Coffee and Tea Consumption and Risk of Type 2 Diabetes in Older Australians
Abstract
1. Introduction
2. Method
2.1. Participants
2.2. Coffee and Tea Consumption Assessment
2.3. Ascertainment of T2DM
2.4. Measurement of Potential Confounders
2.5. Statistical Analysis
2.6. Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
3. Result
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed. Available online: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf (accessed on 28 November 2022).
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef]
- Sue Kirkman, M.; Briscoe, V.J.; Clark, N.; Florez, H.; Haas, L.B.; Halter, J.B.; Huang, E.S.; Korytkowski, M.T.; Munshi, M.N.; Odegard, P.S.; et al. Diabetes in Older Adults: A Consensus Report. J. Am. Geriatr. Soc. 2012, 60, 2342–2356. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.G.; Halter, J.B. The Pathophysiology of Hyperglycemia in Older Adults: Clinical Considerations. Diabetes Care 2017, 40, 444–452. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Bergman, B.C.; Brennan, A.M.; Sparks, L.M. Intermuscular adipose tissue in metabolic disease. Nat. Rev. Endocrinol. 2022, 19, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Pérez, R.C.; Aguilar-Salinas, C.A.; Gutiérrez-Robledo, L.M.; Cesari, M.; Pérez-Zepeda, M.U. Frailty, diabetes, and the convergence of chronic disease in an age-related condition: A population-based nationwide cross-sectional analysis of the Mexican nutrition and health survey. Aging Clin. Exp. Res. 2018, 30, 935–941. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, M.D.; Brayne, C.E.; Matthews, F.E. A systematic literature review of attrition between waves in longitudinal studies in the elderly shows a consistent pattern of dropout between differing studies. J. Clin. Epidemiol. 2005, 58, 13–19. [Google Scholar] [CrossRef]
- Dibartolo, M.C.; McCrone, S. Recruitment of rural community-dwelling older adults: Barriers, challenges, and strategies. Aging Ment. Health 2003, 7, 75–82. [Google Scholar] [CrossRef]
- Karagöz, M.F.; Koçyiğit, E.; Koçak, T.; Özturan Şirin, A.; Icer, M.A.; Ağagündüz, D.; Coreta-Gomes, F. Decoding coffee cardiometabolic potential: Chemical composition, nutritional, and health relationships. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13414. [Google Scholar] [CrossRef]
- Pourshahidi, L.K.; Navarini, L.; Petracco, M.; Strain, J.J. A Comprehensive Overview of the Risks and Benefits of Coffee Consumption. Compr. Rev. Food Sci. Food Saf. 2016, 15, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.-Y.; Li, Q.-S.; Lin, X.-M.; Qiao, R.-Y.; Yang, R.; Li, X.-M.; Dong, Z.-B.; Xiang, L.-P.; Zheng, X.-Q.; Lu, J.-L.; et al. Antidiabetic Effects of Tea. Molecules 2017, 22, 849. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef]
- Yang, W.-S.; Wang, W.-Y.; Fan, W.-Y.; Deng, Q.; Wang, X. Tea consumption and risk of type 2 diabetes: A dose–response meta-analysis of cohort studies. Br. J. Nutr. 2014, 111, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Cigolle, C.T.; Blaum, C.S.; Lyu, C.; Ha, J.; Kabeto, M.; Zhong, J. Associations of Age at Diagnosis and Duration of Diabetes With Morbidity and Mortality Among Older Adults. JAMA Netw. Open 2022, 5, e2232766. [Google Scholar] [CrossRef] [PubMed]
- Attebo, K.; Mitchell, P.; Smith, W. Visual Acuity and the Causes of Visual Loss in Australia: The Blue Mountains Eye Study. Ophthalmology 1996, 103, 357–364. [Google Scholar] [CrossRef]
- Mitchell, P.; Smith, W.; Wang, J.J.; Cumming, R.G.; Leeder, S.R.; Burnett, L. Diabetes in an older Australian population. Diabetes Res. Clin. Pract. 1998, 41, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sampson, L.; Browne, M.L.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. The use of a self-administered questionnaire to assess diet four years in the past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Wira, D.; Klimowicz, A. The Effect of Brewing Process Parameters on Antioxidant Activity and Caffeine Content in Infusions of Roasted and Unroasted Arabica Coffee Beans Originated from Different Countries. Molecules 2021, 26, 3681. [Google Scholar] [CrossRef]
- Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Brzezińska, R.; Kowalska, H. Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia sinensis. Molecules 2021, 26, 4773. [Google Scholar] [CrossRef]
- National Cancer Institute. Food Frequency Questionnaire at a Glance. Available online: https://dietassessmentprimer.cancer.gov/profiles/questionnaire/ (accessed on 6 January 2025).
