Timing Chain Test Bench Equipped with Hydraulic Chain Force Control †
Abstract
1. Introduction
2. Methodology
2.1. Function and Types of Chain Test Benches
2.2. Chain Test Bench with Hydraulic Chain Load Control
2.3. First Tests on the Chain Test Bench
2.4. Test Parameters
3. Results
3.1. Comparative Tests with Oil Used for 200 h in an Engine to New Oil
3.2. Comparative Tests with Diesel Soot and Carbon Black
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ljubas, D.; Krpan, H.; Matanovic, I. Influence of engine oils dilution by fuels on their viscosity, flash point and fire point. NAFTA 2010, 61, 73–79. [Google Scholar]
- ADDINOL. What Is Oil Dilution? Available online: https://addinol.de/en/products/lubricants-for-the-automotive-sector/engine-oil/oil-dilution/ (accessed on 9 May 2025).
- Zöldy, M.; Virt, M.; Lukács, K.; Szabados, G. A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine. Processes 2025, 13, 718. [Google Scholar] [CrossRef]
- Why Raising the Alcohol Content of Europe’s Fuels Could Reduce Carbon Emissions. Available online: https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/why-raising-alcohol-content-europes-fuels-could-reduce-carbon-emissions (accessed on 14 July 2024).
- Niethammer, B.; Wodarz, S.; Betz, M.; Haltenort, P.; Oestreich, D.; Hackbarth, K.; Arnold, U.; Otto, T.; Sauer, J. Alternative Liquid Fuels from Renewable Resources. Chem. Ing. Tech. 2018, 90, 99–112. [Google Scholar] [CrossRef]
- Schwarze, H.; Brouwer, L.; Knoll, G.; Kopnarski, M.; Schlerege, F.; Müller-Frank, U.; Emrich, S. Lubricant degradation and wear behaviour in a spark-ignition engine. MTZ Worldw. 2008, 69, 60–67. [Google Scholar] [CrossRef]
- Schwarze, H.; Brouwer, L.; Knoll, G.; Longo, C.; Kopnarski, M.; Emrich, S. Effect of ethanol fuel E85 on lubricant degradation and wear in spark-ignition engines. MTZ Worldw. 2010, 71, 56–61. [Google Scholar] [CrossRef]
- Gergye, T.; Dreyer, M.R.; Kehrwald, B.; Optatzy, W. Analysis of the Wear Behavior of Combustion Engine Components Using Radionuclide-Technique. In Lecture Notes in Electrical Engineering, Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27–30 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 189, pp. 171–181. [Google Scholar]
- Weber, C.; Herrmann, W.; Stadtmann, J. Experimental Investigation Into the Dynamic Engine Timing Chain Behaviour. SAE Transactions 1998, 107, 1319–1327. [Google Scholar]
- Paulovics, L.; Rohde-Brandenburger, J.; Tóth-Nagy, C. Timing chain wear investigation methods: Review. FME Trans. 2022, 50, 461–472. [Google Scholar] [CrossRef]
- Infineum. Timing Chain Wear. Available online: https://www.infineuminsight.com/en-gb/articles/passenger-cars/timing-chain-wear/ (accessed on 13 July 2024).
