 0 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 |
2 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
4 | 3 | 3.00 | 0.00 | 0.00 | 3.00 | 3.00 | |
α + β gliadins | 0 | 3 | 4.00 | 0.00 | 0.00 | 4.00 | 4.00 |
2 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 | |
4 | 3 | 3.67 | 1.15 | 0.67 | 3.00 | 5.00 | |
γ gliadins | 0 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 |
2 | 3 | 5.67 | 1.15 | 0.67 | 5.00 | 7.00 | |
4 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 | |
ANOVA (TQP) | F(2.6) = 2.78, Sig. = 0.14 > 0.05, eta square = 5.55/11.55 = 0.48 | ||||||
ANOVA (ω5) | F(2.6) = 0.36, Sig. = 0.70 > 0.05, eta square = 0.89/8.22 = 0.11 | ||||||
ANOVA (ω1,2) | F(2.6) = 0.00, Sig. = 1.00 > 0.05, eta square = 0.00/4.00 = 0.00 | ||||||
ANOVA (α + β) | F(2.6) = 1.00, Sig. = 0.42 > 0.05, eta square = 1.55/6.22 = 0.25 | ||||||
ANOVA (γ) | F(2.6) = 7.17, Sig. = 0.03 < 0.05, eta square = 9.55/13.55 = 0.70 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of glutenin protein | 0 | 3 | 21.33 | 2.08 | 1.20 | 19.00 | 23.00 |
2 | 3 | 25.67 | 0.58 | 0.33 | 25.00 | 26.00 | |
4 | 3 | 26.67 | 1.53 | 0.88 | 25.00 | 28.00 | |
ωb gliadins | 0 | 3 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 |
2 | 3 | 1.00 | 1.00 | 0.58 | 0.00 | 2.00 | |
4 | 3 | 1.67 | 0.58 | 0.33 | 1.00 | 2.00 | |
HMW glutenins | 0 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 |
2 | 3 | 6.67 | 1.15 | 0.67 | 6.00 | 8.00 | |
4 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 | |
LMW glutenins | 0 | 3 | 16.67 | 1.53 | 0.88 | 15.00 | 18.00 |
2 | 3 | 18.33 | 0.58 | 0.33 | 18.00 | 19.00 | |
4 | 3 | 21.33 | 2.52 | 1.45 | 19.00 | 24.00 | |
ANOVA (TQP) | F(2.6) = 10.33, Sig. = 0.01 < 0.05, eta square = 48.22/62.22 = 0.77 | ||||||
ANOVA (ωb) | F(2.6) = 1.00, Sig. = 0.42 > 0.05, eta square = 0.89/3.55 = 0.25 | ||||||
ANOVA (HMW) | F(2.6) = 13.50, Sig. = 0.006 < 0.05, eta square = 18.00/22.00 = 0.82 | ||||||
ANOVA (LMW) | F(2.6) = 5,59, Sig. = 0,04 < 0,05, eta square = 33.55/51.55 = 0.65 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of glutenin protein | 0 | 3 | 19.00 | 1.00 | 0.58 | 18.00 | 20.00 |
2 | 3 | 20.00 | 2.65 | 1.53 | 17.00 | 22.00 | |
4 | 3 | 26.00 | 1.00 | 0.58 | 25.00 | 27.00 | |
ωb gliadins | 0 | 3 | 1.33 | 0.58 | 0.33 | 1.00 | 2.00 |
2 | 3 | 1.33 | 0.58 | 0.33 | 1.00 | 2.00 | |
4 | 3 | 2.67 | 0.58 | 0.33 | 2.00 | 3.00 | |
HMW glutenins | 0 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 |
2 | 3 | 5.33 | 0.58 | 0.33 | 5.00 | 6.00 | |
4 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 | |
LMW glutenins | 0 | 3 | 14.67 | 0.58 | 0.33 | 14.00 | 15.00 |
2 | 3 | 13.33 | 2.08 | 1.20 | 11.00 | 15.00 | |
4 | 3 | 20.00 | 1.00 | 0.58 | 19.00 | 21.00 | |
ANOVA (TQP) | F(2.6) = 14.33, Sig. = 0.005 < 0.05, eta square = 86.00/104.00 = 0.83 | ||||||
ANOVA (ωb) | F(2.6) = 5.33, Sig. = 0.05, eta square = 3.55/5.55 = 0.64 | ||||||
ANOVA (HMW) | F(2.6) = 8.60, Sig. = 0.02 < 0.05, eta square = 9.55/12.89 = 0.74 | ||||||
ANOVA (LMW) | F(2.6) = 19.76, Sig. = 0.002 < 0.05, eta square = 74.67/86.00 = 0.87 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of glutenin protein | 0 | 3 | 17.67 | 1.53 | 0.88 | 16.00 | 19.00 |
2 | 3 | 18.67 | 0.58 | 0.33 | 18.00 | 19.00 | |