- Smith, W.; Mitchell, P.; Reay, E.M.; Webb, K.; Harvey, P.W. Validity and reproducibility of a self-administered food frequency questionnaire in older people. Aust. N. Z. J. Public Health 1998, 22, 456–463. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Flood, V.M.; Smith, W.; Rochtchina, E.; Wang, J.J.; Mitchell, P. Assembling a nutrient database for a large cohort study: Blue Mountains Eye Study. Food Aust. 2008, 60, 37–40. [Google Scholar]
- Moshtaghian, H.; Louie, J.C.Y.; Charlton, K.E.; Probst, Y.C.; Gopinath, B.; Mitchell, P.; Flood, V.M. Trends in added sugar intake and food sources in a cohort of older Australians: 15 years of follow-up from the Blue Mountains Eye Study. J. Hum. Nutr. Diet. 2017, 30, 339–348. [Google Scholar] [CrossRef]
- Russell, J.C.; Flood, V.M.; Sadeghpour, A.; Gopinath, B.; Mitchell, P. Total Diet Score as a valid method of measuring diet quality among older adults. Asia Pac. J. Clin. Nutr. 2017, 26, 212–219. [Google Scholar] [CrossRef]
- Russell, J.; Flood, V.; Rochtchina, E.; Gopinath, B.; Allman-Farinelli, M.; Bauman, A.; Mitchell, P. Adherence to dietary guidelines and 15-year risk of all-cause mortality. Br. J. Nutr. 2013, 109, 547–555. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, 2013. [Google Scholar]
- Nordestgaard, A.T.; Thomsen, M.; Nordestgaard, B.G. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: A Mendelian randomization study. Int. J. Epidemiol. 2015, 44, 551–565. [Google Scholar] [CrossRef]
- Floegel, A.; Pischon, T.; Bergmann, M.M.; Teucher, B.; Kaaks, R.; Boeing, H. Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Germany study. Am. J. Clin. Nutr. 2012, 95, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Martin, S.; Kempf, K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-Analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef]
- Piers, L.S.; Soares, M.J.; McCormack, L.M.; O’Dea, K. Is there evidence for an age-related reduction in metabolic rate? J. Appl. Physiol. (1985) 1998, 85, 2196–2204. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef]
- Weinstein, J.R.; Anderson, S. The aging kidney: Physiological changes. Adv. Chronic Kidney Dis. 2010, 17, 302–307. [Google Scholar] [CrossRef]
- Stillhart, C.; Asteriadis, A.; Bocharova, E.; Eksteen, G.; Harder, F.; Kusch, J.; Tzakri, T.; Augustijns, P.; Matthys, C.; Vertzoni, M.; et al. The impact of advanced age on gastrointestinal characteristics that are relevant to oral drug absorption: An AGePOP review. Eur. J. Pharm. Sci. 2023, 187, 106452. [Google Scholar] [CrossRef]
- Tavassol, Z.H.; Ejtahed, H.S.; Atlasi, R.; Saghafian, F.; Khalagi, K.; Hasani-Ranjbar, S.; Siadat, S.D.; Nabipour, I.; Ostovar, A.; Larijani, B. Alteration in Gut Microbiota Composition of Older Adults Is Associated with Obesity and Its Indices: A Systematic Review. J. Nutr. Health Aging 2023, 27, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Ray, S.K.; Mukherjee, S. Evolving Interplay Between Dietary Polyphenols and Gut Microbiota—An Emerging Importance in Healthcare. Front. Nutr. 2021, 8, 634944. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef]
- Scott, M.B.; Styring, A.K.; McCullagh, J.S.O. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022, 11, 770. [Google Scholar] [CrossRef]
