Is the Presence of a Depressive Disorder a Risk Factor for Worse Metabolic Outcomes Among Patients with Type 2 Diabetes Treated with GLP-1 Analogs?
Abstract
1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Assessment of Depressive Syndrome or Clinically Significant Depressive Symptomatology
2.3. Sociodemographic and Clinical Parameters
2.4. Anthropometric Measures
2.5. Statistical Analysis
3. Results
Baseline Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nouwen, A.; Adriaanse, M.C.; van Dam, K.; Iversen, M.M.; Viechtbauer, W.; Peyrot, M.; Caramlau, I.; Kokoszka, A.; Kanc, K.; de Groot, M.; et al. Longitudinal associations between depression and diabetes complications: A systematic review and meta-analysis. Diabet. Med. 2019, 36, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Lloyd, C.E. Epidemiology of depression and diabetes: A systematic review. J. Affect. Disord. 2012, 142, S8–S21. [Google Scholar] [CrossRef]
- Fanelli, G.; Raschi, E.; Hafez, G.; Matura, S.; Schiweck, C.; Poluzzi, E.; Lunghi, C. The interface of depression and diabetes: Treatment considerations. Transl. Psychiatry 2025, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; de Groot, M.; Golden, S.H. Diabetes and depression. Curr. Diab. Rep. 2014, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhou, D.; Chen, L.; Hao, S. Depression and type 2 diabetes risk: A Mendelian randomization study. Front. Endocrinol. 2024, 15, 1436411. [Google Scholar] [CrossRef]
- Moulton, C.D.; Pickup, J.C.; Ismail, K. The link between depression and diabetes: The search for shared mechanisms. Lancet Diabetes Endocrinol. 2015, 3, 461–471. [Google Scholar] [CrossRef]
- Joseph, J.J.; Golden, S.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2017, 1391, 20–34. [Google Scholar] [CrossRef]
- Basiri, R.; Seidu, B.; Rudich, M. Exploring the Interrelationships between Diabetes, Nutrition, Anxiety, and Depression: Implications for Treatment and Prevention Strategies. Nutrients 2023, 15, 4226. [Google Scholar] [CrossRef]
- Khawagi, W.Y.; Al-Kuraishy, H.M.; Hussein, N.R.; Al-Gareeb, A.I.; Atef, E.; Elhussieny, O.; Alexiou, A.; Papadakis, M.; Jabir, M.S.; Alshehri, A.A.; et al. Depression and type 2 diabetes: A causal relationship and mechanistic pathway. Diabetes Obes. Metab. 2024, 26, 3031–3044. [Google Scholar] [CrossRef]
- Tabák, A.G.; Akbaraly, T.N.; Batty, G.D.; Kivimäki, M. Depression and type 2 diabetes: A causal association? Lancet Diabetes Endocrinol. 2014, 2, 236–245. [Google Scholar] [CrossRef]
- Gonzalez, J.S.; Peyrot, M.; McCarl, L.A.; Collins, E.M.; Serpa, L.; Mimiaga, M.J.; Safren, S.A. Depression and diabetes treatment nonadherence: A meta-analysis. Diabetes Care 2008, 31, 2398–2403. [Google Scholar] [CrossRef] [PubMed]
- Lustman, P.J.; Anderson, R.J.; Freedland, K.E.; de Groot, M.; Carney, R.M.; Clouse, R.E. Depression and poor glycemic control: A meta-analytic review of the literature. Diabetes Care 2000, 23, 934–942. [Google Scholar] [CrossRef]
- Lin, E.H.B.; Rutter, C.M.; Katon, W.; Heckbert, S.R.; Ciechanowski, P.; Oliver, M.M.; Ludman, E.J.; Young, B.A.; Williams, L.H.; McCulloch, D.K.; et al. Depression and advanced complications of diabetes: A prospective cohort study. Diabetes Care 2010, 33, 264–269. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, F.E.P.; Nefs, G.; Schram, M.T.; Verhey, F.R.J.; Denollet, J.; Pouwer, F. Depression and risk of mortality in people with diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2013, 8, e57058. [Google Scholar] [CrossRef] [PubMed]
