New Transfer Learning Approach Based on a CNN for Fault Diagnosis †
Abstract
:1. Introduction to Achieving the Performance
2. Related Work
3. Proposed Model
4. Materials and Methods
4.1. Data Collection
4.2. Deep Convolutional Neural Network Architecture Based on VGG-19
4.3. Data Pre-Processing and Augmentation
4.4. Model Evaluation
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayas, S.; Ayas, M.S. A novel bearing fault diagnosis method using deep residual learning network. Multimedia Tools Appl. 2022, 81, 22407–22423. [Google Scholar] [CrossRef]
- Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Pons-Llinares, J.; Antonino-Daviu, J.A.; Riera-Guasp, M.; Bin Lee, S.; Kang, T.-J.; Yang, C. Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools. IEEE Trans. Ind. Electron. 2015, 62, 1791–1802. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, G.-W.; Sohn, J.-M. A logic based expert system (LBES) for fault diagnosis of power system. IEEE Trans. Power Syst. 1997, 12, 363–369. [Google Scholar] [CrossRef]
- Li, B.; Chow, M.-Y.; Tipsuwan, Y.; Hung, J. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [Google Scholar] [CrossRef]
- Baraldi, P.; Cannarile, F.; Di Maio, F.; Zio, E. Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions. Eng. Appl. Artif. Intell. 2016, 56, 1–13. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.; Kim, J.-M. Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf. Sci. 2015, 294, 423–438. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.; Xiong, J.; Xiao, M.; Sun, G.; He, J. Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests. IEEE Sens. J. 2017, 17, 5581–5588. [Google Scholar] [CrossRef]
- Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Ibrahim, A.; Anayi, F.; Packianather, M.; Alomari, O.A. New Hybrid Invasive Weed Optimization and Machine Learning Approach for Fault Detection. Energies 2022, 15, 1488. [Google Scholar] [CrossRef]
- Qian, C.; Zhu, J.; Shen, Y.; Jiang, Q.; Zhang, Q. Deep Transfer Learning in Mechanical Intelligent Fault Diagnosis: Application and Challenge. Neural Process. Lett. 2022, 54, 2509–2531. [Google Scholar] [CrossRef]
- Han, T.; Jiang, D.; Wang, N. The Fault Feature Extraction of Rolling Bearing Based on EMD and Difference Spectrum of Singular Value. Shock Vib. 2016, 2016, 5957179. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115, 124–135. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chaturvedi, I.; Ong, Y.-S.; Arumugam, R.V. Deep transfer learning for classification of time-delayed Gaussian networks. Signal Process. 2015, 110, 250–262. [Google Scholar] [CrossRef]
- Gonzalez, T.F. ImageNet Classification with Deep Convolutional Neural Networks. In Handbook of Approximation Algorithms and Metaheuristics; Chapman and Hall/CRC: New York, NY, USA, 2007; pp. 1–1432. [Google Scholar] [CrossRef]
- Socher, R.; Bengio, Y.; Manning, C.D. Deep Learning for NLP (without Magic). In Proceedings of the NAACL-HLT 2013—The 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–15 June 2013; pp. 1–3. [Google Scholar]
- Wu, L.; Baldi, P. Learning to play Go using recursive neural networks. Neural Netw. 2008, 21, 1392–1400. [Google Scholar] [CrossRef]
- Gan, M.; Wang, C.; Zhu, C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [Google Scholar] [CrossRef]
- Cho, H.C.; Knowles, J.; Fadali, M.S.; Lee, K.S. Fault Detection and Isolation of Induction Motors Using Recurrent Neural Networks and Dynamic Bayesian Modeling. IEEE Trans. Control Syst. Technol. 2010, 18, 430–437. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Zhang, X.; Niu, M. Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci. Technol. 2015, 26, 115002. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Panigrahi, S.; Nanda, A.; Swarnkar, T. A Survey on Transfer Learning. Smart Innov. Syst. Technol. 2021, 194, 781–789. [Google Scholar] [CrossRef]
- Zuo, L.; Jing, M.; Li, J.; Zhu, L.; Lu, K.; Yang, Y. Challenging tough samples in unsupervised domain adaptation. Pattern Recognit. 2021, 110, 107540. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, Y.; Feng, Y.; Li, Y.; Kusiak, A. Diagnosis of wind turbine faults with transfer learning algorithms. Renew. Energy 2021, 163, 2053–2067. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Yang, Q. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar]
