Next Article in Journal
COP Enhancement of Peltier-Based Dehumidifiers
Previous Article in Journal
Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Pompeii: From the Survey of Ballistic Impacts Towards the Reconstructions of Roman Artillery (1st Century BC)

Department of Engineering, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
Eng. Proc. 2025, 96(1), 1; https://doi.org/10.3390/engproc2025096001
Published: 3 June 2025

1. Conference Overview

This volume brings together the reflections of those who have been committed to building a dialogue around the results achieved (and currently underway) by the research project “Comparative Analysis and Certified Reconstructions for a correct experimental archeology: Roman Scorpions and Ballistae for the Imperial mechanical culture, origin of European identity. Governance policy for the development and sustainable fruition of Cultural Heritag”, which received top marks from an international evaluation panel (Erch SH5, Annex A. D.D. no. 1012/2023) at the conclusion of the first year of research activities, funded in Italy by the Ministry of University and Scientific Research through dedicated resources from the National Program of Projects of Significant Interest (MUR, D.D. no. 104/2022) (Figure 1).
The Department of Engineering at the Università della Campania Luigi Vanvitelli ensured the scientific coordination of the research activities. This unit works in collaboration with the Department of Mechanical Engineering of the Politecnico di Milano and the Department of Computer Science, Science and Engineering, Alma Mater Studiorum—Università di Bologna. A joint site inspection at the research site served as an opportunity for discussion, preceded by a presentation of the preliminary results.
On 27 February 2025, in the Aula Magna of the Real Casa dell’Annunziata (Aversa, Italy), professors and researchers collectively discussed their respective progress. The perspectives of experts external to the project’s research groups and professionals attending the conference enriched the exchange of knowledge, with a focus on technology transfer and the dissemination of results beyond the academic context.
The aim of SCORPiò-NIDI, the shortened name of the project, is to become a tourist attraction for the already renowned Archaeological Park of Pompeii in the province of Naples. The aim is to provide a renewed image of the city founded by the Oscans as a result of the experimental activity and the historical/military study carried out on the northern section of the fortified walls. The city walls, buried by the eruption of Vesuvius in 79 AD—specifically in the relevant section—was only unearthed during the first decade of the 20th century. The study performed focused on the possibility of detecting some of the anthropic indentations that Amedeo Maiuri (1886–1963) and Albert William Van Buren (1878–1968) attributed to the impacts of darts and stones launched by the Sullan artillery during the siege of 89 BC.
In line with the national and international objectives of the strategic plans and guidelines of European research, the digital survey of the cavities selected as the case study allowed for the generation of high-resolution, potentially printable models, suitable for documenting and disseminating what today appears to be of exceptional value: a sort of relic, being the only confirmed evidence of the lethality of existing elastic torsion weapons. It is a responsibility of the contemporary era to bring back what was deliberately forgotten at the time of its discovery to public attention. The widespread rejection of the horrors produced by the world wars understandably led to the concealment of the lethality of deadly Hellenistic weapons.
Today, shared and interoperable workflows allow for the integration not only of models but also of fragmented knowledge. Therefore, it is increasingly necessary to outline a general framework that offers a comprehensive and detailed overview to visitors of the Archaeological Park of Pompeii. Recognizing the value of ballistic evidence derived from experimental activity and historical/military research is a fundamental step toward an appropriate, objective, and reliable museological narrative. The renovation of pedestrian and cycling routes for tourists around the northern section of the city walls is an ongoing effort; illustrating and making ballistic evidence intelligible contributes to defining a cultural identity that, although distant in time, still has much to reveal. Digital surveying makes it possible to transcribe evidence of exceptional value into updatable documents. Digital technologies allow for an in-depth collection of detailed features and the use of multipurpose and multiscale models. Among these, a key element for investigating the effects of stone balls and dart launchers is the 3D acquisition of high-resolution casts, used for reverse modeling. The study of geometric configuration is essential for solving reverse problems—specifically, in our case, to define mechanical parameters through which to find the characteristics of terminal ballistics.
The originality of our research lies in what appears to be a unique possibility of calculating the volume of fractured material in order to estimate the kinetic energy required to cause breakage. This static–mechanical characterization, inductively validated, helps us confirm the calculated values by drawing upon Hellenistic science formalized on experimental foundations.
The results will provide objective elements, as they are based on verifiable effects. A pilot series of reliable and functional reconstructions may be appropriately patented to serve as a reference for the “certified” production of museum installations within and beyond Europe. In parallel, virtual scorpions and ballistae will support dedicated platforms, both online and offline, and physical demonstrators for an engaging and interactive experience on site, near the fortified walls.
Accurate documentation aims to preserve, for future memory, the “relics” that have miraculously survived Roman restoration, the volcanic catastrophe, World War II bombings, the effects of weather and natural elements, and, not least, interventions that were not always aware or respectful of the unique nature of the remains within the city wall section between Vesuvio Gate and Ercolano Gate. Moreover, human recklessness and natural disasters could erase—this time forever—the evidence of a refined science of which we possess only a few damaged archeological remains.
At the end of this conference, both the limitations and potential of digital acquisition and processing methods were highlighted, drawing attention to the challenges encountered in various case studies surveyed in Pompeii when analyzing irregularly shaped indentations and stone blocks of varying sizes, materials, and densities. At the heart of the debate were heuristic interpretations of the data obtained from the survey. Among them, one particularly intriguing possibility emerged: the potential identification of impact traces left by a repeating catapult, known in ancient sources as the polybolos.
This weapon, attributed to the ingenuity of Dionysius of Alexandria (an engineer active in the arsenal of Rhodes), has been described in detail as the first known automatic missile launcher in history (Philo of Byzantium, Belopoeica, 73.34). The “multi-launcher” differed from traditional elastic torsion catapults in a fundamental way: it could launch multiple darts in rapid succession without the need for manual reloading. It thus represents the peak of ancient science, capable of conceiving a sophisticated semi-automatic system that may have been known to the Roman military elite of the time. The fan-shaped arrangement of four square impact marks—similar in size and depth and regularly spaced—could suggest a repeating firing mechanism, identified for the first time through the SCORPiò-NIDI project. Their slight angular rotation relative to a common reference axis, along with the presence of a fifth slightly misaligned mark, strengthens the hypothesis that the impacts may have been generated by a multi-shot system.
Attracting visitors, on site and/or remotely, serves as operational confirmation that the best strategy for protecting and enhancing inherited heritage is to reduce the distance between past and present. For this purpose, the strategic use of digital technologies is a powerful tool for overcoming possible cultural and institutional crises. When used wisely, technologies accelerate knowledge and enhance the effects of key factors that help meet contemporary needs. Users—elected as actors and protagonists of the simulated siege—will contribute, through their engagement online or in person, to attracting resources in support of educational, social, and tourism programs. The same archive of models will serve as a reference point for identifying a data ecosystem. A digital platform based on 3D technology (or a digital library) will be used to support the entire process of data production, storage, and management.
Digital language makes it possible to build a territory of shared assets—a framework of information in which everyone can contribute with their own expertise. The history of the siege can be rewritten, modified, or expanded based on objectively identified, classified, described, and critically used elements in line with the intended goals. Digital twins, alongside functioning physical demonstrators, if placed within reconstructed scenarios or in situ in front of the perimeter of the archeological area, can become components of museum installations for in-, on-, and off-site, or online itineraries. Digital culture refers to an interdisciplinary approach and strategy that, in accordance with the international definition of “Heritage”, merges new forms of knowledge, promoting a synthesis of science, humanity, and humanism. With the “physicality” of digital constructs, multimedia and multimodal experiences are accompanied by advanced visualization to stimulate, develop, amplify, and inspire human capabilities—including socialization and collaboration that occurs through or around intelligent objects and environments.
The main problems to be addressed and resolved, in light of the objective, appear to be systemic. The relevant implications are tied to their repercussions; in the short term, the workflow must ensure accessibility and interoperability for flexibly updated digital content. In the medium and long term, it must support the promotion of updated forms of sustainable use—acting as a driving force for cultural development and local economies.

