Evaluating a Novel Theoretical Strategy for the Screening DES(s) for Potential Application in EOR Processes Using Quantum Mechanics Calculations †
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Evaluation of DES–Oil–Rock–Water Interactions as Molecular Descriptors for EOR Performance
3.2. Interaction of the Reservoir Species with DESs Using DFT Calculation
3.3. Screening of the Different DESs for EOR Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-hoshoudy, A.N.; Soliman, F.S.; Mansour, E.M.; Zaki, T.; Desouky, S.M. Experimental and theoretical investigation of quaternary ammonium-based deep eutectic solvent for secondary water flooding. J. Mol. Liq. 2019, 294, 111621. [Google Scholar] [CrossRef]
- Sanati, A.; Malayeri, M.R.; Busse, O.; Weigand, J.J. Utilization of ionic liquids and deep eutectic solvents in oil operations: Progress and challenges. J. Mol. Liq. 2022, 361, 119641. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Thakur, R.C.; Singh, L. An overview of deep eutectic solvents: Alternative for organic electrolytes, aqueous systems & ionic liquids for electrochemical energy storage. J. Energy Chem. 2023, 82, 592–626. [Google Scholar] [CrossRef]
- Atilhan, M.; Aparicio, S. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. J. Pet. Sci. Eng. 2021, 205, 108746. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Al-Wahaibi, Y.; Al-Hajri, R.; Jibril, B. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement. J. Pet. Sci. Eng. 2015, 133, 114–122. [Google Scholar] [CrossRef]
- Shuwa, S.M.; Jibril, B.Y.; Al-Wahaibi, Y.M.; Al-Hajri, R.S. Heavy-Oil-Recovery Enhancement With Choline Chloride/Ethylene Glycol-Based Deep Eutectic Solvent. SPE J. 2015, 20, 79–87. [Google Scholar] [CrossRef]
- Al-Wahaibi, I.; Al-Wahaibi, Y.; Al-Hajri, R.; Jibril, B.; Shuwa, S. The novel use of malonic acid-based deep eutectic solvents for enhancing heavy oil recovery. Int. J. Oil Gas Coal Technol. 2019, 20, 31–54. [Google Scholar] [CrossRef]
- Hadj-Kali, M.K.; Al-khidir, K.E.; Wazeer, I.; El-blidi, L.; Mulyono, S.; AlNashef, I.M. Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery. Colloids Surf. Physicochem. Eng. Asp. 2015, 487, 221–231. [Google Scholar] [CrossRef]
- Uzochukwu, M.I.; Oyegoke, T.; Momoh, R.O.; Isa, M.T.; Shuwa, S.M.; Jibril, B.Y. Computational insights into deep eutectic solvent design: Modeling interactions and thermodynamic feasibility using choline chloride & glycerol. Chem. Eng. J. Adv. 2023, 16, 100564. [Google Scholar] [CrossRef]
- Santra, M.; Kunzru, D.; Rabari, D. A stability analysis of choline chloride: Urea deep eutectic solvent using density functional theory. Comput. Theor. Chem. 2022, 1217, 113921. [Google Scholar] [CrossRef]
