Effect of Soil Practice on Photosynthesis, Yield and Quality of Soyabean (Glycine max (L.) Merr.) †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houx, J.H.; Wiebold, W.J.; Fritschi, F.B. Rotation and tillage affect soybean grain composition, yield, and nutrient removal. Field Crops Res. 2014, 64, 12–21. [Google Scholar] [CrossRef]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and economic effectiveness of soybean grown under different cropping systems. Int. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Farmaha, S.B.; Fernández, G.F.; Nafziger, D.E. No-till and strip-till soybean Production with surface and subsurface phosphorus and potassium fertilization. Agron. J. 2011, 103, 1862–1869. [Google Scholar] [CrossRef]
- Samarah, N.; Mullen, R.; Cianzio, S. Size distribution and mineral nutrients of soybean seeds in response to drought stress. J. Plant Nutr. 2004, 27, 815–835. [Google Scholar] [CrossRef]
- Piper, E.L.; Boote, K.J. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am. Oil Chem. Soc. 1999, 76, 1233–1242. [Google Scholar] [CrossRef]
- Thiagalingam, K.; Gould, N.; Watson, P. Effect of tillage on rainfed maize and soybean yield and the nitrogen fertilizer requirements for maize. Soil Tillage Res. 1991, 19, 47–54. [Google Scholar] [CrossRef]
- Monsefi, A.; Sharma, A.R.; Rang Zan, N.; Behera, U.K.; Das, T.K. Effect of tillage and residue management on productivity of soybean and physic–chemical properties of soil in soybean– wheat cropping system. Int. J. Plant Prod. 2014, 8, 429–440. [Google Scholar]
- Adamič, S.; Leskovšek, R. Soybean (Glycine max (L.) Merr.) Growth yield and nodulation in the early transition period from conventional tillage to conservation and no-tillage systems. Agronomy 2021, 11, 2477. [Google Scholar] [CrossRef]
- Sobko, O.; Hartung, J.; Zikeli, S.; Claupein, W.; Gruber, S. Effect of sowing density on grain yield, protein and oil content and plant morphology of soybean (Glycine max L. Merrill). Plant Soil Environ. 2019, 65, 594–601. [Google Scholar] [CrossRef] [Green Version]
- FAO. Reference Base for Soil Resources 2014, Update 2015; Word Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; pp. 172–173. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Meier, U. (Ed.) Growth Stages of Mono- and Dicotyledonous Plants. In BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany, 2001; pp. 1–204. [Google Scholar]
- Hussain, S.; Iqbal, N.; Brestic, M.; Raza, M.A.; Pang, T.; Langham, D.R.; Safdar, M.E.; Ahmeda, S.; Wena, B.; Gao, Y.; et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci. Total Environ. 2019, 658, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.H.B.; Raza, M.A.; Yu, H.Q.; Sun, F.A.; Zhang, Y.Y.; Lu, F.Z.; Si, L.; Iqbal, N.; Khan, I.; Fu, F.L.; et al. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Appl. Ecol. Environ. Res. 2019, 17, 2551–2569. [Google Scholar] [CrossRef]
- Biel, W.; Gawęda, D.; Łysoń, E.; Hury, G. Effect of variety and agrotechnical factors on nutritive value of soybean seeds. Acta Agrophys. 2017, 24, 395–404. [Google Scholar]
- Szostak, B.; Głowacka, A.; Klebaniuk, R.; Kiełtyka-Dadasiewicz, A. Mineral composition of traditional non-GMO soybean cultivars in relation to nitrogen fertilization. Sci. World J. 2020, 2020, 9374564. [Google Scholar] [CrossRef] [PubMed]
Years | P | K | Mg | Fe | Zn | Mn | Cu |
---|---|---|---|---|---|---|---|
[mg kg−1] | |||||||