2. Objectives Achieved and in Progress

Measurement techniques, applied to the gathering of point clouds acquired with active and passive sensors, have placed a radical change in front of surveyors—a change in content rather than techniques and/or tools.
Representation based on the visualization of 3D reality has offered the opportunity to rethink the traditional cognitive–communicative process. Image- and range-based coordinates allow us to overcome the limits of the two-dimensional drawing or image, configuring a three-dimensional model that, although discontinuous, can be explored in every direction and detail in the absence of physical objects and scenarios.
Management of the acquisitions is entrusted to automatic, semi-automatic, or manual procedures to transform the coordinate points into numerically controlled models. Even today, there is still discussion about the certified reliability of the data, the optimization of the tools, the advancement of the programmed instructions for the “smart” recognition of the shape information to be inserted at the origin of the workflows.
On the other hand, studies that place the heuristic investigation of scientifically obtained results at the center of their objectives are rare. Cognitive solicitations derive from the paths or the validity of interpretative choices.
This conference aimed to discuss the limits and potentials of advanced survey and representation processes, mainly aiming to promote the debate on the solicitations derived. The responses highlighted a multiplicity of aspects that seem to reaffirm the identity of the cultural area (cultures and cultural production ERC SH5). The scientific purpose of the representation, more than a tool, appears to be a lever to discern what initially appears smooth and indistinct (laevo) and which instead imposes itself at the end of the emerging analysis (re).
In the order presented in this volume, the articles correspond to a work in progress. The first contribution (Russo, Rossi) is based on the exceptionality represented by the possibility of studying the indisputable ballistic impacts of the Republican era. The damage inflicted by stone balls, dart tips, and sling bullets, found today along the ancient Pompeii city walls—to be precise, between Vesuvio Gate and Ercolano Gate—appears to be “relics” as the only existing evidence in the world of the lethality of elastic torsion weapons (of which we do have a few battered archeological remains). With respect to the studies carried out, some of which are original, calculation of the ballistic parameters derived from the effects found on the extrados of the wall section is specified and extended. For this purpose, in 2002 and 2016, the authors surveyed significant cavities using direct methods. The collected data were used to calculate the volume of pulverized stone material. Parameters were drawn in the light of ancient treatises in which engineers of the time proportioned causes–effects based on experimental verification of the damage caused. The criterion of the analysis was then transcribed to the study, never addressed before, of small indentations, favoring those of a square shape, to exclude indentations produced by ball throwers or slings.
This purpose was achieved through the acquisition and non-contact processing carried out during the survey campaign in 2024, documented in the subsequent contributions 2, 3, and 4 (Bertacchi, Rossi, Formicola et al.). The purpose of these studies was to promote the debate on the results of the non-contact survey. The results raised original and innovative hypotheses regarding the existence and use of the polybolos, a repeating scorpion. The validation of techniques, tools, and methods is necessary, but, above all, heuristic interpretation of the results is important. Projective aspects are still situated as the basis of instructions for processing software.
Evident geometric sensitivity also appears in the solutions needed to trace the curves, explored in the fifth contribution (Gonizzi Barsanti), where a three-dimensional image is broken down, thanks to and by virtue of numerical radiology, into voxel elements needed for the mechanical characterization of models.
The sixth and seventh contributions identify numerical techniques (finite element method, FEM) to search for approximate solutions of problems described via partial differential equations, reducing the latter to a system of algebraic equations (Guagliano et al.; Minutolo et al.).
Reconstruction of the small catapult found in Xanten converges towards the final objectives but starts as a result of concrete premises and methods. The eighth contribution (Fratino and Rossi) studies and reconstructs a full-scale model to verify the coherence of the manufacturing techniques in relation to the theoretical and material sources used to evaluate their effectiveness. The process highlights the role of experimental archeology; this action fosters a dynamic process of questioning and guides the reading of signs, not only materials.
The ninth contribution (Fantini and Bertacchi) underlines, with full knowledge of the facts, an interdisciplinary approach to the theme. The article documents an integrated workflow that transforms high-resolution non-contact survey data. Combining terrestrial laser scanning and close-range photogrammetry, reliable reality-based digital assets were generated with multiple purposes. The contribution intended to combine advanced engineering methods with inclusive best practices for museums. Firstly, it provided reliable digital reconstructions of the impact cavities and corresponding stone projectiles using mesh optimization and inverse modeling tools. Secondly, it presents a series of physical prototypes—scale models and 1:1-scale printed models—designed according to the best practices for tactile exploration. Finally, it discusses the possible application of dislocated subdivision surfaces and multiscale LOD technologies to ensure both the readability of the overall shape and the preservation of key impact details.
Advanced visualization enriched with multidimensional information and incentives is shown to be a vector of significant aspects that prompt the dissemination of the outcomes. In this light, the tenth contribution (Casadei and Di Modica) deals with the possibility of organizing the development of an interactive digital platform for the visualization and exploration of these models using open-source tools. In particular, it focuses on the use of the ATON framework and Blender to demonstrate the functioning of the scorpion siege machine in the simulated environment, bringing the models to life through advanced animation tools. The objective focuses on the dissemination of a sector that is only (apparently) a niche but which for the “guardians of history and the builders of history” still has much to tell the contemporary world.
Figure 2 and Figure 3 summarize the meaning of the interdisciplinary work carried out to date, summarizing the contribution made by each research group. In the applications, the machine models were reconstructed by Claudio Formicola, a PhD student, and inserted into a reality-based context created by Bertacchi, Gonizzi, and Rossi, edited in Lumion and Twinmotion and rendered by Veronica Casadei.

3. Essential Bibliography

3.1. The Sources

-
IV century BC. Enea Tattico (Aeneas Tactician), Poliorketikà.
-
IV century BC. Tucidide (Thūkydídēs), Perí toû Peloponnēsíou polémou.
-
III century BC. Filone di Bisanzio (Philo of Byzantium, 280/220) Belopoeica (βελοποιικά) between 280/220.
-
III century BC. Bitone, Paraskeuastica—παρασκευαστικά, between.
-
I century BC. Vitruvio (Vitruvius Pollio Marcus), De Architectura. Libri X. 19AD. 1st ed.; Heralt, Roma 1486.
-
I century AD. Giuseppe Flavio (Titus Flavius Josephus). De bello Iudaico, c. 75.
-
I century AD. Erone di Alessandria, il Vecchio (Heron Alexandrinus), Belopoeica, between 212–290.
-
XIII century AD. Codex Parisinus inter supplementa Greca 607 (foll. 56r-58v), Paris: Bibl. Nationale, 1270.
-
XIII century AD. Mariano di Jacopo, detto il Taccola. De Ingeneis, 2 books, between 1395–1453.