Descriptions | Code/Symbol | DFT-E (eV) | Structure |
---|---|---|---|
CHL-GLC | OH-H-HO | −30,855.21 | |
CHL-EGL | Cl-HO-H | −27,738.32 | |
CHL-URE | Cl-H | −27,603.00 | |
Silicate (Straight) | Ss | −11,971.06 | |
Silicate (Triangular) | St | −11,968.92 | |
Oil Model (Pentane) | C5 | −5381.64 | |
Oil Model (Benzene) | BZ | −6319.81 | |
Water | W | −2079.19 | |
Sodium Chloride (Brine) | Br | −16,939.80 |
Label | E (eV) | BE-C5 (eV) | BE-BZ (eV) | BE-Ss (eV) | BE-St (eV) |
---|---|---|---|---|---|
CHL-EGL[Ss] | −2.52 | - | - | −0.02 | - |
CHL-EGL[Ss][1] | 0.11 | - | - | 2.61 | - |
CHL-EGL[Ss][2] | 5.27 | - | - | 7.77 | - |
CHL-EGL[Ss][3] | 8.10 | - | - | 10.6 | - |
CHL-EGL[St] | 0.64 | - | - | - | 0.39 |
CHL-EGL[St][1] | −1.78 | - | - | - | −2.03 |
CHL-EGL[St][2] | 2.70 | - | - | - | 2.45 |
CHL-EGL[St][3] | 0.97 | - | - | - | 0.72 |
CHL-EGL[C5] | 0.05 | 0.17 | - | - | - |
CHL-EGL[C5][1] | 1.18 | 1.3 | - | - | - |
CHL-EGL[C5][2] | 2.58 | 2.7 | - | - | - |
CHL-EGL[C5][3] | 3.84 | 3.96 | - | - | - |
CHL-EGL[BZ] | 2.31 | - | −0.06 | - | - |
CHL-EGL[BZ][1] | 3.7 | - | 1.32 | - | - |
CHL-EGL[BZ][2] | 5.24 | - | 2.87 | - | - |
CHL-EGL[BZ][3] | 12.38 | - | 10 | - | - |
CHL-EGL[BZ][4] | 8.33 | - | 5.95 | - | - |
Overall/CHL-EGL | - | 0.17 | −0.06 | −0.02 | −2.03 |
Label | Interact | E (eV) | BE-BZ (eV) | BE-St (eV) | BE-St/BZ (eV) | BE-St/W(eV) | BE-Brine/BZ |
---|---|---|---|---|---|---|---|
CL-HO-H | DES | −27,738.32 | - | - | - | - | |
CL-HO-H[BZ] | DES-BZ | −34,058.13 | 0.00 | - | - | - | |
SiO2s | Ss | −11,971.06 | - | - | - | - | |
SiO2t | St | −11,968.92 | - | - | - | - | |
C5 | C5 | −5381.64 | - | - | - | - | |
SiO2t[BZ] | St-BZ | −18,288.69 | - | - | 0.05 | - | |
Benzene | BZ | −6319.81 | - | - | - | - | |
Water | W | −2079.19 | - | - | - | - | |
NaCl | Brine | −16,939.80 | |||||
St[water][3] | Ss-W | −14,048.52 | - | - | - | −0.41 | |
NaCl[BZ] | Brine-BZ | −23,257.02 | −0.58 | ||||
CL-HO-H[St][1] | DES-St | −39,708.52 | - | −1.28 | - | - |
Label | E (eV) | BE-C5 (eV) | BE-BZ (eV) | BE-Ss (eV) | BE-St (eV) |
---|---|---|---|---|---|
CHL-GLC[Ss] | −8.08 | - | - | 0.63 | - |
CHL-GLC[Ss][1] | −1.94 | - | - | 6.76 | - |
CHL-GLC[Ss][2] | −4.82 | - | - | 3.89 | - |
CHL-GLC[Ss][3] | −4.89 | - | - | 3.82 | - |
CHL-GLC[St] | −6.13 | - | - | - | −0.17 |
CHL-GLC[St][1] | −4 | - | - | - | 1.96 |
CHL-GLC[St][2] | −5.53 | - | - | - | 0.42 |
CHL-GLC[St][3] | −2.6 | - | - | - | 3.36 |
CHL-GLC[C5] | −6.74 | −0.42 | - | - | - |
CHL-GLC[C5][1] | −5.68 | 0.65 | - | - | - |
CHL-GLC[C5][2] | −4.94 | 1.38 | - | - | - |
CHL-GLC[C5][3] | −5.09 | 1.24 | - | - | - |