2017 | 203.0 | 274.1 | 26.2 | 2277.0 | 13.8 | 398.0 | 6.1 |
2018 | 130.2 | 181.0 | 51.2 | 2514.0 | 13.9 | 252.1 | 6.3 |
2019 | 74.0 | 251.2 | 55.7 | 2219.0 | 12.7 | 262.8 | 6.8 |
Year | Month | Mean | |||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | September | ||
2017 | 1.25 rd | 1.00 d | 0.38 ed | 0.61 vd | 0.23 ed | 0.37 ed | 0.65 vd |
2018 | 0.21 ed | 1.30 rd | 0.95 d | 1.87 rh | 0.65 vd | 0.36 ed | 0.89 d |
2019 | 1.74 rh | 2.60 vh | 0.98 d | 0.68 vd | 0.85 d | 0.92 d | 1.30 rd |
long term | 1.76 rh | 1.85 rh | 1.60 o | 1.58 o | 1.25 rd | 1.00 d | 1.51 o |
Specification | SPAD | LAI | Fv/Fm | Fv/F0 | PI |
---|---|---|---|---|---|
Tillage (T) | |||||
CT | 47.3 a | 5.62 a | 0.764 a | 3.44 a | 5.54 a |
RT | 44.1 b | 4.89 b | 0.762 a | 3.37 a | 5.28 a |
NT | 42.2 b | 5.08 b | 0.731 a | 3.03 b | 4.22 b |
Year (Y) | |||||
2017 | 40.3 b | 4.99 b | 0.766 a | 2.42 b | 4.49 b |
2018 | 42.9 b | 5.19 ab | 0.701 a | 3.63 a | 5.11 b |
2019 | 50.3 a | 5.41 a | 0.791 a | 3.79 a | 5.44 a |
ANOVA | |||||
T | *** | ** | ns | * | * |
Y | * | * | ns | * | * |
C × Y | *** | ns | ns | ** | ** |
Specification | Protein Content (% DM) | Protein Yield (kg ha−1) | Fat Content (% DM) | Fat Yield (kg ha−1) | Seed Yield (t ha−1) |
---|---|---|---|---|---|
Tillage (T) | |||||
CT | 34.1 a | 1179.0 a | 22.8 b | 794.0 a | 3.47 a |
RT | 34.5 a | 1080.9 ab | 22.4 b | 705.6 a | 3.14 b |
NT | 32.6 b | 998.8 b | 24.4 a | 755.3 a | 3.08 b |
Year (Y) | |||||
2017 | 35.7 a | 1036.8 a | 22.1 c | 640.5 b | 2.90 c |
2018 | 33.9 b | 1075.0 a | 23.4 b | 739.3 ab | 3.17 b |
2019 | 31.6 c | 1146.8 a | 24.2 a | 875.1 a | 3.62 a |
ANOVA | |||||
T | ** | ** | ** | ns | *** |
Y | *** | ns | * | ** | *** |
C × Y | ns | ns | ** | ns | ** |
Specification | P | K | Ca | Mg | Fe | Cu | Mn | Zn |
---|---|---|---|---|---|---|---|---|
[g kg−1 DM] | [mg kg−1 DM] | |||||||
Tillage (T) | ||||||||
CT | 6.3 a | 15.0 b | 0.8 a | 2.0 a | 115.4 a | 20.9 a | 21.5 a | 52.1 a |
RT | 6.5 b | 18.2 a | 1.0 a | 2.4 a | 114.9 a | 20.1 a | 20.4 a | 50.3 a |
NT | 8.1 b | 14.8 b | 0.7 a | 2.1 a | 117.7 a | 19.8 a | 19.6 a | 49.9 a |
Year (Y) | ||||||||
2017 | 6.4 b | 14.6 b | 0.6 a | 1.5 a | 114.3 a | 26.9 a | 24.3 a | 57.9 a |
2018 | 7.0 b | 16.0 b | 0.8 a | 2.3 a | 117.4 a | 16.4 b | 20.4 b | 52.1 b |
2019 | 7.5 a | 17.5 a | 1.0 a | 2.6 a | 116.2 a | 17.4 b | 16.8 c | 42.3 c |
ANOVA | ||||||||
T | ** | ** | ns | ns | ns | ns | ns | ns |
Y | ** | ** | ns | ns | ns | ** | *** | *** |
C × Y | ns | ns | ns | ns | ns | ns | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buczek, J.; Jańczak-Pieniążek, M. Effect of Soil Practice on Photosynthesis, Yield and Quality of Soyabean (Glycine max (L.) Merr.). Chem. Proc. 2022, 10, 19. https://doi.org/10.3390/IOCAG2022-12210
Buczek J, Jańczak-Pieniążek M. Effect of Soil Practice on Photosynthesis, Yield and Quality of Soyabean (Glycine max (L.) Merr.). Chemistry Proceedings. 2022; 10(1):19. https://doi.org/10.3390/IOCAG2022-12210
Chicago/Turabian StyleBuczek, Jan, and Marta Jańczak-Pieniążek. 2022. "Effect of Soil Practice on Photosynthesis, Yield and Quality of Soyabean (Glycine max (L.) Merr.)" Chemistry Proceedings 10, no. 1: 19. https://doi.org/10.3390/IOCAG2022-12210
APA StyleBuczek, J., & Jańczak-Pieniążek, M. (2022). Effect of Soil Practice on Photosynthesis, Yield and Quality of Soyabean (Glycine max (L.) Merr.). Chemistry Proceedings, 10(1), 19. https://doi.org/10.3390/IOCAG2022-12210