Glucose Prediction with Long Short-Term Memory (LSTM) Models in Three Distinct Populations †
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Model Development
2.3. Evaluation Measures
3. Results
3.1. Bland–Altman Plots
3.2. Continuous Glucose–Error Grid Analysis—CG-EGA
4. Discussion
4.1. Principal Findings
4.2. Comparison with Prior Studies
4.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z. Mining associations between glycemic variability in awake-time and in-sleep among non-diabetic adults. Front. Med. Technol. 2022, 4, 1026830. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, L.; Cleyet-Marrel, N.; Liang, Z. The Role of Continuous Glucose Monitoring in Automatic Detection of Eating Activities. In Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Nara, Japan, 9–11 March 2021; pp. 313–314. [Google Scholar]
- Zhao, Q.; Zhu, J.; Shen, X.; Lin, C.; Zhang, Y.; Liang, Y.; Cao, B.; Li, J.; Liu, X.; Rao, W.; et al. Chinese diabetes datasets for data-driven machine learning. Sci. Data 2023, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Marling, C.; Bunescu, R. The OhioT1DM Dataset for Blood Glucose Level Prediction: Update 2020. CEUR Workshop Proc. 2020, 2675, 71–74. [Google Scholar] [PubMed]
- Jacobs, P.G.; Herrero, P.; Facchinetti, A.; Vehi, J.; Kovatchev, B.; Breton, M.D.; Cinar, A.; Nikita, K.S.; Doyle, F.J.; Bondia, J.; et al. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev. Biomed. Eng. 2024, 17, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Bhimireddy, A.; Priyanshu, S.; Bolu, O.; Judy, W.G.; Saptarshi, P. Blood Glucose Level Prediction as Time-Series Modeling using Sequence-to-Sequence Neural Networks. In Proceedings of the KDH@ ECAI 2020, Santiago de Compostela, Spain, 29–30 August 2020; pp. 125–130. [Google Scholar]
- Heydar, K.; Hoda, N.; Jackie, E.; Mohammed, B. Multi-lag Stacking for Blood Glucose Level Prediction. In CEUR-Workshop Proceedings, Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data colocated with 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29–30 August 2020; CEUR-WS Team: Aachen, Germany, 2020; pp. 146–150. [Google Scholar]
- Yang, T.; Wu, R.; Tao, R.; Wen, S.; Ma, N.; Zhao, Y.; Yu, X.; Li, H. Multi-Scale Long Short-Term Memory Network with Multi-Lag Structure for Blood Glucose Prediction. In Proceedings of the KDH@ ECAI 2020, Santiago de Compostela, Spain, 29–30 August 2020; pp. 136–140. [Google Scholar]
- Butt, H.; Khosa, I.; Iftikhar, M.A. Feature Transformation for Efficient Blood Glucose Prediction in Type 1 Diabetes Mellitus Patients. Diagnostics 2023, 13, 340. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Meneghetti, L.; Prendin, F.; Pavan, J.; Sparacino, G.; Del Favero, S.; Facchinetti, A. A Personalized and Interpretable Deep Learning Based Approach to Predict Blood Glucose Concentration in Type 1 Diabetes. In Proceedings of the KDH@ ECAI 2020, Santiago de Compostela, Spain, 29–30 August 2020; pp. 81–85. [Google Scholar]
Model | Dataset | MAE | RMSE | NRMSE |
---|---|---|---|---|
PRED | 2.66 ± 0.54 | 4.00 ± 0.83 | 0.21 ± 0.04 | |
LSTM_pred | T1D | 4.07 ± 0.43 | 6.39 ± 1.25 | 0.11 ± 0.02 |
T2D | 6.83 ± 1.48 | 9.55 ± 2.06 | 0.25 ± 0.06 | |
PRED | 2.70 ± 0.60 | 4.07 ± 0.88 | 0.22 ± 0.05 | |
LSTM_t1d | T1D | 4.24 ± 0.38 | 6.59 ± 1.17 | 0.12 ± 0.02 |
T2D | 6.70 ± 1.44 | 9.54 ± 2.04 | 0.25 ± 0.06 | |
PRED | 3.11 ± 0.65 | 4.55 ± 0.96 | 0.26 ± 0.05 | |
LSTM_t2d | T1D | 5.97 ± 0.69 | 8.77 ± 1.18 | 0.17 ± 0.01 |
T2D | 7.45 ± 1.74 | 10.42 ± 2.27 | 0.29 ± 0.05 |
Model | Dataset | Mean Differences | +1.96 DP | −1.96 DP |
---|---|---|---|---|
PRED | 0.02 | 8.0 | −8.1 | |
LSTM_pred | T1D | −0.72 | 12.0 | −13.0 |
T2D | −0.72 | 18.0 | −18.1 | |
PRED | 0.87 | 8.9 | −7.2 | |
LSTM_t1d | T1D | 0.95 | 14.0 | −12.0 |
T2D | 0.32 | 19.0 | −19.0 | |
PRED | 1.43 | 10.0 | −7.3 | |
LSTM_t2d | T1D | 1.81 | 19.0 | −15.0 |
T2D | 0.50 | 21.0 | −21.0 |
Model | Dataset | AP | BE | EP |
---|---|---|---|---|
PRED | 99.8% | 0.15% | 0.15% | |
LSTM_pred | T1D | 99.6% | 2.50% | 0.90% |
T2D | 89.9% | 7.20% | 2.80% | |
PRED | 99.8% | 0.14% | 0.06% | |
LSTM_t1d | T1D | 96.8% | 2.39% | 0.81% |
T2D | 89.9% | 7.22% | 2.81% | |
PRED | 99.7% | 0.15% | 0.10% | |
LSTM_t2d | T1D | 95.3% | 2.34% | 2.36% |
T2D | 89.9% | 7.52% | 2.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, C.F.; Liang, Z. Glucose Prediction with Long Short-Term Memory (LSTM) Models in Three Distinct Populations. Eng. Proc. 2024, 82, 87. https://doi.org/10.3390/ecsa-11-20513
Carvalho CF, Liang Z. Glucose Prediction with Long Short-Term Memory (LSTM) Models in Three Distinct Populations. Engineering Proceedings. 2024; 82(1):87. https://doi.org/10.3390/ecsa-11-20513
Chicago/Turabian StyleCarvalho, Cleber F., and Zilu Liang. 2024. "Glucose Prediction with Long Short-Term Memory (LSTM) Models in Three Distinct Populations" Engineering Proceedings 82, no. 1: 87. https://doi.org/10.3390/ecsa-11-20513
APA StyleCarvalho, C. F., & Liang, Z. (2024). Glucose Prediction with Long Short-Term Memory (LSTM) Models in Three Distinct Populations. Engineering Proceedings, 82(1), 87. https://doi.org/10.3390/ecsa-11-20513