CHL-GLC[BZ] | −4.35 | - | −0.52 | - | - |
CHL-GLC[BZ][1] | 1.89 | - | 5.72 | - | - |
CHL-GLC[BZ][2] | −3.44 | - | 0.39 | - | - |
CHL-GLC[BZ][3] | 4.61 | - | 8.44 | - | - |
Overall | - | −0.42 | −0.52 | 0.63 | −0.17 |
Label | Interact | E (eV) | BE-BZ (eV) | BE-St (eV) | BE-St/BZ (eV) | BE-St/Water (eV) | BE-Brine/BZ |
---|---|---|---|---|---|---|---|
OH-H-HO[St] | St | −42,825.3 | - | −1.17 | - | - | - |
OH-H-HO | des | −30,855.21 | - | - | - | - | - |
OH-H-HO[BZ] | BZ | −37,175.18 | −0.16 | - | - | - | - |
SiO2s | Ss | −11,971.06 | - | - | - | - | - |
SiO2t | St | −11,968.92 | - | - | - | - | - |
C5 | C | −5381.64 | - | - | - | - | - |
Benzene | BZ | −6319.81 | - | - | - | - | |
Water | W | −2079.19 | - | - | - | - | - |
SiO2t[benzene] | St-BZ | −18,288.69 | - | - | 0.05 | - | - |
SiO2t[water][3] | Ss-W | −14,048.52 | - | - | - | −0.41 | - |
NaCl | Brine | −16,939.80 | - | - | - | - | - |
NaCl[BZ] | Brine-BZ | −23,257.02 | - | - | - | - | −0.58 |
Label | E (eV) | BE-C5 (eV) | BE-BZ (eV) | BE-Ss (eV) | BE-St (eV) |
---|---|---|---|---|---|
CHL-URE[Ss] | −0.88 | - | - | 1.44 | - |
CHL-URE[Ss][1] | 3.56 | - | - | 5.88 | - |
CHL-URE[Ss][2] | −1.67 | - | - | 0.65 | - |
CHL-URE[Ss][3] | 3.25 | - | - | 5.57 | - |
CHL-URE[Ss][4] | 5.1 | - | - | 7.42 | - |
CHL-URE[Ss][5] | 2.6 | - | - | 4.92 | - |
CHL-URE[St] | 0.3 | - | - | - | −0.13 |
CHL-URE[St][1] | −0.65 | - | - | - | −1.08 |
CHL-URE[St][2] | 0.53 | - | - | - | 0.1 |
CHL-URE[St][3] | 2.82 | - | - | - | 2.38 |
CHL-URE[C5] | 0.05 | −0.01 | - | - | - |
CHL-URE[C5][1] | 2.29 | 2.23 | - | - | - |
CHL-URE[C5][2] | 1.04 | 0.98 | - | - | - |
CHL-URE[C5][3] | 3.1 | 3.04 | - | - | - |
CHL-URE[BZ] | 2.53 | - | −0.03 | - | - |
CHL-URE[BZ][1] | 5.17 | - | 2.62 | - | - |
CHL-URE[BZ][2] | 3.59 | - | 1.03 | - | - |
CHL-URE[BZ][3] | 8.74 | - | 6.18 | - | - |
CHL-URE[BZ][4] | 11.43 | - | 8.87 | - | - |
Overall | - | −0.01 | −0.03 | 0.65 | −1.08 |
Label | Interact | E (eV) | BE-BZ (eV) | BE-St (eV) | BE-St/BZ (eV) |
---|---|---|---|---|---|
Cl-H[St][1] | St | −39,573.28 | - | −1.36 | - |
Cl-H | DES | −27,603 | - | - | - |
Cl-H[BZ] | B | −33,922.91 | −0.1 | - | - |
SiO2t | St | −11,968.92 | - | - | - |
Benzene | BZ | −6319.81 | - | - | - |
SiO2t[BZ] | St-B | −18,288.69 | - | - | 0.05 |
DES | DES/Oil (eV) | St/Oil (eV) | DES/St (eV) | W/St (eV) | St/DES (eV) | Oil/St (eV) | DES/Oil (eV) | Oil/Brine (eV) |
---|---|---|---|---|---|---|---|---|
CHL-URE | −0.10 | 0.05 | −1.36 | −0.41 | −1.36 | 0.05 | −0.16 | −0.58 |
CHL-GLC | −0.16 | 0.05 | −1.17 | −0.41 | −1.17 | 0.05 | 0 | −0.58 |
CHL-EGL | 0.00 | 0.05 | −1.28 | −0.41 | −1.28 | 0.05 | −0.1 | −0.58 |