3.2. Exegesis of Sources Analysis of Findings and Reconstructions

-
1567. Daniele Barbaro. I dieci libri dell’architettura di M. Vitruvio tradotti & commentati da mons. Daniel Barbaro, Francesco de’Franceschi Senese et Giovanni Chrieger Alemano.
-
1572. Barocio, Francesco And Veneziano, Patrizio. Heronis Mechanici, apud Franciscum Franciscium Senensem, Venetiis, 1572.
-
1616. Baldo Bernardino abbate di Guastalla. Heronis Ctesibii Ctesibij Belopoeeca: Item Heronis vita. Francus Francis Editore.
-
1758. Galiani, Berardo. L’architettura di Marco Vitruvio Pollione tradotta e commentata dal marchese Berardo Galiani. Stamperia Simoniana, Napoli.
-
1836. Marini, Luigi. L’architettura di Vitruvio esposta in italiana favella ed illustrata con comenti e tavole cento quaranta in tre volumi. Roma: dai tipi appostamente preparati nel suo domicilio., Roma.
-
1867. Wescher, Carl. Poliorectique des Grecs. Traites Theoriques, Recits Historiques, Kessinger Publishing, Paris.
-
1877. Prou, Victor. La Chirobaliste d’Heron d’Alexandrie- In. Notices et extraits des manuscrits de la Bibliotheque Nationale et autres bibliotheques, 26, 1877.
-
1878. Landels John C. Engineering in the ancient world, University of California Press, Berkeley and Los Angeles.
-
1899. Schmidt W. Heronis Alexandrini opera. Leipzig, book I-.
-
1906. Schneider, Rudolf (1906). Herons Cheiroballistra. Mitteilungen des Kaiserlich Deutschen Archaologischen Instituts. Berlin, 168p.
-
1908. Puig Y.; Cadafalch, J. Les Excavacions d’Empuries. Estudi De Topographia, In Annuari Inst. Catal., 1908, pp. 150–194.
-
1908. Schumacher, G. Tell El Mutesellim. Bericht Über Die 1903 Bis 1905 Mit Unterstützung SR. Majestät Des Deutschen Kaisers Und Der Deutschen Orientgesellschaft Vom Deutschen Verein Zur Erforschung Palästinas Veranstalteten Ausgrabungen; Rudolf Haupt: Leipzig, 1908.
-
1920. Diels, Hermann; Schramm, Erwin. Exzerpte aus Philons Mechanik B. VII und VII (vulgo funftes Buch). German translation, Exzerpte aus Philons Mechanik B. VII und VII (vulgo funftes Buch). Reimer, Berlin. (With German translation.) (Abhandlungen der preussischen Akademie der Wissenschaften, Philosoph.-hist. Kl. 12.
-
1929. Rehm, A.; Schramm, E. Bitons Bau von Belagerungsmaschinen und Geschützen: Griechisch und Deutsch, boos 2. Reprint: 2019. Berlin: De Gruyter Oldenbourg.
-
1969. Marsden, Eric William. Greek and Roman Artillery. Historical Development. 2nd ed.; Clarendon Oxford.
-
1971. Vitucci, Giovanni (ed. by). La guerra giudaica. Fondazione Lorenzo Valla. 3rd ed. Mondadori, Milano1995.
-
1972. Garlan, Yvon. La guerre dans l’antiquité. Paris. Trad. it. Guerra e società nel mondo antico. Bologna: Il Mulino 1985.
-
1973. Garlan, Yvon. Cite’s, arme’es et strate’gie al’e’poque helle’nistique d’apre`s l’oeuvre de Philonde Byzance. Historia 22 1985, pp. 16–33.
-
1974. Baatz, D. Teile spatromischen Ballistenaus Gornea und Orşova (Romania), Saalburg-Jahrbuch 31, 1974, 50–72.
-
1974. Garlan, Yvon. Le livre “V” de la “syntaxe mecanique” de Pihilon de Byzance. In: Recherches de poliorcétique grecque, Ecole Française d’Athenes De Boccard, Paris.
-
1974. Garlan, Yvon. Recherches de poliorcetique grecque. Ecole francais d’Atenes, Paris.
-
1977. Baatz, D. The Hatra Ballista, Sumer XXXIII 1977, 141–151.
-
1978. Baatz, D. Recent Finds of Ancient Artillery, Britannia 9, 1978, 1–17. Recenti Ritrovamenti Di Artiglieria Antica, Britannia.
-
1978. Gille, Bertrand. Histoire des techniques. 1st ed. eng. The History of Techniques: Gordon and Breach Science Publishers, New York, 1986, 2 books. 1st ed. It Storia delle tecniche. Editori Riuniti; 1985.
-
1981. Baatz, D, Feugere Michel. Elements d’une catapulte romaine trouvee a Lyon, Gallia 39, (1981) 201–209.
-
1984. Mariano di Jacopo, detto il Taccola. De Ingeneis 2 boos, British Library Additional 34113 Editore: L. Reichert, Wiesbaden.
-
1990. Whitehead, David (ed. by). Aineias the Tactician. How to Survive Under Siege. Clarendon Press, Oxford, 214p.
-
1994. Holley, A.E. The Ballista Balls from Masada. In Masada IV: the Yigael Yadin excavations 1963–1965. Final reports; Aviram, J., Foerster, G., Netzer, E., Eds.; Israel Exploration Society: Hebrew University of Jerusalem: Jerusalem, 1994; pp. 347–365.
-
1995. Wilkins, A.; Morgan, L. Recontrwucting cheirobbalista. Journal of Roman Military Equipment Studies, 6, 1995, pp. 5–59 and 11, 2000, pp. 77–101.
-
1997. Gros, Pierre. Vitruvio, De Architectura, Editors Corso Antonio and Romano e Elisa, Einaudi, Torino, book 2 s, 2007.
-
2000. Sulmona, Alan; Morgan L. Scorpio and Cheiroballistra, Journal of Roman Military Equipment Studies 11, 2000, 77–101.
-
2002. Russo, F.; Russo, F. Tormenta. Venti secoli di artiglieria meccanica. Roma: Stato Maggiore Esercito, Roma, 2002.
-
2003. Campbell, D.B., Greek and Roman Artillery 399 BC–AD 363, Osprey Publishing, Oxford.
-
2003. Wilkins A. Roman Artillery, Shire Publications, Princes Risborough, Bucks., United Kingdom.
-
2004. Russo, Flavio. L’artiglieria delle legioni romane. Le macchine da guerra che resero invincibile l’esercito romano. Roma: Istituto Poligrafico e Zecca dello Stato.
-
2006. Russo, Flavio. Indagine sulle Forche Caudine, Rivista Militare, Roma.
-
2006. Wilkins, A.; Barnard, H.; Rose, P.J. Roman Artillery Balls from Qasr Ibrim. The Sudan Archaeological Research Society, Egypt, Sudan and Nubia. 10, pp. 64–78.
-
2008. Russo, F.; Russo, F. Gli scorpioni della Repubblica. La catapulta di Ampurias. Edizioni Scientifiche e Artistiche, Torre del Greco, 46p.
-
2010. Trabucco, Oreste. L’opere Le opere stupende dell’arti più ingegnose, Olschki, Firenze, 20101971.
-
2012. Guzzomi A. L., Maraldi, M., Molari P.G., (2012). A historical review of the modulus concept and its relevance to mechanical engineering design today, Mechanism and MachineTheory, 50, 1–14.
-
2012. Molari, P.G.; Maraldi, M.; Angelini, G.; Bignami, S.; Lionello, G. La ricostruzione della balista di Vitruvio. In Proceedings of the Quinta Giornata di Studio Ettore Funaioli (V GEF), Bologna, 15 luglio 2011; 2012; pp. 1–26.
-
2020. Di Marco, U.; Molari, P.G. Archimede ed il sistema di caricamento della balista da un talento utilizzata nella fortezza dell’Eurialo di Siracusa. In Proceedings of the Proceedings of the 4th International Conference | Atti dell’8° Convegno Nazionale, Naples, 2020, December 11th; D’Agostino, S., d’Ambrosio Alfano, F.R., Eds.; Cuzzolin: Napoli, 2020; Vol. I, pp. 393–408.
-
2024. Wilkins, A. Roman Imperial Artillery: Outranging the Enemies of the Empire. 3°. Oxford: Archaeopress.

3.3. Historical-Military Insight into the Northern Route of the City of Pompeii

-
1804. Piranesi, F.; Guattani, G.A. Antiquités de la Grande Grèce, aujourd’hui Royaume de Naples, gravées par François Piranesi; Piranesi Leblanc: Paris, FR, 1804; Vol. 1.
-
1860. Fiorelli, G. Pompeianarum Antiquitatum Historia. Vol. 1. Edit. Prid. Kal. Decembris 1824. Mazois, F. Les ruines de Pompéi. Paris, FR: Imprimerie et Libraire de Firmin Didot, Paris (FR).
-
1862. Fiorelli, G. Pompeianarum Antiquitatum Historia; Edit. Prid. Non. Martias: Napoli, 1862; Vol. 2.
-
1873. Fiorelli, G. Gli scavi di Pompei dal 1861 al 1872 relazione al Ministro della istruzione pubblica di Giuseppe Fiorelli; Tipografia italiana nel liceo V. Emanuele: Napoli, 1873.
-
1917. Sogliano, A. Porte, torri e vie di Pompei nell’epoca sannitica, Atti della R. Accademia di Archeologia Lettere e Belle Arti di Napoli VI: 155–80.
-
1918. Van Buren, A.W. Studies in the Archaeology of the Forum at Pompeii. Memoirs of the American Academy in Rome 2: 67–76. https://doi.org/10.2307/4238509.
-
1925. Van Buren, A.W. Further Studies in Pompeian Archaeology, Memoirs of the American Academy in Rome 5: 103–13. https://doi.org/10.2307/4238527.
-
1929. Maiuri, A. Studi e ricerche sulla fortificazione di Pompei. In Monumenti antichi pubblicati per cura della R. Accademia Nazionale dei Lincei, 33Vol. Milano: Hoepli. 1930.
-
1943. Maiuri, Amedeo. Introduzione allo studio di Pompei, a cura di G. Oscar Onorato, Corso di Antichità Pompeiane ed Ercolanesi 1942–43. Napoli: GUF.
-
1943. Maiuri, A. L’isolamento della cinta muraria fra Porta Vesuvio e Porta Ercolano, in Notizie degli Scavi di Antichità, IV, 1943, pp. 275–314.
-
1960. Maiuri, A. Pompei. Sterro dei cumuli e isolamento della cinta murale. Contribuito all’urbanistica della città dissepolta. Bollettino d’Arte del Ministero della Pubblica Istruzione I–II (gennaio-giugno), 166–79.
-
1985. Manning, W.H. Catalogue of the Romano-British Iron Tools, Fittings and Weapons in the British Museum. London: Published for the Trustees of the British Museum by British Museum Publications.
-
2001. Jacobelli, L. Pompei fuori le mura: note sulla gestione e l’organizzazione dello spazio pubblico e privato. In Pompei tra Sorrento e Sarno, a cura di F. Senatore. Roma: Bardi Editore. 29–61.
-
2001. Simonelli, A. Considerazioni sull’origine, la natura e l’evoluzione del Pomerium. Aevum 75(1): 119–62.
-
2004. Russo F. La cerchia di Pompei e le sue cicatrici, L’Universo rivista edita da Istituto Geografico Militare IGM a partire dal 1920. 2004.
-
2005. Russo, F.; Russo, F. 89 a.C.: assedio a Pompei: la dinamica e le tecnologie belliche della conquista sillana di Pompei. 2005 Flavius Edizioni.
-
2006. García y García, L. Danni di guerra a Pompei. Una dolorosa vicenda quasi dimenticata. Con numerose notizie sul «Museo Pompeiano» distrutto nel 1943. Studi della Soprintendenza archeologica di Pompei; L’Erma di Bretschneider: Roma, 2006; ISBN 88-8265-369-2.
-
2007. Treré, C. The walls and gates, in the world of Pompeii, a cura di J.J. Dobbins e P.W. Foss, London-New Yok, Routledge 2007, p. 142.
-
2013. de Gennaro, M.; Calcaterra, D.; Langella A. Le Pietre Storiche della Campania dall’oblio alla riscoperta, Napoli: Luciano Editore, pp. 155–77.
-
2014. Russo, V. Intorno all’antico. Conservazione e fruizione delle mura di Pompei» in Pompei accessibile. Per una fruizione ampliata del sito archeologico, Storia della tecnica edilizia e restauro dei monumenti, a cura di R. Picone. Roma: «L’Erma» di Bretschneider, 2014, 105–17.
-
2015. Anniboletti, L. Le fasi delle fortificazioni di Pompei. Stato della conoscenza. In “Siris” 15, 2015.
-
2015. Burns, M. Pompeii under Siege: A Missile Assemblage from the Social War. JRMES 2015, 14/15, 1–10.
-
2015. Fabbri, Marco. 2015. Nuove ricerche per una rilettura delle mura di Pompei, in “Siris” 15, 2015, pp. 29–47.
-
2016. Fabbri, M. Nuove ricerche per una rilettura delle mura di Pompei. Studi e Ricerche della Scuola di Specializzazione in Beni Archeologici di Matera 15, 2015, 29–47. http://doi.org/10.4475/782.
-
2018. Osanna, M.; Picone, R. Restaurando Pompei. Riflessioni a margine del Grande Progetto. Roma: L’Erma di Bretschneider, Roma. 2010. Trabucco, O. «L’opere stupende dell’arti più ingegnose». La recezione degli Πνευματικά di Erone Alessandrino nella cultura italiana del Cinquecento, Olschki, Firenze, 2010.
-
2019. Van der Graaff, I. The Fortifications of Pompeii and Ancient Italy. NY: Routledge.
-
2020. Giglio, M.; Pesando. F. La Guerra sociale, l’assedio e la fine di Pompei sannitica. In Pompei 79 d.C. Una storia romana. Roma, Colosseo 6.11.2020–31.1.2021, a cura di M. Torelli. Milano: Electa, 2020, 144–51.
-
2020. Vitagliano, G.; Angelone, G. Just West of Pompei. Il sito archeologico e i bombardamenti dell’estate 1943. Lecce: YCP.
-
2021. Fabbri, M. The city-wall in the Roman Age: The case study of Pompeii. Construction History 36(2), 2021, 1–20.
-
2021. Fabbri, M.; Ducatelli, V.; Zabotti. F. Le fortificazioni di Pompei. Nuove indagini in prossimità della Torre XI detta di Mercurio. In Studi e ricerche del Parco archeologico di Pompei. Ricerche e scoperte a Pompei: in ricordo di Enzo Lippolis. Vol. 45, 2021, a cura di M. Osanna. Roma: L’Erma di Bretschneider, 73–92.
-
2021. Vitagliano, G. Bombs on Pompeii. Academia Letters 349. https://doi.org/10.20935/AL349.