- Fleetwood, K.J.; Wild, S.H.; Licence, K.A.M.; Mercer, S.W.; Smith, D.J.; Jackson, C.A.; Scottish Diabetes Research Network Epidemiology Group. Severe Mental Illness and Type 2 Diabetes Outcomes and Complications: A Nationwide Cohort Study. Diabetes Care 2023, 46, 1363–1371. [Google Scholar] [CrossRef]
- Schram, M.T.; Baan, C.A.; Pouwer, F. Depression and quality of life in patients with diabetes: A systematic review from the European depression in diabetes (EDID) research consortium. Curr. Diabetes Rev. 2009, 5, 112–119. [Google Scholar] [CrossRef]
- Detka, J.; Ślusarczyk, J.; Kurek, A.; Kucharczyk, M.; Adamus, T.; Konieczny, P.; Kubera, M.; Basta-Kaim, A.; Lasoń, W.; Budziszewska, B. Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line. Pharmacol. Rep. 2019, 71, 338–346. [Google Scholar] [CrossRef]
- Cooper, D.H.; Ramachandra, R.; Ceban, F.; Di Vincenzo, J.D.; Rhee, T.G.; Mansur, R.B.; Teopiz, K.M.; Gill, H.; Ho, R.; Cao, B.; et al. Glucagon-like peptide 1 (GLP-1) receptor agonists as a protective factor for incident depression in patients with diabetes mellitus: A systematic review. J. Psychiatr. Res. 2023, 164, 80–89. [Google Scholar] [CrossRef]
- Anderberg, R.H.; Richard, J.E.; Hansson, C.; Nissbrandt, H.; Bergquist, F.; Skibicka, K.P. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016, 65, 54–66. [Google Scholar] [CrossRef]
- Guerrero-Hreins, E.; Goldstone, A.P.; Brown, R.M.; Sumithran, P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: A review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 110, 110303. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, O.Y.; Song, J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front. Pharmacol. 2020, 11, 1270. [Google Scholar] [CrossRef]
- Yapici-Eser, H.; Appadurai, V.; Eren, C.Y.; Yazici, D.; Chen, C.-Y.; Öngür, D.; Pizzagalli, D.A.; Werge, T.; Hall, M.-H. Association between GLP-1 receptor gene polymorphisms with reward learning, anhedonia and depression diagnosis. Acta Neuropsychiatr. 2020, 32, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Zhang, S.; Huang, B.; Li, L.; Liang, H.; Ni, A.; Han, L.; Liang, P.; Liu, J.; Shi, H.; et al. Dulaglutide treatment reverses depression-like behavior and hippocampal metabolomic homeostasis in mice exposed to chronic mild stress. Brain Behav. 2024, 14, e3448. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.K.; Jeong, S.; Seog, D.-H.; Lee, J.A.; Lee, J.-H.; Lee, Y.; McIntyre, R.S.; Park, S.W.; Lee, J.G. Effects of liraglutide on depressive behavior in a mouse depression model and cognition in the probe trial of Morris water maze test. J. Affect. Disord. 2023, 324, 8–15. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, N.S.; O’Donovan, B.; Ortinski, P.I.; Schmidt, H.D. Activation of glucagon-like peptide-1 receptors in the nucleus accumbens attenuates cocaine seeking in rats. Addict. Biol. 2019, 24, 170–181. [Google Scholar] [CrossRef]
- Erbil, D.; Eren, C.Y.; Demirel, C.; Küçüker, M.U.; Solaroğlu, I.; Eser, H.Y. GLP-1’s role in neuroprotection: A systematic review. Brain Inj. 2019, 33, 734–819. [Google Scholar] [CrossRef]
- Zheng, H.; Reiner, D.J.; Hayes, M.R.; Rinaman, L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 2649–2663. [Google Scholar] [CrossRef]
- Clark-Elford, R.; Nathan, P.J.; Auyeung, B.; Voon, V.; Sule, A.; Müller, U.; Dudas, R.; Sahakian, B.J.; Phan, K.L.; Baron-Cohen, S. The effects of oxytocin on social reward learning in humans. Int. J. Neuropsychopharmacol. 2014, 17, 199–209. [Google Scholar] [CrossRef]
