Development and Evaluation of a LiFi-Transceiver Module for TMTC Intra-Satellite Communication †
Abstract
:1. Introduction
- Significant reduction in the harness and thus savings in mass, assembly time and the avoidance of potential sources of error.
- In contrast to RF solutions, LiFi does not emit any EM radiation and therefore does not interfere with electronic components.
- LiFi transmission is completely shielded within the satellite structure and therefore cannot be interfered with or tapped from outside (cyber security).
- Direct integration of external modules (e.g., in docking mechanisms, as described in [10]) without optical–electrical conversion.
2. Related Work
3. Transceiver-Design
3.1. Transimpedance-Amplifier (TIA)
3.2. Implementation
3.3. Software Architecture
4. Evaluation
4.1. Test Setup
4.2. Bit Error Ratio (BER)
4.3. Effective Data Rate
4.4. Results
5. Conceptual Integration into the Satellite Architecture
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malagoli, M.; Cosquéric, L. Space harness design optimization opportunities on ecss derating rules. In Proceedings of the ESA Space Passive Component Days Conference, Noordwijk, The Netherlands, 24–26 September 2013. [Google Scholar]
- Drobczyk, M.; Martens, H. Deployment of a wireless sensor network in assembly, integration and test activities. In Proceedings of the 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 26–29 September 2016; pp. 129–134. [Google Scholar]
- Skith—Skip the Harness, Entwicklung Einer Kabellosen Satelliten-Infrastruktur. Available online: https://www.dlr-innospace.de/gefoerderte-projekte/skith/ (accessed on 7 March 2025).
- Ratiu, O.; Rusu, A.; Pastrav, A.; Palade, T.; Puschita, E. Implementation of an UWB-based module designed for wireless intra-spacecraft communications. In Proceedings of the 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 26–29 September 2016; pp. 146–151. [Google Scholar]
- Grzesik, B.; Baumann, T.; Walter, T.; Flederer, F.; Sittner, F.; Dilger, E.; Gläsner, S.; Kirchler, J.L.; Tedsen, M.; Montenegro, S.; et al. InnoCube—A Wireless Satellite Platform to Demonstrate Innovative Technologies. Aerospace 2021, 8, 127. [Google Scholar] [CrossRef]
- Falco, G. When Satellites Attack: Satellite-to-Satellite Cyber Attack, Defense and Resilience. In Proceedings of the ASCEND 2020, American Institute of Aeronautics and Astronautics, Virtual Event, 16–18 November 2020; p. 4014. [Google Scholar] [CrossRef]
- Jahnke, M.; Grau, S.; Kulau, U. Demo Abstract: SatelLight—Using LiFi for Intra-Satellite Communication. In Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems, Association for Computing Machinery, Istanbul, Turkiye, 12–17 November 2023; pp. 476–477. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is lifi? J. Light. Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Qian, H.; Amjad, H. A comprehensive review of optical wireless power transfer technology. Front. Inf. Technol. Electron. Eng. 2023, 24, 767–800. [Google Scholar] [CrossRef]
- Kortmann, M.; Dafnis, A.; Schervan, T.A.; Schmidt, H.G.; Rühl, S.; Weise, J. Building Block-Based “iBOSS” Approach: Fully Modular Systems with Standard Interface to Enhance Future Satellites. In Proceedings of the 66th International Astronautical Congress, Jerusalem, Israel, 12–16 October 2015. [Google Scholar]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutorials 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Cui, K.; Chen, G.; Xu, Z.; Roberts, R.D. Line-of-sight visible light communication system design and demonstration. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Newcastle Upon Tyne, UK, 21–23 July 2010. [Google Scholar] [CrossRef]
- Jenila, C.; Jeyachitra, R.K. Illumination, communication and energy efficiency analysis of indoor visible light communication systems under the influence of optical source emission characteristics. Photonic Netw. Commun. 2019, 38, 129–141. [Google Scholar] [CrossRef]
- Haas, H. Multi-Gigabit/s LiFi networking for 6G. In Proceedings of the 2021 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 10–12 November 2021; pp. 25–26. [Google Scholar]
- Arruego, I.; Guerrero, H.; Rodriguez, S.; Martinez-Oter, J.; Jimenez, J.; Dominguez, J.; Martin-Ortega, A.; de Mingo, J.; Rivas, J.; Apestigue, V.; et al. OWLS: A ten-year history in optical wireless links for intra-satellite communications. IEEE J. Sel. Areas Commun. 2009, 27, 1599–1611. [Google Scholar] [CrossRef]
