Virtual Model-Based Trajectory Optimization Algorithm for Aliquoting Robotic System †
Abstract
:1. Introduction
2. Setting an Optimization Problem
2.1. The First Stage: Definition of the Set B of the Trajectory Coordinates in the Space of Integers
2.2. The Second Stage: Determination of Whether the Resulting Set B A Belongs to the Workspace Set A
- -
- Parameters: the coordinates of the intermediate points of the trajectory . For a delta robot, the coordinates are the rotation angles of the drive rotary joints, i.e., .
- -
- Parameter change range: the overall dimensions of the workspace in the space of input coordinates .
- -
- Criterion: the function F calculated by formula (1).
- -
- Constraint: condition (3).
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GA | Genetic algorithm |
PSO | Particle Swarm Optimization |
GWO | Grey Wolf Optimization |
References
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Canny, J.F.; Lin, M.C. An opportunistic global path planner. Algorithmica 1993, 10, 102–120. [Google Scholar] [CrossRef]
- Zeng, W.; Church, R.L. Finding shortest paths on real road networks: The case for A*. Int. J. Geogr. Inf. Sci. 2009, 23, 531–543. [Google Scholar] [CrossRef]
- Khatib, O. Real time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Ericson, C. Real-time Collision Detection. The Morgan Kaufmann Series in Interactive 3-D Technology; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ciaccia, P.; Patella, M.; Rabitti, F.; Zezula, P. Indexing Metric Spaces with M-Tree. In Proceedings of the Atti del Quinto Convegno Nazionale SEBD, Verona, Italy, 25–27 June 1997; pp. 67–86. [Google Scholar]
- Nissoux, C.; Simeon, T.; Laumond, J.-P. Visibility based probabilistic roadmaps. In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289), Kyongju, Korea, 17–21 October 1999; pp. 1316–1321. [Google Scholar]
- Gil Aparicio, A.; Valls Miro, J. An Efficient Stochastic Constrained Path Planner for Redundant Manipulators. Appl. Sci. 2021, 11, 10636. [Google Scholar] [CrossRef]
- Bottin, M.; Rosati, G. Trajectory Optimization of a Redundant Serial Robot Using Cartesian via Points and Kinematic Decoupling. Robotics 2019, 8, 101. [Google Scholar] [CrossRef]
- Malyshev, D.; Rybak, L.; Carbone, G.; Semenenko, T.; Nozdracheva, A. Optimal Design of a Parallel Manipulator for Aliquoting of Biomaterials Considering Workspace and Singularity Zones. Appl. Sci. 2022, 12, 2070. [Google Scholar] [CrossRef]
- Khalapyan, S.; Rybak, L.; Malyshev, D.; Kuzmina, V. Synthesis of Parallel Robots Optimal Motion Trajectory Planning Algorithms. In Proceedings of the IX International Conference on Optimization and Applications (OPTIMA 2018), Petrovac, Montenegro, 1–5 October 2018; pp. 311–324. [Google Scholar]
- Rybak, L.; Malyshev, D.; Gaponenko, E. Optimization Algorithm for Approximating the Solutions Set of Nonlinear Inequalities Systems in the Problem of Determining the Robot Workspace. Commun. Comput. Inf. Sci. 2020, 1340, 27–37. [Google Scholar]
- Rogers, D. Procedural Elements for Computer Graphics; McGraw-Hill: New York, NY, USA, 1985. [Google Scholar]
Trials | GA | GWO | PSO | Trials | GA | GWO | PSO |
---|---|---|---|---|---|---|---|
1 | 152,499 | 149,852 | 149,737 | 6 | 131,130 | 149,863 | 149,891 |
2 | 151,070 | 150,136 | 130,477 | 7 | 130,719 | 130,433 | 130,459 |
3 | 131,368 | 130,477 | 149,778 | 8 | 150,506 | 131,111 | 149,915 |
4 | 137,201 | 150,394 | 130,385 | 9 | 152,649 | 149,941 | 149,914 |
5 | 149,876 | 150,427 | 149,674 | 10 | 149,772 | 150,083 | 149,769 |
Average value | 143,679 | 144,272 | 144,000 |
Trajectory According to Test 3 | GA | GWO | PSO |
---|---|---|---|
Path length | 168,101 | 163,734 | 167,705 |
Chebyshev length (estimation of positioning duration) | 114,558 | 114,104 | 133,008 |
Criterion function ( = 0,1) | 131,368 | 130,477 | 149,778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, L.; Malyshev, D.; Cherkasov, V. Virtual Model-Based Trajectory Optimization Algorithm for Aliquoting Robotic System. Eng. Proc. 2022, 24, 14. https://doi.org/10.3390/IECMA2022-12911
Rybak L, Malyshev D, Cherkasov V. Virtual Model-Based Trajectory Optimization Algorithm for Aliquoting Robotic System. Engineering Proceedings. 2022; 24(1):14. https://doi.org/10.3390/IECMA2022-12911
Chicago/Turabian StyleRybak, Larisa, Dmitry Malyshev, and Vladislav Cherkasov. 2022. "Virtual Model-Based Trajectory Optimization Algorithm for Aliquoting Robotic System" Engineering Proceedings 24, no. 1: 14. https://doi.org/10.3390/IECMA2022-12911
APA StyleRybak, L., Malyshev, D., & Cherkasov, V. (2022). Virtual Model-Based Trajectory Optimization Algorithm for Aliquoting Robotic System. Engineering Proceedings, 24(1), 14. https://doi.org/10.3390/IECMA2022-12911