3.4. On the Digital Survey of Ballistae and Scorpions in Pompeii

-
2024a. Rossi, A. The Survey of the Ballistic Imprints for a Renewed Image of Unearthed Pompeii. Nexus Network Journal 26(2), 2024, 307–24. https://doi.org/10.1007/s00004-023-00762-9.
-
2024b. Rossi, A.; Gonizzi Barsanti, S.; Bertacchi, S. Natural or anthropic? Measurement and visualisation of wall cavities in city walls. pp. 1957–78 Measure / Out of Measure. Transitions Proceedings of the 45th International Conference of Representation Disciplines Teachers. 2024, Franco Angeli, Milano. https://doi.org/10.3280/oa-1180-c569.
-
2024c. Bertacchi, S.; Gonizzi Barsanti, S.; and Rossi, A. Geometry of Wall Degradation: Measuring and Visualising Impact Craters in the Northern Walls of Pompeii. SCIRES-IT-SCIentific RESearch and Information Technology 14(1), 2024, 111–28. https://doi.org/10.2423/i22394303v14n1p111.
-
2024d. Rossi, A.; Gonizzi Barsanti, S.; Bertacchi, S. Use of Polybolos on the City Walls of Ancient Pompeii: Assessment on the Anthropic Cavities. Nexus Netw J. 2024. https://doi.org/10.1007/s00004-024-00803-x.
-
2025a. Rossi, A.; Bertacchi, S.; Formicola, C.; Gonizzi Barsanti, S. Piccole indentazioni antropiche rinvenute nella riesumata cinta urbica di Cornelia Veneria Pompeii. Disegnare, Idee, Immagini, 69, 2025, 54–67. https://doi.org/10.61020/11239247-202469-06.
-
2025b: Rossi, A.; Gonizzi Barsanti, S.; Bertacchi, S. Conoscere Pompei. Testimonianze balistiche sillane calchi digitali, 1st ed; libreriauniversitaria.it: Limena, Italy, 2025, https://hdl.handle.net/11591/558005.

