A Hexa-Band Terahertz Metamaterial Absorber Using a Symmetrical Boss Cross Structure with Biomedical Applications †
Abstract
1. Introduction
2. Methods and Materials
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 20. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Garg, S.; Singh, A.K.; Bansal, S.; Prakash, K.; Gupta, N.; Sharma, N.; Kumar, S.; Sardana, N. Dual Band Graphene Based Metamaterial Absorber for Terahertz Applications. In Proceedings of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR, USA, 14–17 October 2018; pp. 1–4. [Google Scholar]
- Huang, X.; Lu, C.; Rong, C.; Liu, M. Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns. Opt. Mater. Express 2018, 8, 2520–2531. [Google Scholar] [CrossRef]
- Jain, P.; Prakash, K.; Khanal, G.M.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. Quad-band polarization sensitive terahertz metamaterial absorber using Gemini-shaped structure. Results Opt. 2022, 8, 100254. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, C.; Liang, C.; Yi, Z.; Chen, X.; Tang, Y.; Yi, T.; Yi, Y.; Luo, W.; Xiao, S. Five-Band Terahertz Perfect Absorber Based on Metal Layer–Coupled Dielectric Metamaterial. Plasmonics 2019, 14, 1621–1628. [Google Scholar] [CrossRef]
- Shruti; Pahadsingh, S.; Appasani, B. Hexagonal Tiled Terahertz Metamaterial Absorber for Cancer Detection Incorporating Machine Learning. IEEE Sensors J. 2024, 24, 16093–16101. [Google Scholar] [CrossRef]
- Jain, P.; Prakash, K.; Sardana, N.; Kumar, S.; Gupta, N.; Singh, A.K. Design of an ultra-thin hepta-band metamaterial absorber for sensing applications. Opt. Quantum Electron. 2022, 54, 1–14. [Google Scholar] [CrossRef]
- Senesac, L.; Thundat, T.G. Nanosensors for trace explosive detection. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Ritar, T.; Tuominen, J.; Ludvigsen, H.; Petersen, J.C.; Sørensen, T.; Hansen, T.P.; Simonsen, H.R. Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 2004, 12, 4080–4087. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.P.; Lan, S.; Kang, L.; Cui, Y.; Cai, W. Nonlinear Imaging and Spectroscopy of Chiral Metamaterials. Adv. Mater. 2014, 26, 6157–6162. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-D.; Liu, M.-H.; Hu, X.-W.; Kong, L.-H.; Cheng, L.-L.; Chen, Z.-Q. Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses. Chin. Phys. B 2014, 23. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhai, X.; Wang, G.Z.; Huang, W.Q.; Wang, L.L. Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber. IEEE Photon. J. 2014, 7, 4600108. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Singh, R. Sensing with THz metamaterial absorbers. arXiv 2014, arXiv:1408.3711. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, I.; Fahad, M.B.; Mishra, S.K.; Yadav, R.; Appasani, B. Ultra Thin Highly Sensitive Metamaterial Absorber Based Refractive Index Sensor for Detecting Adulterants in Alcohol. Prog. Electromagn. Res. M 2024, 126, 81–88. [Google Scholar] [CrossRef]