4 | 3 | 20.67 | 1.15 | 0.67 | 20.00 | 22.00 | |
ωb gliadins | 0 | 3 | 1.67 | 0.58 | 0.33 | 1.00 | 2.00 |
2 | 3 | 1.67 | 0.58 | 0.33 | 1.00 | 2.00 | |
4 | 3 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | |
HMW glutenins | 0 | 3 | 3.00 | 1.00 | 0.58 | 2.00 | 4.00 |
2 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 | |
4 | 3 | 3.33 | 0.58 | 0.33 | 3.00 | 4.00 | |
LMW glutenins | 0 | 3 | 13.00 | 1.73 | 1.00 | 11.00 | 14.00 |
2 | 3 | 13.67 | 1.53 | 0.88 | 12.00 | 15.00 | |
4 | 3 | 16.33 | 1.53 | 0.88 | 15.00 | 18.00 | |
ANOVA (TQP) | F(2.6) = 5.25, Sig. = 0.05, eta square = 14.00/22.00 = 0.64 | ||||||
ANOVA (ωb) | F(2.6) = 2.00, Sig. = 0.22 > 0.05, eta square = 0.89/2.22 = 0.40 | ||||||
ANOVA (HMW) | F(2.6) = 0.20, Sig. = 0.82, eta square = 0.22/3.55 = 0.06 | ||||||
ANOVA (LMW) | F(2.6) = 3.65, Sig. = 0.09 > 0.05, eta square = 18.67/34.00 = 0.55 |
Storage Time (Weeks) | N | Xav | SD | Std. Error | Min | Max | |
---|---|---|---|---|---|---|---|
The overall quantity of glutenin protein | 0 | 3 | 17.33 | 1.53 | 0.88 | 16.00 | 19.00 |
2 | 3 | 18.67 | 1.15 | 0.67 | 18.00 | 20.00 | |
4 | 3 | 22.00 | 1.00 | 0.58 | 21.00 | 23.00 | |
ωb gliadins | 0 | 3 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 |
2 | 3 | 2.00 | 0.00 | 0.00 | 2.00 | 2.00 | |
4 | 3 | 1.67 | 1.15 | 0.67 | 1.00 | 3.00 | |
HMW glutenins | 0 | 3 | 4.00 | 1.00 | 0.58 | 3.00 | 5.00 |
2 | 3 | 3.67 | 0.58 | 0.33 | 3.00 | 4.00 | |
4 | 3 | 4.33 | 0.58 | 0.33 | 4.00 | 5.00 | |
LMW glutenins | 0 | 3 | 12.33 | 0.58 | 0.33 | 12.00 | 13.00 |
2 | 3 | 13.00 | 1.00 | 0.58 | 12.00 | 14.00 | |
4 | 3 | 16.00 | 1.00 | 0.58 | 15.00 | 17.00 | |
ANOVA (TQP) | F(2.6) = 11.14, Sig. = 0.009 < 0.05, eta square = 34.67/44.00 = 0.79 | ||||||
ANOVA (ωb) | F(2.6) = 1.75, Sig. = 0.25 > 0.05, eta square = 1.55/4.22 = 0.37 | ||||||
ANOVA (HMW) | F(2.6) = 0.60, Sig. = 0.58 > 0.05, eta square = 0.67/4.00 = 0.17 | ||||||
ANOVA (LMW) | F(2.6) = 14.71, Sig. = 0.005 < 0.05, eta square = 22.89/27.55 = 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gojković Cvjetković, V.; Škuletić, D.; Marjanović-Balaban, Ž.; Rajić, D.; Vukić, M.; Smiljanić, M.; Vujadinović, D. Analysis of Gluten Protein After Replacing Some of the Wheat Flour with Amaranth Flour in Muffins. Eng. Proc. 2025, 99, 3. https://doi.org/10.3390/engproc2025099003
Gojković Cvjetković V, Škuletić D, Marjanović-Balaban Ž, Rajić D, Vukić M, Smiljanić M, Vujadinović D. Analysis of Gluten Protein After Replacing Some of the Wheat Flour with Amaranth Flour in Muffins. Engineering Proceedings. 2025; 99(1):3. https://doi.org/10.3390/engproc2025099003
Chicago/Turabian StyleGojković Cvjetković, Vesna, Dragana Škuletić, Željka Marjanović-Balaban, Danijela Rajić, Milan Vukić, Milenko Smiljanić, and Dragan Vujadinović. 2025. "Analysis of Gluten Protein After Replacing Some of the Wheat Flour with Amaranth Flour in Muffins" Engineering Proceedings 99, no. 1: 3. https://doi.org/10.3390/engproc2025099003
APA StyleGojković Cvjetković, V., Škuletić, D., Marjanović-Balaban, Ž., Rajić, D., Vukić, M., Smiljanić, M., & Vujadinović, D. (2025). Analysis of Gluten Protein After Replacing Some of the Wheat Flour with Amaranth Flour in Muffins. Engineering Proceedings, 99(1), 3. https://doi.org/10.3390/engproc2025099003