3.5. On the Criteria and Methods of Digital Survey

-
2025. Fico, D., Rizzo, D., (Eds.). Conservation Methodologies and Practices for Built Heritage; MDPI—Multidisciplinary Digital Publishing Institute, Basel, Switzerland.
-
2024. Bertacchi, S.; Juan Vidal, F.; Fantini, F. Ancient Architectural Design Interpretation: A Framework Based on Alexandrian Manuals. Acta IMEKO 2024, 13, 1–9. https://doi.org/10.21014/actaimeko.v13i2.1833.
-
2024. Diao, H.; Jiang, X.; Fan, Y.; Li, M.; Wu, H. 3D Face Reconstruction Based on a Single Image: A Review. IEEE Access 2024, 12, 59450–59473, https://doi.org/10.1109/ACCESS.2024.3381975.
-
2024. Eramo, E.; Cinque, G.E. The Vault of the So-Called Serapeum: An Ellipsoidal Geometry at Hadrian’s Villa. In Proceedings of the Graphic Horizons; Hermida González, L., Xavier, J.P., Pernas Alonso, I., Losada Pérez, C., Eds.; Springer Nature Switzerland: Cham, 2024; pp. 51–58. https://doi.org/10.1007/978-3-031-57579-2_7.
-
2024. Fascia, R.; Barbieri, F.; Gaspari, F.; Ioli, F.; Pinto, L. From 3D Survey to Digital Reality of a Complex Architecture: A Digital Workflow for Cultural Heritage Promotion. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2024, XLVIII-2-W4-2024, 205–212. https://doi.org/10.5194/isprs-archives-XLVIII-2-W4-2024-205-2024.
-
2024. Foschi, R.; Fallavollita, F.; Apollonio, F.I. Quantifying Uncertainty in Hypothetical 3D Reconstruction-A User-Independent Methodology for the Calculation of Average Uncertainty. Heritage 2024, 7, 4440–4454, https://doi.org/10.3390/heritage7080209.
-
2024. Giordano, A.; Russo, M.; Spallone, R. a c. di. Beyond Digital Representation: Advanced Experiences in AR and AI for Cultural Heritage and Innovative Design. Cham: Springer Nature Switzerland.
-
2024. Rossi, A.; Cipriani, L.; Cabezos-Bernal, P.M. (eds.). Aa.Vv. 3D Digital Models. Accessibility and Inclusive Fruition. Disegnarecon n.17 (32), 2024, https://doi.org/10.20365/disegnarecon.32.2024.ed.
-
2024. Sdegno, A.; Cabezos-Bernal, P.M. Oblique Analog Models, diségno, 2024, no. 14, pp. 7–21, https://doi.org/10.26375/disegno.14.2024.2.
-
2024. Tesema, K.W.; Hill, L.; Jones, M.W.; Ahmad, M.I.; Tam, G.K.L. Point Cloud Completion: A Survey. IEEE Transactions on Visualization and Computer Graphics 2024, 30, 6880–6899. https://doi.org/10.1109/TVCG.2023.3344935.
-
2024. Grazianova, M.; Mesaros, P. Cultural Heritage Management from Traditional Methods to Digital Systems: A Review from Bim to Digital Twin. E3S Web of Conf. 2024, 550, 01015. https://doi.org/10.1051/e3sconf/202455001015.
-
2024. Calandriello, A.; D’Acunto, G.; Gigliotti, G.C. Tactile Translations: Algorithmic Modelling for Museum Inclusiveness. In Proceedings of the Graphic Horizons; Hermida González, L., Xavier, J.P., Amado Lorenzo, A., Fernández-Álvarez, Á.J., Eds.; Springer Nature Switzerland: Cham, 2024; pp. 308–315.
-
2024. Nigro, L.; Montanari, D.; Sabatini, S.; De Giuseppe, M.; Benedettucci, F.M.; Lucibello, S.; Fattore, L.; Trebbi, L.; Nejat, B.; Rinaldi, T. Caress the Pharaoh. The Tactile Reproduction of Ramses II’s “Mummy” in the Sapienza University Museum of the Near East, Egypt and Mediterranean. Journal of Cultural Heritage 2024, 67, 158–163. https://doi.org/10.1016/j.culher.2024.02.010.
-
2024. Mousavi, Y.; Gharineiat, Z.; Karimi, A.A.; McDougall, K.; Rossi, A.; Gonizzi Barsanti, S. Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities 2024, 7, 2594–2615. https://doi.org/10.3390/smartcities7050101.
-
2023. Clini, P.; Angeloni, R.; D’Alessio, M.; Quarchioni, R. Enhancing Onsite and Online Museum Experience Through Digital Reconstruction and Reproduction: The Raphael and Angelo Colocci Temporary Exhibition. SCIRES-IT—SCIentific RESearch and Information Technology 13(2), 2023, 71–84. https://doi.org/10.2423/i22394303v13n2p71.
-
2023. Grasso, N.; Spadavecchia, C.; Di Pietra, V.; Belcore, E. LiDAR and SfM-MVS Integrated Approach to Build a Highly Detailed 3D Virtual Model of Urban Areas: In Proceedings of the Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management; SCITEPRESS—Science and Technology Publications: Prague, Czech Republic, 2023; pp. 128–135.
-
2023. Yang, S.; Miaole, H.; Songnian L. Three-Dimensional Point Cloud Semantic Segmentation for Cultural Heritage: A Comprehensive Review. Remote Sensing 15(3), 2023, 548. https://doi.org/10.3390/rs15030548.
-
2023. Menaguale, O. Digital Twin and Cultural Heritage—The Future of Society Built on History and Art. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, 2023; pp. 1081–1111 ISBN 978-3-031-21343-4.
-
2023. Luther, W.; Baloian, N.; Biella, D.; Sacher, D. Digital Twins and Enabling Technologies in Museums and Cultural Heritage: An Overview. Sensors 2023, 23, 1583. https://doi.org/10.3390/s23031583.
-
2023. Grieves, M.W. Digital Twins: Past, Present, and Future. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, 2023; pp. 97–121 ISBN 978-3-031-21343-4.
-
2023. Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Applied Sciences 2023, 13, 4777, https://doi.org/10.3390/app13084777.
-
2023. De Luca, V.; Gatto, C.; Liaci, S.; Corchia, L.; Chiarello, S.; Faggiano, F.; Sumerano, G.; De Paolis, L.T. Virtual Reality and Spatial Augmented Reality for Social Inclusion: The “Includiamoci” Project. Information 2023, 14, 38, https://doi.org/10.3390/info14010038.
-
2022. Gabellone, F. Digital Twin: A New Perspective for Cultural Heritage Management and Fruition. Acta IMEKO 2022, 11, 7 pp.-7 pp., https://doi.org/10.21014/acta_imeko.v11i1.1085.
-
2022. Bevilacqua, M.G.; Russo, M.; Giordano, A.; Spallone, R. 3D Reconstruction, Digital Twinning, and Virtual Reality: Architectural Heritage Applications. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW); March 2022; pp. 92–96.
-
2021. Apollonio, F.I.; Fantini, F.; Garagnani, S.; Gaiani, M. A Photogrammetry-Based Workflow for the Accurate 3D Construction and Visualization of Museums Assets. Remote Sensing 13(3), 2021, 486. https://doi.org/10.3390/rs13030486.
-
2020. Costantino, C.; Prati, D.; Predari, G.; Bartolomei, C. 3D Laser Scanning Survey for Cultural Heritage. A Flexible Methodology to Optimize Data Collection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2020, XLIII-B2-2020, 821–828. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-821-2020.
-
2020. Pollard, N. Bombing Pompeii. Ann Arbor (USA): University of Michigan Press.
-
2020. Guidi, G.; Frischer, B.D. 3D Digitization of Cultural Heritage. In 3D Imaging, Analysis and Applications; Liu, Y., Pears, N., Rosin, P.L., Huber, P., Eds.; Springer International Publishing: Cham, 2020; pp. 631–697 ISBN 978-3-030-44070-1.
-
2019. Gaiani, M.; Apollonio, F.I.; Fantini, F. Evaluating Smartphones Color Fidelity and Metric Accuracy for the 3D Documentation of Small Artifacts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2019, XLII-2-W11, 539–547. https://doi.org/10.5194/isprs-archives-XLII-2-W11-539-2019.
-
2019. Sable, U.; Borlepwar, P.T. Recent Developments in the Field of Rapid Prototyping: An Overview. In Proceedings of the Proceedings of International Conference on Intelligent Manufacturing and Automation; Vasudevan, H., Kottur, V.K.N., Raina, A.A., Eds.; Springer: Singapore, 2019; pp. 511–519.
-
2018. Apollonio, F.I.; Basilissi, V.; Callieri, M.; Dellepiane, M.; Gaiani, M.; Ponchio, F.; Rizzo, F.; Rubino, A.R.; Scopigno, R.; Sobra’, G. A 3D-centered information system for the documentation of a complex restoration intervention. Journal of Cultural Heritage 29, 2018, 89–99. https://doi.org/10.1016/j.culher.2017.07.010.
-
2018. Apollonio, F.I.; Bertacchi, S.; Bertacchi, G.; Ballabeni, M.; Torello, M.; Montanari, R.; Saragoni, L. Progetto Sacher. Piattaforma Cloud per i Beni Culturali e servizi integrati per il restauro. REC Recupero & Conservazione, 2018, 68–75.
-
2018. Attenni, M.; Bartolomei, C.; Inglese, C.; Ippolito, A.; Morganti, C.; Predari, G. Low Cost Survey and Heritage Value. SCIRES-IT—SCIentific RESearch and Information Technology 7(2), 2018, 115–32. https://doi.org/10.2423//i22394303v7n2p115.
-
2017. Adembri, B.; Cipriani, L.; Bertacchi, G. Guidelines for a Digital Reinterpretation of Architectural Restoration Work: Reality-Based Models and Reverse Modelling Techniques Applied to the Architectural Decoration of the Teatro Marittimo, Villa Adriana. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2017, XLII-5/W1, 599–606, https://doi.org/10.5194/isprs-archives-XLII-5-W1-599-2017.
-
2017. Apollonio, F.I.; Rizzo, F.; Bertacchi, S.; Dall’Osso, G.; Corbelli, A.; Grana, C. SACHER: Smart Architecture for Cultural Heritage in Emilia Romagna. In Digital Libraries and Archives. IRCDL 2017. Vol. 733, Communications in Computer and Information Science, a cura di C. Grana e L. Baraldi. Cham: Springer, 2017, 142–56.
-
2017. Cipriani, L.; Fantini, F. Digitalization Culture vs Archaeological Visualization: Integration of Pipelines and Open Issues. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2017, XLII-2-W3, 195–202, https://doi.org/10.5194/isprs-archives-XLII-2-W3-195-2017.
-
2017. Gaiani, M. Management and Communication of Archaeological Artefacts and Architectural Heritage Using Digital IS. What Today? What Next? Archeologia e Calcolatori XXVIII (2), 2017. https://doi.org/10.19282/AC.28.2.2017.34.
-
2017. Rossi, A.; Nanetti, A. a c. di. Heritage buildings conservation: methods and techniques. Atti delle giornate di studio (Napoli, 28–29 luglio 2015). Padova: libreriauniversitaria.it.
-
2017. Balletti, C.; Ballarin, M.; Guerra, F. 3D Printing: State of the Art and Future Perspectives. Journal of Cultural Heritage 2017, 26, 172–182. https://doi.org/10.1016/j.culher.2017.02.010.
-
2016. Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, R. SfM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic), 2016, 229–36. https://doi.org/10.5194/isprs-archives-XLI-B5-229-2016.
-
2016. Gaiani, M.; Remondino, F.; Apollonio, F.I.; Ballabeni, A. An Advanced Pre-Processing Pipeline to Improve Automated Photogrammetric Reconstructions of Architectural Scenes. Remote Sensing 8(3), 2016, 178. https://doi.org/10.3390/rs8030178.
-
2016. Pintus, R.; Kazim P.; Ying Yang, T.W.; Gobbetti, E.; Rushmeier. H. A Survey of Geometric Analysis in Cultural Heritage. Computer Graphics Forum 35(1), 2016, 4–31. https://doi.org/10.1111/cgf.12668.
-
2014. Apollonio, F.I.; Ballabeni, A.; Gaiani, M.; Remondino, F. Evaluation of FeatureBased Methods for Automated Network Orientation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL–5, 2014, 47–54. https://doi.org/10.5194/isprsarchives-XL-5-47-2014.
-
2014. Cipriani, L.; Fantini, F.; Bertacchi, S. 3D Models Mapping Optimization through an Integrated Parameterization Approach: Cases Studies from Ravenna. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS Technical Commission V Symposium—25 June 2014, Riva Del Garda, Italy XL–5, 2014, 173–80. https://doi.org/10.5194/isprsarchives-XL-5-173-2014.
-
2012. Fantini, F. Modelos con nivel de detalle variable realizados mediante un levantamiento digital aplicados a la arqueología. EGA Expresión Gráfica Arquitectónica 2012, 306–317. https://doi.org/10.4995/ega.2012.1383.
-
2011. Guidi, G.; Russo, M. Reality-Based and Reconstructive Models: Digital Media for Cultural Heritage Valorization. SCIRES-IT—SCIentific RESearch and Information Technology 1(2), 2011, 71–86. https://doi.org/10.2423/i22394303v1n2p71.
-
2010. Fassi, F.; Achille, C.; Fregonese, L.; Monti, C. Multiple Data Source for Survey and Modelling of Very Complex Architecture. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2010, XXXVIII, 234–239.
-
2005. Scolari, M. Il disegno obliquo. Una storia dell’antiprospettiva; Marsilio Editori: Venezia, 2005; ISBN 978-88-317-8617-1.
-
2004. Guarnieri, A.; Vettore, A.; El-Hakim, S.; Gonzo, L. Digital Photogrammetry and Laser Scanning in Cultural Heritage Survey. In Proceedings of the ISPRS XX. Symposium, Com. V., WG; 15 June 2004; Vol. 2, pp. 1–6.
-
2004. Li, Q.; Griffiths, J.G. Least Squares Ellipsoid Specific Fitting. In Proceedings of the Proceedings of the Geometric Modeling and Processing 2004 (GMP’04); April 2004; pp. 335–340.
-
2004. Migliari, R. Per una Teoria del rilievo architettonico. In Disegno come modello: riflessioni sul disegno nell’era informatica, a cura di R. Migliari. 2004, Roma: Kappa, 63–65.
-
2004. Sardo, N. La figurazione plastica dell’architettura. Modelli e rappresentazione; Kappa Edizioni: Roma, 2004.
-
1997. Las Casas Del Alma: Maquetas Arquitectónicas de La Antigüedad (5500 a.C./300 d.C.); Azara, P., Ed.; CCCB Centre de Cultura Contemporània de Barcelona: Barcelona, España,.
-
1994. Millon, H.A. I modelli architettonici nel Rinascimento. In Rinascimento: da Brunelleschi a Michelangelo. La rappresentazione dell’architettura; Millon, H.A., Magnago Lampugnani, V., Eds.; Bompiani: Milano, 1994; pp. 19–72 ISBN 88-452-2266-7.
-
1993. Gavinelli, C. Storie di modelli esibitivi e critici: modelli storico-critici di rappresentazione oggettuale di visualizzazione interpretativa; Alinea, Firenze 2002. Millon, H., Munshower, S.S., Eds.; 1st edition.; Penn State Department of Art History: University Park, Pa.
-
1988. Millon, H.A.; Smyth, C.H. Michelangelo Architetto. La facciata di San Lorenzo e la cupola di San Pietro; Olivetti: Milano, 1988.
-
1966. Alberti, L.B. L’architettura (De re aedificatoria); Edizioni Il Polifilo: Milano, 1966; ISBN 978-88-7050-101-8.

