Synthesis, Insecticidal Activity and Nanoencapsulation Studies of Alkoxy Alcohols from Eugenol †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Alkoxy Alcohols from Eugenol Oxirane
2.2. Toxicity of Alkoxy Alcohols Eugenol Derivatives
2.3. Nanoencapsulation Studies
3. Experimental
3.1. Extraction of Eugenol 1 from Syzygium Aromaticum
3.2. Synthesis of 2-methoxy-4-(oxiran-2-ylmethyl)phenol 2
3.3. General Procedure for Synthesizing Compounds 3a–c (Illustrated for 3c)
3.4. Insecticidal Studies
3.4.1. Cell Culture
3.4.2. Viability Assessment
3.5. Nanoencapsulation Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Areco, V.A.; Zygaldo, J.A. Terpenes: Natural products for controlling insects of importance to human health—A structure-activity relationship study. Psyche A J. Entomol. 2016, 2, 4595823. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Silva, F.F.M.; Monte, F.J.Q.; Lemos, T.L.G.; Nascimento, P.G.G.; Costa, A.K.M.; Paiva, L.M.M. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem. Cent. J. 2018, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Agarwal, K.; Gupta, A.C.; Saxena, A.; Nooreen, Z.M.; Tandon, S.; Ahmad, A.; Bawankule, D.U. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Nat. Prod. Res. 2020, 34, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, T.S. The multiple faces of eugenol. A versatile starting material and building block for organic and bio-organic synthesis and a convenient precursos toward bio-based fine chemicals. J. Am. Chem. Soc. 2015, 26, 1055–1085. [Google Scholar] [CrossRef]
- Modjinou, T.; Versace, D.-L.; Abbad-Andaloussi, S.; Langlois, V.; Renard, E. Antibacterial and antioxidant photoinitiated epoxy co-networks of resorcinol and eugenol derivatives. Mater. Today Commun. 2017, 12, 19–28. [Google Scholar] [CrossRef]
- Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.; Casabianca, H.; Mousadik, A.E.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A new window for safe application. J. Agri. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.J.G.; Pereira, R.B.; Pereira, D.M.; Fortes, A.G.; Castanheira, E.M.S.; Gonçalves, M.S.T. New eugenol derivatives with enhanced insecticidal activity. Int. J. Mol. Sci. 2020, 21, 9257. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.I.F.; Monteiro, M.; Araújo, A.R.L.; Rodrigues, A.R.O.; Castanheira, E.M.S.; Pereira, D.M.; Olim, P.; Fortes, A.G.; Gonçalves, M.S.T. Cytotoxic plant extracts towards insect cells: Bioactivity and nanoencapsulation studies for application as biopesticides. Molecules 2020, 25, 5855. [Google Scholar] [CrossRef] [PubMed]
- Natal, C.M.; Fernandes, M.J.G.; Pinto, N.F.S.; Pereira, R.B.; Vieira, T.F.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Fortes, A.G.; Castanheira, E.M.S.; et al. New carvacrol and thymol derivatives as potential insecticides: Synthesis, biological activity, computational studies and nanoencapsulation. RSC Adv. 2021, 11, 34024–34035. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.Y.; Bala, S.; Škalko-Basnet, N.; di Cagno, M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 2019, 138, 105026. [Google Scholar] [CrossRef] [PubMed]
System | Size ± SD (nm) | PDI ± SD | EE(%) ± SD |
---|---|---|---|
3c-loaded Egg-PC/Ch liposomes | 114.4 ± 2 | 0.27 ± 0.01 | 93.5 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, C.M.M.; Fernandes, M.J.G.; Pereira, D.M.; Pereira, R.B.; Fortes, A.G.; Gonçalves, M.S.T.; Castanheira, E.M.S. Synthesis, Insecticidal Activity and Nanoencapsulation Studies of Alkoxy Alcohols from Eugenol. Chem. Proc. 2022, 8, 103. https://doi.org/10.3390/ecsoc-25-11788
Coelho CMM, Fernandes MJG, Pereira DM, Pereira RB, Fortes AG, Gonçalves MST, Castanheira EMS. Synthesis, Insecticidal Activity and Nanoencapsulation Studies of Alkoxy Alcohols from Eugenol. Chemistry Proceedings. 2022; 8(1):103. https://doi.org/10.3390/ecsoc-25-11788
Chicago/Turabian StyleCoelho, Catarina M. M., Maria José G. Fernandes, David M. Pereira, Renato B. Pereira, A. Gil Fortes, M. Sameiro T. Gonçalves, and Elisabete M. S. Castanheira. 2022. "Synthesis, Insecticidal Activity and Nanoencapsulation Studies of Alkoxy Alcohols from Eugenol" Chemistry Proceedings 8, no. 1: 103. https://doi.org/10.3390/ecsoc-25-11788
APA StyleCoelho, C. M. M., Fernandes, M. J. G., Pereira, D. M., Pereira, R. B., Fortes, A. G., Gonçalves, M. S. T., & Castanheira, E. M. S. (2022). Synthesis, Insecticidal Activity and Nanoencapsulation Studies of Alkoxy Alcohols from Eugenol. Chemistry Proceedings, 8(1), 103. https://doi.org/10.3390/ecsoc-25-11788