DES | DES/Oil > St/Oil | DES/St < W/St | St/DES > Oil/St | DES/Oil < Oil/Brine |
---|---|---|---|---|
CHL-URE | −0.10 > 0.05 | −1.36 > −0.41 | −1.36 > 0.05 | −0.1 < −0.58 |
CHL-GLC | −0.16 > 0.05 | −1.17 > −0.41 | −1.17 > 0.05 | −0.16 < −0.58 |
CHL-EGL | 0.00 > 0.05 | −1.28 > −0.41 | −1.28 > 0.05 | 0 < −0.58 |
DES | EXPT.IFT (mN/m) | EXPT.ADS (mg/g) | EXPT.AOR (%) | Reference |
---|---|---|---|---|
CHL-URE | 4.3 | 9.5 | 25 | [1] |
CHL-GLC | 1.52 | 10.5 | 22 | [1] |
CHL-EGL | 5 | 8.5 | 15 | [1] |
DES | DES/Oil > St/Oil | DES/St < W/St | DES/St > St/Oil | DES/Oil < Brine/Oil |
---|---|---|---|---|
CHL-URE | 3.00 | −2.32 | 28.20 | 0.83 |
CHL-GLC | 4.20 | −1.85 | 24.40 | 0.73 |
CHL-EGL | 1.00 | −2.12 | 26.60 | 1.00 |
SUM | 8.20 | −6.29 | 79.20 | 2.55 |
DES | DES/Oil > St/Oil | DES/St < W/St | DES/St > St/Oil | DES/Oil < Brine/Oil | AVG-RECOVERY |
---|---|---|---|---|---|
CHL-URE | 0.37 | 0.32 | 0.36 | 0.32 | 0.34 |
CHL-GLC | 0.51 | 0.35 | 0.31 | 0.28 | 0.36 |
CHL-EGL | 0.12 | 0.33 | 0.34 | 0.39 | 0.30 |
SUM | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EXPT.IFT | EXPT.ADS | EXPT.AOR | ||
---|---|---|---|---|
AVG/X | −0.87 | 0.98 | 0.80 | AVG |
COL1/X | −0.89 | 0.99 | 0.78 | d/oil > s/oil |
COL2/X | −0.81 | 0.58 | −0.20 | d/s < w/s |
COL3/X | 0.81 | −0.58 | 0.20 | d/s > s/oil |
COL4/X | 0.89 | −0.99 | −0.78 | d/oil < b/oil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzochukwu, M.I.; Oyegoke, T.; Momoh, R.O.; Isa, M.T.; Shuwa, S.M.; Jibril, B.Y. Evaluating a Novel Theoretical Strategy for the Screening DES(s) for Potential Application in EOR Processes Using Quantum Mechanics Calculations. Chem. Proc. 2023, 14, 86. https://doi.org/10.3390/ecsoc-27-16040
Uzochukwu MI, Oyegoke T, Momoh RO, Isa MT, Shuwa SM, Jibril BY. Evaluating a Novel Theoretical Strategy for the Screening DES(s) for Potential Application in EOR Processes Using Quantum Mechanics Calculations. Chemistry Proceedings. 2023; 14(1):86. https://doi.org/10.3390/ecsoc-27-16040
Chicago/Turabian StyleUzochukwu, Maryann I., Toyese Oyegoke, Raheem O. Momoh, Muhammed T. Isa, Suleiman M. Shuwa, and Baba Y. Jibril. 2023. "Evaluating a Novel Theoretical Strategy for the Screening DES(s) for Potential Application in EOR Processes Using Quantum Mechanics Calculations" Chemistry Proceedings 14, no. 1: 86. https://doi.org/10.3390/ecsoc-27-16040
APA StyleUzochukwu, M. I., Oyegoke, T., Momoh, R. O., Isa, M. T., Shuwa, S. M., & Jibril, B. Y. (2023). Evaluating a Novel Theoretical Strategy for the Screening DES(s) for Potential Application in EOR Processes Using Quantum Mechanics Calculations. Chemistry Proceedings, 14(1), 86. https://doi.org/10.3390/ecsoc-27-16040