3.6. Reverse Engineering

-
2025. Shahab S. S, Himeur, Y.; Kheddar, H.; Amira, A.; Fadli, F.; Atalla, S.; Copiaco, A.; Mansoor, W. Advancing 3D point cloud understanding through deep transfer learning: A comprehensive survey, Information Fusion, Volume 113, 2025, 102601.
-
2025. Zu, X.; Gao, C.; Liu, Y.; Zhao, Z.; Hou, R.; Wang, Y. Machine intelligence for interpretation and preservation of built heritage, Automation in Construction, Volume 172, 2025, 106055 .
-
2025. Wang, Y.; Bi, W.; Liu, X.; Wang, Y. Overcoming single-technology limitations in digital heritage preservation: A study of the LiPhoScan 3D reconstruction model, Alexandria Engineering Journal, Volume 119, 2025, Pages 518–530 .
-
2024. Gonizzi Barsanti, S.; Marini, M.R.; Malatesta, S.G.; Rossi, A. Evaluation of Denoising and Voxelization Algorithms on 3D Point Clouds. Remote Sens. 2024, 16, 2632. https://doi.org/10.3390/rs16142632.
-
2024. Muzahid, A.A.M.; Han, H.; Zhang, Y.; Dawei L.; Zhang, Y.; Jamshid, J. Ferdous Sohel, Deep learning for 3D object recognition: A survey, Neurocomputing, Volume 608, 2024, 128436.
-
2024. Liu, D.; Cao, K.; Tang, Y.; Zhang, J.; Meng, X.; Ao, T.; Zhang, H.; Study on weathering corrosion characteristics of red sandstone of ancient buildings under the perspective of non-destructive testing, Journal of Building Engineering, Volume 85, 2024,108520.
-
2024. Gao, Y.; Li, H.; Fu, W.; Chai, C.; Su, T. Damage volumetric assessment and digital twin synchronization based on LiDAR point clouds, Automation in Construction, Volume 157, 2024, 105168, ISSN 0926-5805 .
-
2024. Nourian, P.; Azadi, S. Voxel graph operators: Topological voxelization, graph generation, and derivation of discrete differential operators from voxel complexes, Advances in Engineering Software, Volume 196, 2024, 103722.
-
2023. Mahmoud, A.; Hu, J.S.; Waslander, S.L. Dense voxel fusion for 3D object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 663–672.
-
2023. Shrout, O.; Ben-Shabat, Y.; Tal, A. GraVoS: Voxel Selection for 3D Point-Cloud Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 21684–21693.
-
2023. Zhang, Z.; Yao, W.; Li, Y.; Zhou, W.; Chen, X. Topology optimization via implicit neural representations, Computer Methods in Applied Mechanics and Engineering, Volume 411, 2023, 116052.
-
2023. Zhao, Y.; Liu, Y.; Xu, Z. Statistical learning prediction of fatigue crack growth via path slicing and re-weighting, Theoretical and Applied Mechanics Letters, Volume 13, Issue 6, 2023, 100477.
-
2022. Sun, J.; Ji, Y.M.;Wu, F.; Zhang, C.; Sun, Y. Semantic-aware 3D-voxel CenterNet for point cloud object detection. Comput. Electr. Eng. 2022, 98, 107677.
-
2022. He, C.; Li, R.; Li, S.; Zhang, L. Voxel set transformer: A set-to-set approach to 3D object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022 pp. 8417–8427.
-
2022. Lv, C.; Lin, W.; Zhao, B. Voxel Structure-Based Mesh Reconstruction From a 3D Point Cloud. IEEE Trans. Multimed. 2022, 24, 1815–1829.
-
2022. Goto, M.; Abe, O.; Hagiwara, A.; Fujita, S.; Kamagata, K.; Hori, M.; Aoki, S.; Osada, T.; Konishi, S.; Masutani, Y.; et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications, Magnetic Resonance. Med. Sci. 2022, 21, 41–57.
-
2022. Do˘gan, S.; Güllü, H. Multiple methods for voxel modeling and finite element analysis for man-made caves in soft rock of Gaziantep. Bull. Eng. Geol. Environ. 2022, 81, 23.
-
2022. Di Angelo, L.; Di Stefano, P.; Guardiani, E.; A review of computer-based methods for classification and reconstruction of 3D high-density scanned archaeological pottery, Journal of Cultural Heritage, Volume 56, 2022, Pages 10–24.
-
2022. Cakir, F.; Kucuk, S. A case study on the restoration of a three-story historical structure based on field tests, laboratory tests and finite element analyses, Structures, Volume 44, 2022, 1356–1391.
-
2021. Irfan, M.A.; Magli, E. Exploiting color for graph-based 3d point cloud denoising, Journal of Visual Communication and Image Representation 2021 75 103027, Elsevier, Amsterdam, The Netherlands.
-
2021. Xu, Z.; Foi, A. Anisotropic denoising of 3D point clouds by aggregation of multiple surface-adaptive estimates, IEEE Transactions on Visualization and Computer Graphics 2021 27 (6) 2851–2868.
-
2021. Rakotosaona, M.J.; La Barbera, V.; Guerrero, P.; Mitra, N.J.; Ovsjanikov, M. Pointcleannet: Learning to denoise and remove outliers from dense point clouds. In Computer graphics forum, 2021 39, No. 1, pp. 185–203, Wiley, New York, US.
-
2021. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel r-cnn: Towards high performance voxel-based 3D object detection. Proc. AAAI Conf. Artif. Intell. 2021, 35, 1201–1209.
-
2021. Xu, Y.; Tong, X.; Stilla, U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry, Automation in Construction, Volume 126, 2021, 103675.
-
2021. Shitong, L.; Hu, W. Score-based point cloud denoising Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021 4563–4572.
-
2020. Dinesh, C.; Cheung, G.; Baji’c, I.V. Point cloud denoising via feature graph Laplacian regularization, IEEE Transactions on Image Processing 2020 29 4143–4158.
-
2020. He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure Aware Single-Stage 3D Object Detection from Point Cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11870–11879.
-
2020. Sas, A.; Ohs, N.; Tanck, E.; van Lenthe, G.H. Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs. Bone Rep. 2020, 12, 100263.
-
2019. Babich, M.; Kublanov, V. Voxel Based Finite Element Method Modelling Framework for Electrical Stimulation Applications Using Open-Source Software. In Proceedings of the Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 25–26 April 2019; pp. 127–130.
-
2019. Xue, F.; Lu, W.; Webster, C.J.; Chen, K. A derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 148, 2019, Pages 32–40.
-
2018. Chen, H.; Shen, J. Denoising of point cloud data for computer-aided design, engineering, and manufacturing, Engineering with Computers 2018 34 523–541, Springer Nature, London, UK.
-
2018. Han, X.; Jin, J.S.; Wang, M.; Jiang, W. Guided 3D point cloud filtering, Multimedia tools and Applications 2018, 77 17397–17411, Springer nature, London, UK.
-
2018. Zhou, Q. Y.; Park, J.; Koltun, V. Open3D: A modern library for 3D data processing. arXiv preprint arXiv 2018, 1801.09847.
-
2017. Digne, J.; Franchis, C.D. The bilateral filter for point clouds, Image Processing online 278–287, Centre Borelli, ENS Paris-Saclay, France 2017.
-
2017. Sapozhnikov, S.B.; Shchurova, E.I. Voxel and Finite Element Analysis Models for Ballistic Impact on Ceramic-polymer Composite Panels. Procedia Eng. 2017, 206, 182–187.
-
2017. Baert J., Cuda voxelizer: A gpu-accelerated mesh voxelizer. https://github.com/Forceflow/cuda_voxelizer, 2017.
-
2013. He, K.; Sun, J.; Tang, X. Guided image filtering, IEEE Transactions on Pattern Analysis and Machine Intelligence 2013 35 (6) 1397–1409.
-
2012. Watanabe, K.; Iijima, Y.; Kawano, K.; Igarashi, H. Voxel Based Finite Element Method Using Homogenization. IEEE Trans. Magn. 2012, 48, 543–546.
-
1999. Lee, T.Y.; Weng, T.L.; Lin, C.H.; Sun, Y.N. Interactive voxel surface rendering in medical applications. Comput. Med. Imaging Graph. 1999, 23, 193–200.
-
1998. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images, in: Sixth International Conference on Computer Vision, 1998 IEEE pp. 839–846.