- Rivas Abalo, J.; Martínez Oter, J.; Arruego Rodríguez, I.; Martín-Ortega Rico, A.; de Mingo Martín, J.R.; Jiménez Martín, J.J.; Martín Vodopivec, B.; Rodríguez Bustabad, S.; Guerrero Padrón, H. OWLS as platform technology in OPTOS satellite. CEAS Space J. 2017, 9, 543–554. [Google Scholar] [CrossRef]
- Rivas, J.; Arruego, I.; Martin-Ortega, A.; Jimenez, J.J.; Martinez-Oter, J.; de Mingo, J.R.; Martin, B. Owls as platform technology in OPTOS satellite. In Proceedings of the International Conference on Space Optics—ICSO 2016, Biarritz, France, 25 September 2017; Karafolas, N., Cugny, B., Sodnik, Z., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Ertunc, E.; Cossu, G.; Messa, A.; Ciaramella, E. High-throughput optical wireless solutions for intra-satellite communications. In Proceedings of the International Conference on Space Optics—ICSO 2020, Online, 30 March–2 April 2021; Sodnik, Z., Cugny, B., Karafolas, N., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 209. [Google Scholar] [CrossRef]
- Fuada, S.; Putra, A.P.; Aska, Y.; Adiono, T. Trans-impedance amplifier (HA) design for Visible Light Communication (VLC) using commercially available OP-AMP. In Proceedings of the 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 19–20 October 2016. [Google Scholar] [CrossRef]
- Caldwell, J.; Texas Instruments. 1 MHz, Single-Supply, Photodiode Amplifier Reference Design. 2014. Available online: https://www.ti.com/lit/ug/tidu535/tidu535.pdf (accessed on 7 March 2025).
- Bonifacio, V.D.; Pires, R.F. Photodiodes: Principles and recent advances. J. Mater. Nanosci. 2019, 6, 38–46. [Google Scholar]
- UDT Sensors, Inc. Photodiode Characteristics and Applications. Available online: https://www.osioptoelectronics.com/media/pages/knowledgebase/b954012b64-1675100541/an-photodiode-parameters-and-characteristics.pdf (accessed on 7 March 2025).
- Texas Instruments. OPAx355 200-MHz CMOS Operational Amplifiers with Shutdown—Datasheet. 2018. Available online: https://www.ti.com/lit/ds/symlink/opa355.pdf?ts=1741663852976&ref_url=https%253A%252F%252Fwww.google.com.hk%252F (accessed on 7 March 2025).
- Hinrichs, M.; Berenguer, P.W.; Hilt, J.; Hellwig, P.; Schulz, D.; Paraskevopoulos, A.; Bober, K.L.; Freund, R.; Jungnickel, V. A Physical Layer for Low Power Optical Wireless Communications. IEEE Trans. Green Commun. Netw. 2021, 5, 4–17. [Google Scholar] [CrossRef]
- Vishay Semiconductors. VBPW342, VBPW34SR Datasheet. 2011. Rev 1.2. Available online: https://www.vishay.com/docs/81128/vbpw34s.pdf (accessed on 7 March 2025).
- OSRAM. LW VH8G Datasheet. 2023. Version 1.9. Available online: https://www.mouser.co.uk/datasheet/2/588/asset_pdf_5057875-3419308.pdf (accessed on 7 March 2025).
- Li, S.; Fan, G.; Xu, G. Application of Wireless Satellite Bus in micro-satellite design. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009. [Google Scholar] [CrossRef]
- Bober, K.L.; Ebmeyer, A.; Dressler, F.; Freund, R.; Jungnickel, V. LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15. 13. IEEE Open J. Veh. Technol. 2024, 5, 1625–1636. [Google Scholar] [CrossRef]
Coding | Coding Rate | UART Rate | Effective Rate |
---|---|---|---|
No Coding | 1 | ||
Reed-Solomon | |||
Hamming |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahnke, M.; Palmer, B.; Kulau, U. Development and Evaluation of a LiFi-Transceiver Module for TMTC Intra-Satellite Communication. Eng. Proc. 2025, 90, 16. https://doi.org/10.3390/engproc2025090016
Jahnke M, Palmer B, Kulau U. Development and Evaluation of a LiFi-Transceiver Module for TMTC Intra-Satellite Communication. Engineering Proceedings. 2025; 90(1):16. https://doi.org/10.3390/engproc2025090016
Chicago/Turabian StyleJahnke, Marek, Benjamin Palmer, and Ulf Kulau. 2025. "Development and Evaluation of a LiFi-Transceiver Module for TMTC Intra-Satellite Communication" Engineering Proceedings 90, no. 1: 16. https://doi.org/10.3390/engproc2025090016
APA StyleJahnke, M., Palmer, B., & Kulau, U. (2025). Development and Evaluation of a LiFi-Transceiver Module for TMTC Intra-Satellite Communication. Engineering Proceedings, 90(1), 16. https://doi.org/10.3390/engproc2025090016