The Design of a Magnetic Separator Machine for Lithium-Ion Battery Enumeration †
Abstract
1. Introduction
2. Materials and Method
2.1. Materials and Specimen Preparation
2.2. Machine Element Calculation and Frame Analysis
3. Result and Discussion
3.1. Calculating the Shear Force Diagram (SFD) and Bending Moment Diagram (BMD)
3.2. Calculating the Diameter of the Shaft
3.3. Static Structural Frame Analysis
4. Conclusions
- The design of the magnetic separator machine is formulated with a conveyor performance system. The crushed material is then transferred by a conveyor for further processing; at the end of the conveyor, a magnetic separator is placed to separate the magnetic materials from the lithium batteries enumeration.
- This magnetic separator machine shaft is connected to a rotating shaft conveyor, so it does not need an additional motor to drive the machine.
- The placement of the belt on the magnetic separator machine is linked to the chain conveyor because the belt will easily change lanes if it is not linked to the chain.
- Based on the power calculation, the required shaft diameter for the magnetic roller shaft is 17.918 mm, and for the non-magnetic roller shaft, it is 8.455 mm. In this design, the authors used a diameter of 20 mm for the magnetic roller shaft, and for the non-magnetic roller shaft, a diameter of 10 mm was used.
- The results of the static structural simulation on the magnetic separator machine frame are safe and worthy of being used in the lithium battery recycling process with stress that does not exceed the yield limit of the material used.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, P.; Liu, K.; Wang, Z.; Shi, L.; Yuan, S. Multifunctional separators for high-performance lithium-ion batteries. J. Power Sources 2021, 499, 229973. [Google Scholar] [CrossRef]
- Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. [Google Scholar] [CrossRef]
- Recycle Spent Batteries; Nature Publishing Group: London, UK, 2019. [CrossRef]
- Li, J.; Zhang, Y.; Shang, R.; Cheng, C.; Cheng, Y.; Xing, J.; Wei, Z.; Zhao, Y. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Mater. 2021, 43, 143–157. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Q.; Chen, S.; Li, Z.; Sun, J.; Liu, W.; Yang, W.; Xiang, X.; Sun, X.; Duan, X. Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions. Energy Storage Mater. 2021, 41, 380–394. [Google Scholar] [CrossRef]
- Wibisono, F.A.; Mahardika, M.; Arifvianto, B.; Fismatika, A.T.; Muflikhun, M.A. A simulation of the comminution process of homogenized lithium-ion battery models. J. Mech. Sci. Technol. 2022, 36, 3361–3372. [Google Scholar] [CrossRef]
- Sommerville, R.; Shaw-Stewart, J.; Goodship, V.; Rowson, N.; Kendrick, E. A review of physical processes used in the safe recycling of lithium-ion batteries. Sustain. Mater. Technol. 2020, 25, e00197. [Google Scholar] [CrossRef]
- Zhan, R.; Pan, L. A cycling-insensitive recycling method for producing lithium transition metal oxide from Li-ion batteries using centrifugal gravity separation. Sustain. Mater. Technol. 2022, 32, e00399. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Reizabal, A.; Correia, D.M.; Fidalgo-Marijuan, A.; Gonçalves, R.; Silva, M.M.; Lanceros-Mendez, S.; Costa, C.M. Lithium-ion battery separator membranes based on poly (L-lactic acid) biopolymer. Mater. Today Energy 2020, 18, 100494. [Google Scholar] [CrossRef]
- Diekmann, J.; Hanisch, C.; Froböse, L.; Schälicke, G.; Loellhoeffel, T.; Fölster, A.S.; Kwade, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. J. Electrochem. Soc. 2017, 164, A6184–A6191. [Google Scholar] [CrossRef]
- Widijatmoko, S.D.; Gu, F.; Wang, Z.; Hall, P. Selective liberation in dry milled spent lithium-ion batteries. Sustain. Mater. Technol. 2020, 23, e00134. [Google Scholar] [CrossRef]
- Jin, S.; Mu, D.; Lu, Z.; Li, R.; Liu, Z.; Wang, Y.; Tian, S.; Dai, C. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. J. Clean. Prod. 2022, 340, 130535. [Google Scholar] [CrossRef]
- Bernardes, A.M.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of batteries: A review of current processes and technologies. J. Power Sources 2004, 130, 291–298. [Google Scholar] [CrossRef]
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. [Google Scholar] [CrossRef]
- Yu, D.; Huang, Z.; Makuza, B.; Guo, X.; Tian, Q. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review. Miner. Eng. 2021, 173, 107218. [Google Scholar] [CrossRef]
- Bhandari, V.B. Design of Machine Elements, 3rd ed.; Tata McGraw Hill Education Private Limited: New Delhi, India, 2010. [Google Scholar]
- Boothroyd, G.; Dewhurst, P.; Knight, W.A. Product Design for Manufacture and Assembly, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Logan, D.L. A First Course in the Finite Element Method; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
Loads | Kt |
---|---|
Smooth | 1.0 |
Little impact | 1.0–1.5 |
Big impact | 1.5–3.0 |
Loads | Cb |
---|---|
Bending load occurs | 1.2–3.0 |
No bending load occurs | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, Y.T.; Aditya, M.R.N.; Mahardika, M.; Arifvianto, B.; Perdana, I.; Firmansyah, E.; Muflikhun, M.A. The Design of a Magnetic Separator Machine for Lithium-Ion Battery Enumeration. Eng. Proc. 2025, 84, 63. https://doi.org/10.3390/engproc2025084063
Wijaya YT, Aditya MRN, Mahardika M, Arifvianto B, Perdana I, Firmansyah E, Muflikhun MA. The Design of a Magnetic Separator Machine for Lithium-Ion Battery Enumeration. Engineering Proceedings. 2025; 84(1):63. https://doi.org/10.3390/engproc2025084063
Chicago/Turabian StyleWijaya, Yulius Tomy, Muhammad Randi Nur Aditya, Muslim Mahardika, Budi Arifvianto, Indra Perdana, Eka Firmansyah, and Muhammad Akhsin Muflikhun. 2025. "The Design of a Magnetic Separator Machine for Lithium-Ion Battery Enumeration" Engineering Proceedings 84, no. 1: 63. https://doi.org/10.3390/engproc2025084063
APA StyleWijaya, Y. T., Aditya, M. R. N., Mahardika, M., Arifvianto, B., Perdana, I., Firmansyah, E., & Muflikhun, M. A. (2025). The Design of a Magnetic Separator Machine for Lithium-Ion Battery Enumeration. Engineering Proceedings, 84(1), 63. https://doi.org/10.3390/engproc2025084063