- Becker, A.; Krupp, F.; Sauer, B. Systematische Verschleißuntersuchungen an Kettenkomponenten. In Proceedings of the 58. Tribologie-Fachtagung (GfT), Göttingen, Germany, 25–27 September 2017. [Google Scholar]
- Gummer, A.; Fábián, C.; Sauer, B. Modular chain test bench for wear and efficiency testing. In Proceedings of the 52nd Tribology Conference—Friction, Lubrication, and Wear: Research and Practical Applications, Göttingen, Germany, 26–28 September 2011. (In German). [Google Scholar]
- Paulovics, L. Innovatív Módszerek Fejlesztése Vezérműláncok Kopásvizsgálatához (Innovative Methods for Wear Investigations on Timing Chains). Ph.D. Thesis, Széchenyi István Egyetem, Győr, Hungary, 2025. (In Hungarian). [Google Scholar]
- Németh, M. Timing-Chain Test Bench Development. Master’s Thesis, Széchenyi István Egyetem, Győr, Hungary, 2017. [Google Scholar]
- Paulovics, L.; Tabakov, Z.M.; Tóth-Nagy, C.; Rohde-Brandenburger, J.; Kuti, R. Comparison of Timing Chain Wear Produced on Engine Dynamometer and Tribometer Using 3D-scanning of Wear Scar. In Proceedings of the 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021), Online, 23–25 September 2021; pp. 485–490. [Google Scholar]
- Paulovics, L.; Kuti, R.; Rohde-Brandenburger, J.; Tóth-Nagy, C. Development of comparative investigation method for timing chain wear analysis using oscillating tribometer. Acta Tech. Jaurinensis 2021, 14, 406–423. [Google Scholar] [CrossRef]




| Rotational Speed [rpm] | Chain Speed [m/s] | Load [N] | Duration [h] | Oil Volume Flow per Chain [l/min] | Oil Temperature [°C] |
|---|---|---|---|---|---|
| 1000 | 5.72 | 500 | 50 | 0.25 | 100 |
| Chain Nr. | 1. | 3. | 4. | 10. |
|---|---|---|---|---|
| oil age | new | new | 200 h | 200 h |
| soot content [m/m%] | 0 | 0 | 2.95 | 2.95 |
| axis distance difference [mm] | <0.01 | <0.01 | 0.425 | 0.455 |
| total chain elongation [mm] | <0.024 | <0.024 | 1.027 | 1.010 |
| relative chain elongation [%] | <0.0015 | <0.0015 | 0.062 | 0.066 |
| elongation per joint [μm] | <0.14 | <0.14 | 5.902 | 6.319 |
| wear speed [nm/h] | <2.8 | <2.8 | 118 | 126 |
| Chain Nr. | 5. | 6. | 2. | 8. | 7. | 9. |
|---|---|---|---|---|---|---|
| oil age | new | new | new | new | 200 h | 200 h |
| soot type | CB | CB | CB | CB | Diesel | Diesel |
| soot content [m/m%] | 1.5 | 1.5 | 3 | 3 | 2.95 | 2.95 |
| axis distance difference [mm] | 0.615 | 0.61 | 0.75 | 0.8 | 0.375 | 0.395 |
| total chain elongation [mm] | 1.486 | 1.474 | 1.812 | 1.933 | 0.906 | 0.955 |
| relative chain elongation [%] | 0.090 | 0.089 | 0.109 | 0.117 | 0.055 | 0.058 |
| elongation per joint [μm] | 8.541 | 8.471 | 10.415 | 11.110 | 5.208 | 5.486 |
| wear speed [nm/h] | 342 | 339 | 417 | 444 | 208 | 219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulovics, L.; Boros, L.; Tóth-Nagy, C. Timing Chain Test Bench Equipped with Hydraulic Chain Force Control. Eng. Proc. 2025, 113, 29. https://doi.org/10.3390/engproc2025113029
Paulovics L, Boros L, Tóth-Nagy C. Timing Chain Test Bench Equipped with Hydraulic Chain Force Control. Engineering Proceedings. 2025; 113(1):29. https://doi.org/10.3390/engproc2025113029
Chicago/Turabian StylePaulovics, László, László Boros, and Csaba Tóth-Nagy. 2025. "Timing Chain Test Bench Equipped with Hydraulic Chain Force Control" Engineering Proceedings 113, no. 1: 29. https://doi.org/10.3390/engproc2025113029
APA StylePaulovics, L., Boros, L., & Tóth-Nagy, C. (2025). Timing Chain Test Bench Equipped with Hydraulic Chain Force Control. Engineering Proceedings, 113(1), 29. https://doi.org/10.3390/engproc2025113029

