Dimensional Precision of Plastic Gear Tooth Profiles Produced by 3D Printing †
Abstract
1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Three-Dimensional Modeling
2.3. Experimental Design
2.4. Three-Dimensional Printing
2.5. Coordinate Metrology
3. Results and Discussion
3.1. Data Fitting
3.2. Evaluation of the Steel Gear
3.3. Evaluation of the 3D-Printed Gears
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, P.K.; Siddhartha; Singh, A.K. An Investigation on the Thermal and Wear Behavior of Polymer Based Spur Gears. Tribol. Int. 2018, 118, 264–272. [Google Scholar] [CrossRef]
- Gears, Drives and Speed Changers—Global Strategic Business Report. Available online: https://www.researchandmarkets.com/Reports/338745/Gears_drives_and_speed_changers_global (accessed on 15 May 2025).
- Máté, M. Hengeres Fogaskerekek Gyártószerszámai; Műszaki Tudományos Füzetek; Erdélyi Múzeum-Egyesület: Kolozsvár, Romania, 2016; ISBN 978-606-739-070-4. [Google Scholar]
- Ribbens, W.B. Understanding Automotive Electronics: An Engineering Perspective, 8th ed.; Elsevier/Butterworth-Heinemann, an Imprint of Elsevier: Oxford, UK, 2017; ISBN 978-0-12-810434-7. [Google Scholar]
- Zhang, Y.; Mao, K.; Leigh, S.; Shah, A.; Chao, Z.; Ma, G. A Parametric Study of 3D Printed Polymer Gears. Int. J. Adv. Manuf. Technol. 2020, 107, 4481–4492. [Google Scholar] [CrossRef]
- Berman, B. 3-D Printing: The New Industrial Revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Taşcıoğlu, E.; Kıtay, Ö.; Keskin, A.Ö.; Kaynak, Y. Effect of Printing Parameters and Post-Process on Surface Roughness and Dimensional Deviation of PLA Parts Fabricated by Extrusion-Based 3D Printing. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 139. [Google Scholar] [CrossRef]
- Cappellini, C.; Borgianni, Y.; Maccioni, L.; Nezzi, C. The Effect of Process Parameters on Geometric Deviations in 3D Printing with Fused Deposition Modelling. Int. J. Adv. Manuf. Technol. 2022, 122, 1763–1803. [Google Scholar] [CrossRef]
- Egyed-Faluvégi, E.; Gál, K.; Farmos, R.-L.; Kántor, J.; Gergely, A. The Investigation of Dimensional, Form and Orientation Accuracy of Polymer Gears Prepared by Additive Manufacturing. MTK 2024, 20, 14–18. [Google Scholar] [CrossRef]
- Marciniec, A.; Budzik, G.; Dziubek, T. Automated Measurement of Bevel Gears of the Aircraft Gearbox Using GOM. J. KONES 2011, 18, 287–292. [Google Scholar]
- Lu, X.; Zhao, X.; Hu, B.; Zhou, Y.; Cao, Z.; Tang, J. A Measurement Solution of Face Gears with 3D Optical Scanning. Materials 2022, 15, 6069. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Wang, J.; Du, H.; Yin, P. High-Precision Measurement of Gear Tooth Profile Using Line Spectral Confocal Method. Measurement 2023, 223, 113779. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Tang, J.; Tang, K.; Li, Z. Digital Tooth Contact Analysis of Face Gear Drives with an Accurate Measurement Model of Face Gear Tooth Surface Inspected by CMMs. Mech. Mach. Theory 2022, 167, 104498. [Google Scholar] [CrossRef]
- ISO 1328-1:2013; Cylindrical Gears. ISO System of Flank Tolerance Classification Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth. International Organization for Standardization: Geneva, Switzerland, 2013.



| Printing Parameter | Low (−1) | Middle (0) | High (+1) |
|---|---|---|---|
| Layer thickness (mm) | 0.1 | 0.15 | 0.2 |
| Printing speed (mm/s) | 40 | 80 | 120 |
| Infill density | 10% | 30% | 50% |
| ID | Layer Thickness (mm) | Printing Speed (mm/s) | Infill | ID | Layer Thickness (mm) | Printing Speed (mm/s) | Infill |
|---|---|---|---|---|---|---|---|
| G01 | 0.15 | 120 | 50% | G09 | 0.15 | 80 | 30% |
| G02 | 0.1 | 120 | 30% | G10 | 0.2 | 120 | 30% |
| G03 | 0.15 | 80 | 30% | G11 | 0.15 | 120 | 10% |
| G04 | 0.2 | 80 | 10% | G12 | 0.15 | 80 | 30% |
| G05 | 0.1 | 80 | 10% | G13 | 0.15 | 40 | 10% |
| G06 | 0.2 | 80 | 50% | G14 | 0.2 | 40 | 30% |
| G07 | 0.15 | 40 | 50% | G15 | 0.1 | 40 | 30% |
| G08 | 0.1 | 80 | 50% | - | - | - | - |
| 1R | 2R | 1L | 3L | |
|---|---|---|---|---|
| Mean (mm) | 0.0702 | 0.0818 | 0.0944 | 0.0562 |
| Stdev (mm) | 0.0075 | 0.0117 | 0.0075 | 0.0121 |
| 1R | 2R | 1L | 3L | Combined | |
|---|---|---|---|---|---|
| R-squared (%) | 90.29 | 84.14 | 92.59 | 66.71 | 50.94 |
| R-sq. adj. (%) | 72.80 | 55.59 | 79.25 | 6.80 | 42.10 |
| p < 0.05 | L, S*S, L*I | S*S | S, S*S | - | S (0.001), S*S (0.000), L*I (0.005) |
| p < 0.15 | S*I | L, L*I | L, I, L*I | L*L | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egyed-Faluvégi, E.; Gergely, A.L.; Kántor, J. Dimensional Precision of Plastic Gear Tooth Profiles Produced by 3D Printing. Eng. Proc. 2025, 113, 38. https://doi.org/10.3390/engproc2025113038
Egyed-Faluvégi E, Gergely AL, Kántor J. Dimensional Precision of Plastic Gear Tooth Profiles Produced by 3D Printing. Engineering Proceedings. 2025; 113(1):38. https://doi.org/10.3390/engproc2025113038
Chicago/Turabian StyleEgyed-Faluvégi, Erzsébet, Attila Levente Gergely, and József Kántor. 2025. "Dimensional Precision of Plastic Gear Tooth Profiles Produced by 3D Printing" Engineering Proceedings 113, no. 1: 38. https://doi.org/10.3390/engproc2025113038
APA StyleEgyed-Faluvégi, E., Gergely, A. L., & Kántor, J. (2025). Dimensional Precision of Plastic Gear Tooth Profiles Produced by 3D Printing. Engineering Proceedings, 113(1), 38. https://doi.org/10.3390/engproc2025113038