- Wang, P.; Ananya; Yan, R.; Gao, R.X. Virtualization and deep recognition for system fault classification. J. Manuf. Syst. 2017, 44, 310–316. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, X.; Zhang, L.; Shao, S.; Bian, G. Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning. Shock Vib. 2020, 2020, 8863388. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, J.; He, K.; Sun, J. Accelerating Very Deep Convolutional Networks for Classification and Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1943–1955. [Google Scholar] [CrossRef]
- Handa, A.; Garg, P.; Khare, V. Masked Neural Style Transfer using Convolutional Neural Networks. In Proceedings of the 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), Bhubaneswar, India, 27–28 July 2018; pp. 2099–2104. [Google Scholar] [CrossRef]
- Mocsari, E.; Stone, S.S. Densely Connected Convolutional Networks. Am. J. Vet. Res. 1978, 39, 1442–1446. [Google Scholar]
- Jamin, A.; Humeau-Heurtier, A. (Multiscale) Cross-Entropy Methods: A Review. Entropy 2020, 22, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Gao, R.X. Transfer learning for enhanced machine fault diagnosis in manufacturing. CIRP Ann. 2020, 69, 413–416. [Google Scholar] [CrossRef]
- Kumar, P.; Hati, A.S. Transfer learning-based deep CNN model for multiple faults detection in SCIM. Neural Comput. Appl. 2021, 33, 15851–15862. [Google Scholar] [CrossRef]
- Shen, F.; Chen, C.; Yan, R.; Gao, R.X. Bearing fault diagnosis based on SVD feature extraction and transfer learning classification. In Proceedings of the 2015 Prognostics and System Health Management Conference (PHM), Beijing, China, 21–23 October 2015. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L. A New Transfer Learning Based on VGG-19 Network for Fault Diagnosis. In Proceedings of the 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Porto, Portugal, 6–8 May 2019; pp. 205–209. [Google Scholar] [CrossRef]
- Grover, C.; Turk, N. A novel fault diagnostic system for rolling element bearings using deep transfer learning on bispectrum contour maps. Eng. Sci. Technol. Int. J. 2022, 31, 101049. [Google Scholar] [CrossRef]
- Kumar, P.; Hati, A.S.; Padmanaban, S.; Leonowicz, Z.; Chakrabarti, P. Amalgamation of Transfer Learning and Deep Convolutional Neural Network for Multiple Fault Detection in SCIM. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar] [CrossRef]
Fault Mode | Motor Load (rpm) | Image No. | Class Label |
---|---|---|---|
Normal motor | 1480/1380 | 250 | 1 |
IBF | 1480/1380 | 250 | 2 |
OBF | 1480/1380 | 250 | 3 |
BBF | 1480/1380 | 250 | 4 |
1BRBF | 1480/1380 | 250 | 5 |
5BRBF | 1480/1380 | 250 | 6 |
8BRBF | 1480/1380 | 250 | 7 |
IBF + 1BRBF | 1480/1380 | 250 | 8 |
OBF + 5BRBF | 1480/1380 | 250 | 9 |
BBF + 8BRBF | 1480/1380 | 250 | 10 |
Train the Model with VGG-19 | |||
---|---|---|---|
Score | Batch Size | Epochs | |
Specificity (%) | 99.9 | 64 | 40 |
Accuracy (%) | 99.8 | 64 | 40 |
Precision (%) | 98 | 64 | 40 |
Sensitivity (%) | 97.0 | 64 | 40 |
F1-score (%) | 94.2 | 64 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.; Anayi, F.; Packianather, M. New Transfer Learning Approach Based on a CNN for Fault Diagnosis. Eng. Proc. 2022, 24, 16. https://doi.org/10.3390/IECMA2022-12905
Ibrahim A, Anayi F, Packianather M. New Transfer Learning Approach Based on a CNN for Fault Diagnosis. Engineering Proceedings. 2022; 24(1):16. https://doi.org/10.3390/IECMA2022-12905
Chicago/Turabian StyleIbrahim, Alasmer, Fatih Anayi, and Michael Packianather. 2022. "New Transfer Learning Approach Based on a CNN for Fault Diagnosis" Engineering Proceedings 24, no. 1: 16. https://doi.org/10.3390/IECMA2022-12905
APA StyleIbrahim, A., Anayi, F., & Packianather, M. (2022). New Transfer Learning Approach Based on a CNN for Fault Diagnosis. Engineering Proceedings, 24(1), 16. https://doi.org/10.3390/IECMA2022-12905