- Squire, P.; Naude, J.; Zentner, A.; Bittman, J.; Khan, N. Factors associated with weight loss response to GLP-1 analogues for obesity treatment: A retrospective cohort analysis. BMJ Open 2025, 15, e089477. [Google Scholar] [CrossRef]
T2DM and DD (n = 53) | T2DM Without DD (n = 62) | p | Cohen’s d | |
---|---|---|---|---|
Initial weight (kg) | 99.9 ± 26.5 | 94.8 ± 16.3 | 0.8 | 0.24 |
Initial BMI (kg/m2) | 37.1 ± 8.9 | 34.2 ± 4.8 | 0.09 | 0.41 |
Initial waist circumference (cm) | 114.8 ± 10.5 | 105.2 ± 8.6 | 0.001 | 1.01 |
BDI score | 16 ± 3.9 | 9.5 ± 3.1 | <0.0001 | 1.86 |
HbA1c (%) | 7.5 ± 1 | 6.9 ± 1.3 | 0.01 | 0.51 |
Fasting plasma glucose (mg/dL) | 154.4 ± 43.1 | 138.6 ± 40.7 | 0.02 | 0.38 |
Triglycerides (mg/dL) | 192.4 ± 137.7 | 135.9 ± 67.5 | 0.001 | 0.53 |
Total cholesterol (mg/dL) | 166.4 ± 39.3 | 161 ± 34.2 | 0.8 | 0.15 |
LDLc (mg/dL) | 98.8 ± 37.5 | 90.1 ± 37.1 | 0.2 | 0.23 |
HDLc (mg/dL) | 42.7 ± 11.2 | 42.7 ± 11.4 | 0.7 | 0.0 |
T2DM and DD (n = 53) | T2DM Without DD (n = 62) | p | Effect Size (OR (95%CI) or Cohen’s d) | |
---|---|---|---|---|
Female (%) | 50.9 | 27.4 | 0.01 | 2.77 (1.26–6.06) |
Age (years) | 61.8 ± 9.5 | 60.1 ± 12.3 | 0.7 | 0.15 |
T2DM duration (years) | 12.5 ± 9.9 | 9.9 ± 8.9 | 0.09 | 0.28 |
Tobacco use (%) | 11.3 | 7.5 | 0.5 | 1.51 (0.38–5.94) |
Alcohol (%) | 9.4 | 9.7 | 0.9 | 0.76 (0.20–2.86) |
Dyslipidemia (%) | 94.3 | 80.6 | 0.04 | 3.25 (0.99–10.67) |
Hypertension (%) | 98.1 | 79 | 0.001 | 7.44 (1.61–34.46) |
Retinopathy (%) | 17 | 10.7 | 0.3 | 1.91 (0.63–5.77) |
Nephropathy (%) | 26.4 | 6.5 | 0.004 | 4.71 (1.43–15.50) |
Cardiovascular disease (%) | 20.8 | 10.9 | 0.1 | 2.44 (0.84–7.14) |
Annual relevant hypoglycemia (%) | 12.1 | 8.1 | 0.2 | 1.46 (0.42–5.07) |
Admissions related to T2DM * | 6.5 | 1.1 | 0.1 | 7.44 (0.36–152.00) |
T2DM and DD (n = 53) | T2DM Without DD (n = 62) | p | Cohen’s d | |
---|---|---|---|---|
Final weight (kg) | 93.5 ± 25.8 | 89.8 ± 17.4 | 0.9 | 0.17 |
Final BMI (kg/m2) | 34.6 ± 7.9 | 32.3 ± 5 | 0.2 | 0.35 |
Final waist circumference (cm) | 109 ± 9.8 | 101 ± 9.1 | 0.001 | 0.85 |
EWL (%) | 6 ± 9.9 | 5.5 ± 6.5 | 0.4 | 0.06 |
Waist perimeter reduction (cm) | 5.1 ± 1.3 | 4.5 ± 1.5 | 0.1 | 0.43 |
Final HbA1c (%) | 7.2 ± 1 | 7 ± 0.7 | 0.01 | 0.23 |
Changes in HbA1c (%) | 0.2 ± 0.7 | 0.1 ± 0.5 | 0.8 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolau, J.; Sanchís, P.; Tamayo, M.I.; Pérez-Bec, G.; Sfondrini, G.; Grimalt, M.; Masmiquel, L. Is the Presence of a Depressive Disorder a Risk Factor for Worse Metabolic Outcomes Among Patients with Type 2 Diabetes Treated with GLP-1 Analogs? Diabetology 2025, 6, 68. https://doi.org/10.3390/diabetology6070068
Nicolau J, Sanchís P, Tamayo MI, Pérez-Bec G, Sfondrini G, Grimalt M, Masmiquel L. Is the Presence of a Depressive Disorder a Risk Factor for Worse Metabolic Outcomes Among Patients with Type 2 Diabetes Treated with GLP-1 Analogs? Diabetology. 2025; 6(7):68. https://doi.org/10.3390/diabetology6070068
Chicago/Turabian StyleNicolau, Joana, Pilar Sanchís, María Isabel Tamayo, Guadalupe Pérez-Bec, Guido Sfondrini, Mireia Grimalt, and Lluís Masmiquel. 2025. "Is the Presence of a Depressive Disorder a Risk Factor for Worse Metabolic Outcomes Among Patients with Type 2 Diabetes Treated with GLP-1 Analogs?" Diabetology 6, no. 7: 68. https://doi.org/10.3390/diabetology6070068
APA StyleNicolau, J., Sanchís, P., Tamayo, M. I., Pérez-Bec, G., Sfondrini, G., Grimalt, M., & Masmiquel, L. (2025). Is the Presence of a Depressive Disorder a Risk Factor for Worse Metabolic Outcomes Among Patients with Type 2 Diabetes Treated with GLP-1 Analogs? Diabetology, 6(7), 68. https://doi.org/10.3390/diabetology6070068