- Xiong, Z.; Shang, L.; Yang, J.; Chen, L.; Guo, J.; Liu, Q.; Danso, S.A.; Li, G. Terahertz Sensor with Resonance Enhancement Based on Square Split-Ring Resonators. IEEE Access 2021, 9, 59211–59221. [Google Scholar] [CrossRef]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.A.; Obayya, S.S.A. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sensors J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Xie, Q.; Dong, G.-X.; Wang, B.-X.; Huang, W.-Q. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Res. Lett. 2018, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Dutta, P.; Jha, A.V.; Appasani, B.; Khan, M.S. A Biomedical Sensor for Detection of Cancer Cells Based on Terahertz Metamaterial Absorber. IEEE Sensors Lett. 2022, 6, 6002004. [Google Scholar] [CrossRef]
- Du John, H.V.; Ajay, T.; Reddy, G.M.K.; Ganesh, M.N.S.; Hembram, A.; Pandey, B.K.; Pandey, D. Design and Simulation of SRR-Based Tungsten Metamaterial Absorber for Biomedical Sensing Applications. Plasmonics 2023, 18, 1903–1912. [Google Scholar] [CrossRef]
- Shruti; Appasani, B.; Pahadsingh, S. An All-Metal Terahertz Metamaterial Absorber Using Concentric Octagonal Rings for Refractive Index Sensing. IEEE Trans. Plasma Sci. 2025, 53, 2109–2115. [Google Scholar] [CrossRef]







| Frequency Band (f0) | Frequency (THz) | Sensitivity (S) (GHz/RIU) | FoM | Q-Factor |
|---|---|---|---|---|
| f1 | 0.5368 | 156 | 5.131 | 17.89 |
| f2 | 2.5726 | 772.9 | 12.75 | 42.17 |
| f3 | 3.025 | 1031.7 | 22.045 | 64.64 |
| f4 | 3.142 | 1694.7 | 16.71 | 30.99 |
| f5 | 3.4891 | 939.5 | 21.26 | 78.9 |
| f6 | 3.7348 | 563.7 | 6.727 | 44.57 |
| Reference | Peak Q-Factor | Peak FOM | Range of Refractive Index | No. of Absorption Peaks | Peak Sensitivity (GHz/RIU) |
|---|---|---|---|---|---|
| [15] | 125.25 | 52.63 | 1.33–1.36 | 1 | 2105 |
| [16] | 44.17 | 10.5 | 1.0–1.2 | 1 | 126 |
| [17] | 22.1 | 2.94 | 1.35–1.39 | 1 | 300 |
| [18] | 58 | 7.5 | 1.1–1.6 | 1 | 105 |
| [19] | 92.75 | 36.175 | 1.3–1.4 | 1 | 1447 |
| [20] | 39 | 20 | 1.34–1.39 | 1 | 60,000 |
| [21] | 1038 | 1488 | 1.3–1.4 | 2 | 2700 |
| Proposed | 78.9 | 22.045 | 1.3–1.39 | 6 | 1694.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.K.; Nath, U.; Banerjee, S.; Appasani, B.; Acharya, O.; Mishra, S.K.; Jha, A.V.; Srinivasulu, A.; Ravariu, C. A Hexa-Band Terahertz Metamaterial Absorber Using a Symmetrical Boss Cross Structure with Biomedical Applications. Eng. Proc. 2025, 87, 114. https://doi.org/10.3390/engproc2025087114
Mishra SK, Nath U, Banerjee S, Appasani B, Acharya O, Mishra SK, Jha AV, Srinivasulu A, Ravariu C. A Hexa-Band Terahertz Metamaterial Absorber Using a Symmetrical Boss Cross Structure with Biomedical Applications. Engineering Proceedings. 2025; 87(1):114. https://doi.org/10.3390/engproc2025087114
Chicago/Turabian StyleMishra, Santosh Kumar, Uddipan Nath, Sagnik Banerjee, Bhargav Appasani, Omprakash Acharya, Sunil Kumar Mishra, Amitkumar V. Jha, Avireni Srinivasulu, and Cristian Ravariu. 2025. "A Hexa-Band Terahertz Metamaterial Absorber Using a Symmetrical Boss Cross Structure with Biomedical Applications" Engineering Proceedings 87, no. 1: 114. https://doi.org/10.3390/engproc2025087114
APA StyleMishra, S. K., Nath, U., Banerjee, S., Appasani, B., Acharya, O., Mishra, S. K., Jha, A. V., Srinivasulu, A., & Ravariu, C. (2025). A Hexa-Band Terahertz Metamaterial Absorber Using a Symmetrical Boss Cross Structure with Biomedical Applications. Engineering Proceedings, 87(1), 114. https://doi.org/10.3390/engproc2025087114