3.7. Finite Element Analysis

-
2024. Zona, R.; Minutolo, V. A dislocation-based finite element method for plastic collapse assessment in solid mechanics. Archive of Applied Mechanics, 94, 2024, 1531–1552. https://doi.org/10.1007/s00419-024-02594-6.
-
2024. Pei, G.; Xiao, D.; Zhang, M.; Jiang, J.; Xie, J.; Li, X.; Guo, J. Study on the Dynamic Fracture Properties of Defective Basalt Fiber Concrete Materials Under a Freeze–Thaw Environment. Materials, 17(24), 2024, 6275. https://doi.org/10.3390/ma17246275.
-
2023. Esposito, L.; Palladino, S.; Minutolo, V. An effective free-meshing and linear step-wise procedure to predict crack initiation and propagation. Theoretical and Applied Fracture Mechanics, 130, 2023, 104240. https://doi.org/10.1016/j.tafmec.2023.104240.
-
2022. Palladino, S.; Minutolo, V.; Esposito, L. Hybrid semi-analytical calculation of the stress intensity factor for heterogeneous and functionally graded plates. Engineering Fracture Mechanics, 274, 2022, 108763. https://doi.org/10.1016/j.engfracmech.2022.108763.
-
2021. Liu, K.; Zhao, J. Progressive damage behaviours of triaxially confined rocks under multiple dynamic loads. Rock Mechanics and Rock Engineering, 54, 2021, 573–590. https://doi.org/10.1007/s00603-021-02408-z.
-
2021. Heap, M.J.; Violay, M.E. The mechanical behaviour and failure modes of volcanic rocks: a review. Bull Volcanology 83, 2021, 33. https://doi.org/10.1007/s00445-021-01447-2.
-
2021. Zona, R.; Ferla, P.; Minutolo, V. Limit analysis of conical and parabolic domes based on semi-analytical solution. Journal of Building Engineering. 44, 2021, 103271. https://doi.org/10.1016/j.jobe.2021.103271.
-
2021. Palladino, S.; Esposito, L.; Ferla, P.; Zona, R.; Minutolo, V. Functionally Graded Plate Fracture Analysis Using the Field Boundary Element Method. Applied Sciences, 11, 2021, 88465. https://doi.org/10.3390/app11188465.
-
2017. Cattania, C.; Rivalta, E.; Hainzl, S.; Passarelli, L.; Aoki, Y. A nonplanar slow rupture episode during the 2000 Miyakejima dike intrusion. Journal of Geophysical Research: Solid Earth, 122, 2017, 2054–2068. https://doi.org/10.1002/2016JB013722.
-
2004. James, M. R., et al. Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell. Journal of Volcanology and Geothermal Research, 132(2–3), 2004, 159–172. https://doi.org/10.1016/S0377-0273(03)00343-3.
-
2001. Minutolo, V.; Gesualdo, A.; Nunziante, L. Local Collapse in Soft Rock Bank Cavities. Journal of Geotechnical and Geoenvironmental Engineering. 127 (12), 2001, 1037–1042. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:12(1037).
-
1989. Zienkiewicz, O.C., Taylor, R.L., The Finite Element Method, McGraw Hill, London, 1989.

3.8. Dissemination

-
2025. Apollonio, F.I.; Zannoni, M.; Fantini, F.; Garagnani, S.; Barbieri, L. Accurate Visualization and Interaction of 3D Models Belonging to Museums’ Collection: From the Acquisition to the Digital Kiosk. J. Comput. Cult. Herit. 2025, 18, 5:1–5:25. https://doi.org/10.1145/3704812.
-
2024. Balzani, R.; Barzaghi, S.; Bitelli, G.; Bonifazi, F.; Bordignon, A.; Cipriani, L.; Colitti, S.; Collina, F.; Daquino, M.; Fabbri, F.; et al. Saving Temporary Exhibitions in Virtual Environments: The Digital Renaissance of Ulisse Aldrovandi—Acquisition and Digitisation of Cultural Heritage Objects. Digital Applications in Archaeology and Cultural Heritage 2024, 32, e00309. https://doi.org/10.1016/j.daach.2023.e00309.
-
2024. Brubaker, S. Realizing 3D Animation in Blender: Master the Fundamentals of 3D Animation in Blender, from Keyframing to Character Movement. Packt Publishing Ltd., 2024; pp. 4–17.
-
2024. Meier, C.; Saorín, J.L.; Díaz Parrilla, S.; Bonnet De León, A.; Melián Díaz, D. User Experience of Virtual Heritage Tours with 360° Photos: A Study of the Chapel of Dolores in Icod de Los Vinos. Heritage, 2024, 7, 2477–2490. https://doi.org/10.3390/heritage7050118.
-
2024. Casillo, M.; Colace, F.; Gaeta, R.; Lorusso, A.; Santaniello, D.; Valentino, C. Revolutionizing Cultural Heritage Preservation: An Innovative IoT-Based Framework for Protecting Historical Buildings. Evol. Intel. 2024, 17, 3815–3831. https://doi.org/10.1007/s12065-024-00959-y.
-
2024. Li, F.; Spettu, F.; Achille, C.; Vassena, G.; Fassi, F. The Role of Web Platforms in Balancing Sustainable Conservation and Development in Large Archaeological Site: The Naxos Case Study. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2024, XLVIII-2-W8-2024, 2024, 303–310. https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-303-2024.
-
2024. Spiess, F.; Waltenspül, R.; Schuldt, H. The Sketchfab 3D Creative Commons Collection (S3D3C) 2024.
-
2023. Pietroni, E.; Menconero, S.; Botti, C.; Ghedini, F. e-Archeo: A Pilot National Project to Valorize Italian Archaeological Parks through Digital and Virtual Reality Technologies. Appl. Syst. Innov. 2023, 6, 38. https://doi.org/10.3390/asi6020038.
-
2023. Belec, A. Photorealistic Materials and Textures in Blender Cycles: Create impressive production-ready projects using one of the most powerful rendering engines, 4th ed.; Packt Publishing Limited, 2023; pp. 351–363.
-
2023. Fanini, B.; Pagano, A.; Pietroni, E.; Ferdani, D.; Demetrescu, E.; Palombini, A. Augmented Reality for Cultural Heritage. In Springer Handbook of Augmented Reality; Nee, A.Y.C., Ong, S.K., Eds.; Springer International Publishing: Cham, 2023, pp. 391–411, https://doi.org/10.1007/978-3-030-67822-7_16.
-
2023. Ferdani, D.; Ronchi, D.; Fanini, B.; Manganelli Del Fà, R.; d’Annibale, E.; Bordignon, A.; Pescarin, S. Brancacci Chapel in Florence: Surveying and Real-Time 3D Simulation for Conservation and Communication Purposes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2023, XLVIII-M-2–2023, 535–540, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-535-2023.
-
2023. Brusaporci, S. Architectural Heritage Imaging: When Graphical Science Meets Model Theory. DISEGNARECON 2023, 16, 1–4, https://doi.org/10.20365/disegnarecon.31.2023.ed.
-
2023. Bruciati, A.; D’Alessandro, L.; Empler, T.; Fusinetti, A. VILLÆ (Tivoli, MiC). Percorsi di inclusione museale e accessibilità. In Proceedings of the DAI—Il Disegno per l’Accessibilità e l’Inclusione. Atti del II convegno DAI, Udine 1-2 dicembre 2023; Sdegno, A., Riavis, V., Eds.; PUBLICA: Alghero, 2023; pp. 508–521.
-
2023. Bruciati, A.; D’Alessandro, L. Passepartout. Il museo di tutti per tutti. Un progetto di accessibilità delle VILLÆ. In Aree archeologiche e accessibilità. Riflessioni ed esperienze; Anguissola, A., Tarantino, C., Eds.; Pisa University Press: Pisa, 2023; pp. 127–137 ISBN 978-88-3339-725-2.
-
2022. Costa, S.; Cordera, P.; Poulot, D. Storytelling? Una narrazione a più voci. In Storytelling: esperienze e comunicazione del Cultural Heritage; Costa, S.; Cordera, P.; Poulot, D., Eds; Bononia University Press, Bologna, Italy, 2022; pp 1–7.
-
2021. Bonacini, E.; Marangon, G. Lo storytelling digitale partecipato come strumento didattico di divulgazione culturale. Cuadernos de Filología Italiana, 28, 2021; pp. 405–425 https://doi.org/10.5209/cfit.70449.
-
2021. Fanini, B.; Ferdani, D.; Demetrescu, E.; Berto, S.; D’Annibale, E. ATON: An Open-Source Framework for Creating Immersive, Collaborative and Liquid Web-Apps for Cultural Heritage. Appl. Sci. 2021, 11, 11062 https://doi.org/10.3390/app112211062.
-
2021. Fanini, B.; Ferdani, D.; Demetrescu, E. Temporal Lensing: An Interactive and Scalable Technique for Web3D/WebXR Applications in Cultural Heritage. Heritage 2021, 4, 710–724, https://doi.org/10.3390/heritage4020040.
-
2021. Peinado-Santana, S.; Hernández-Lamas, P.; Bernabéu-Larena, J.; Cabau-Anchuelo, B.; Martín-Caro, J.A. Public Works Heritage 3D Model Digitisation, Optimisation and Dissemination with Free and Open-Source Software and Platforms and Low-Cost Tools. Sustainability 2021, 13, 13020. https://doi.org/10.3390/su132313020.
-
2020. Astorga González, E.M.; Municio, E.; Noriega Alemán, M.; Marquez-Barja, J.M. Cultural Heritage and Internet of Things. In Proceedings of the Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good; Association for Computing Machinery: New York, NY, USA, 14 September 2020; pp. 248–251.
-
2020. Ponchio, F.; Callieri, M.; Dellepiane, V. and R. Scopigno. Effective Annotations Over 3D Models. Computer Graphics Forum 39, no. 1, 2020; pp 89–105. https://doi.org/10.1111/cgf.13664.
-
2020. Negri, M.; Marini, G. Le 100 parole dei musei; Marsilio Editori: Venezia, 2020; ISBN 978-88-297-0078-3.
-
2019. Hosen, M.S.; Ahmmed, S.; Dekkati, S. Mastering 3D Modeling in Blender: From Novice to Pro. ABC res. alert 2019, 7, 169–180, 10.18034/ra.v7i3.654.
-
2018. Vaglio, M. G. Lo storytelling per i beni culturali: il racconto. In Racconti da museo: storytelling d’autore per il museo 4.0; Dal Maso, C. Ed; Edipuglia, Bari, Italy, 2018; pp 27–51.
-
2018. Dal Maso, C. Storytelling: perché. In Racconti da museo: storytelling d’autore per il museo 4.0; Dal Maso, C Ed.; Edipuglia, Bari, Italy, 2018; pp 11–25.
-
2017. Viola, F. and Idone Cassone, V. L’arte del coinvolgimento: emozioni e stimoli per cambiare il mondo. Microscopi, Hoepli Editor: Milano, Italy, 2017; pp. 1–7.
-
2015. Gonizzi Barsanti, S.; Caruso, G.; Micoli, L.L.; Covarrubias Rodriguez, M.; Guidi, G. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality Devices. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-5/W7, 165–172, 10.5194/isprsarchives-XL-5-W7-165-2015.
-
2014. Zambruno S.; Vazzana A.; Orlandi M. Tecnologia, Beni Culturali e Turismo: i Tour Virtuali (Virtual Tours) come strumento per una corretta comunicazione dei Beni Culturali, Storia e futuro 34, 2014; pp. 1–4.
-
2014. Basso Peressut, L.; Caliari, P. Architettura per l’Archeologia. Museografia e Allestimento; Martinelli, C., Ed.; Prospettive Edizioni: Roma, 2014; ISBN 978-88-98563-06-7.
-
2010. Manual de museología interactiva; Santacana i Mestre, J., Martín Piñol, C., Eds.; Ediciones Trea: Gijón, España, 2010; ISBN 978-84-9704-531-5.
-
2009. Lugli, A. Museologia; Jaka Book: Milano, 2009; ISBN 978-88-16-43033-4.
-
2007. Battini, C.; Fantini, F. Modelli tattili: una questione di rappresentazione. In Nuove immagini di monumenti fiorentini, rilievi con tecnologia laser scanner 3D; Bini, M., Battini, C., Eds.; Alinea: Firenze, 2007; pp. 36–39 ISBN 978-88-6055-232-7.

3.9. Websites

-
Council of the European Union. Council conclusions of 21 May 2014 on cultural heritage as a strategic resource for a sustainable Europe (2014/C 183/08) 2014; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014XG0614(08) (accessed on on 21 March 2025).
-
Drafted by the Central Institute for the Digitalization of Cultural Heritage—Digital Library of the Italian Ministry of Culture within the National Plan for the Digitalization of Cultural Heritage 2022–2026. https://digitallibrary.cultura.gov.it/linee-guida/ (accessed on on 22 March 2025).
-
ATON. Available online: https://osiris.itabc.cnr.it/aton/ (accessed on on 26 March 2025).
-
Blender. Available online: https://www.blender.org/ (accessed on on 26 March 2025).
-
Three.js. Available online: https://threejs.org/ (accessed on on 31 March 2025).
-
Khronos. Available online: https://www.khronos.org/gltf/ (accessed on on 26 March 2025).
-
Blender 4.3 manual. Available online: https://docs.blender.org/manual/en/4.3/index.html (accessed on on 02 April 2025).
-
Agisoft Metashape Professional. Available online: https://www.agisoft.com/ (accessed on February 2025).
-
3d Systems Geomagic Design X. Available online: https://www.3dsystems.com/software/geomagic-design-x (accessed on February 2025).
-
Python. Available online: https://www.python.org (accessed on March 2025).
-
Rhinoceros (Rhino 3D). Available online: https://www.rhino3d.com (accessed on February 2025).
-
Grasshopper. Algorithmic Modeling for Rhino. Available online: https://www.grasshopper3d.com (accessed on March 2025).
-
ChatGPT (OpenAI). Available online: https://openai.com/chatgpt (accessed on April 2025).
-
Leica Geosystems Cyclone [Software]. Available online: https://leica-geosystems.com/it-it/products/laser-scanners/software (accessed on March 2025).

Funding

This work was supported by the Italian Ministry under the Project of Relevant National Interest (PRIN call D.D. no. 104/2022—code PRIN_20222RJE322022—CUP B53D23022100006, D.D. no. 1012/2023) “SCORPiò-NIDI. Comparative Analysis and Certified Reconstructions for a correct experimental archeology: Roman Scorpions and Ballistae for the Imperial mechanical culture, origin of European identity. Governance policy for the development and sustainable fruition of Cultural Heritag”.

Acknowledgments

Thanks go to those who have worked in various capacities at the Ministry of Cultural Heritage since the beginning of the millennium. Starting with Mario Pagano, Superintendent for Archaeological Heritage of Molise since 2004, who, previously urged by Flavio Russo, Historical Consultant of the Army General Staff, took action to obtain authorization to proceed with the creation of silicone casts of the ballistic impacts found in the walls of Pompeii. The casts are now on display in the archaeological area of Saepinum (CB, Italy). We appreciate the interest shown in the research topic by MIBACT-SABAP-CS (0013535 of 23/10/17 CI. 19.10.38/1-9), equally supported by the Municipality of Pompeii (0051038/U of 06/11/2017), the Ministry of Defense, and other academic institutions. The authors reaffirm their gratitude to the Directorate and officials of the Archaeological Park of Pompeii, who have repeatedly authorized both access to the sites and the survey of the northern section of the city wall circuit (MIBACT-SSBA-PES PROTO-ARCH 0006225 14/04/2016 CI. 28.13.07/6; and prot. no. 9707 of 29/09/23). The most recent authorisation, updated to 28 February 2025 (PDF_1739786899487a35a63ff-f5f3-4360-9c25-7f65ef107e27), was subject to delivery of the laser scanner survey in the formats requested by the Park Research Laboratories. The delivery was made on the morning of 28 February. A few weeks later, a draft agreement for sharing the results was delivered to the legal team for review.

Conflicts of Interest

The authors declare no conflicts of interest.
Figure 1. Conference poster.
Figure 1. Conference poster.
Engproc 96 00001 g001
Figure 2. Comparative view of a technical drawing and its corresponding render, created in Lumion to enhance visual communication (credit: Veronica Casadei).
Figure 2. Comparative view of a technical drawing and its corresponding render, created in Lumion to enhance visual communication (credit: Veronica Casadei).
Engproc 96 00001 g002
Figure 3. Models of the Roman scorpion and walls integrated into a virtual environment created using Twinmotion (credit: Veronica Casadei).
Figure 3. Models of the Roman scorpion and walls integrated into a virtual environment created using Twinmotion (credit: Veronica Casadei).
Engproc 96 00001 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rossi, A. Pompeii: From the Survey of Ballistic Impacts Towards the Reconstructions of Roman Artillery (1st Century BC). Eng. Proc. 2025, 96, 1. https://doi.org/10.3390/engproc2025096001

AMA Style

Rossi A. Pompeii: From the Survey of Ballistic Impacts Towards the Reconstructions of Roman Artillery (1st Century BC). Engineering Proceedings. 2025; 96(1):1. https://doi.org/10.3390/engproc2025096001

Chicago/Turabian Style

Rossi, Adriana. 2025. "Pompeii: From the Survey of Ballistic Impacts Towards the Reconstructions of Roman Artillery (1st Century BC)" Engineering Proceedings 96, no. 1: 1. https://doi.org/10.3390/engproc2025096001

APA Style

Rossi, A. (2025). Pompeii: From the Survey of Ballistic Impacts Towards the Reconstructions of Roman Artillery (1st Century BC). Engineering Proceedings, 96(1), 1. https://doi.org/10.3390/engproc2025096001

Article Metrics

Back to TopTop