- Wong, T.H.T.; Sui, Z.; Rangan, A.; Louie, J.C.Y. Discrepancy in socioeconomic status does not fully explain the variation in diet quality between consumers of different coffee types. Eur. J. Nutr. 2018, 57, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Chasens, E.R.; Imes, C.C.; Kariuki, J.K.; Luyster, F.S.; Morris, J.L.; DiNardo, M.M.; Godzik, C.M.; Jeon, B.; Yang, K. Sleep and Metabolic Syndrome. Nurs. Clin. N. Am. 2021, 56, 203–217. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Tarhan, O.; Rezaei, A.; Capanoglu, E.; Boostani, S.; Khoshnoudi-Nia, S.; Samborska, K.; Garavand, F.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Crit. Rev. Food Sci. Nutr. 2022, 62, 6132–6152. [Google Scholar] [CrossRef]
- van de Langerijt, T.M.; O’Mahony, J.A.; Crowley, S.V. Structural, Binding and Functional Properties of Milk Protein-Polyphenol Systems: A Review. Molecules 2023, 28, 2288. [Google Scholar] [CrossRef]
- Gentilcore, D.; Chaikomin, R.; Jones, K.L.; Russo, A.; Feinle-Bisset, C.; Wishart, J.M.; Rayner, C.K.; Horowitz, M. Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2062–2067. [Google Scholar] [CrossRef] [PubMed]
- Keijzers, G.B.; De Galan, B.E.; Tack, C.J.; Smits, P. Caffeine Can Decrease Insulin Sensitivity in Humans. Diabetes Care 2002, 25, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Wedick, N.M.; Brennan, A.M.; Sun, Q.; Hu, F.B.; Mantzoros, C.S.; van Dam, R.M. Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: A randomized controlled trial. Nutr. J. 2011, 10, 93. [Google Scholar] [CrossRef]
- Alperet, D.J.; Rebello, S.A.; Khoo, E.Y.-H.; Tay, Z.; Seah, S.S.-Y.; Tai, B.-C.; Tai, E.S.; Emady-Azar, S.; Chou, C.J.; Darimont, C.; et al. The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: A randomized placebo-controlled trial. Am. J. Clin. Nutr. 2020, 111, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Ohnaka, K.; Ikeda, M.; Maki, T.; Okada, T.; Shimazoe, T.; Adachi, M.; Nomura, M.; Takayanagi, R.; Kono, S. Effects of 16-Week Consumption of Caffeinated and Decaffeinated Instant Coffee on Glucose Metabolism in a Randomized Controlled Trial. J. Nutr. Metab. 2012, 2012, 207426. [Google Scholar] [CrossRef]
- Wong, T.H.T.; Burlutsky, G.; Gopinath, B.; Flood, V.M.; Mitchell, P.; Louie, J.C.Y. The longitudinal association between coffee and tea consumption and the risk of metabolic syndrome and its component conditions in an older adult population. J. Nutr. Sci. 2022, 11, e79. [Google Scholar] [CrossRef]
- Harpaz, E.; Tamir, S.; Weinstein, A.; Weinstein, Y. The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Mancuso, P.; Bouchard, B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front. Endocrinol. 2019, 10, 137. [Google Scholar] [CrossRef]
- Yanagimoto, A.; Matsui, Y.; Yamaguchi, T.; Saito, S.; Hanada, R.; Hibi, M. Acute Dose-Response Effectiveness of Combined Catechins and Chlorogenic Acids on Postprandial Glycemic Responses in Healthy Men: Results from Two Randomized Studies. Nutrients 2023, 15, 777. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.W.; Hsu, A.; Tan, B.K.H. Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes. PLoS ONE 2012, 7, e32718. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Herling, A.W.; Preibisch, G.; Burger, H.-J. Upregulation of Hepatic Glucose 6-Phosphatase Gene Expression in Rats Treated with an Inhibitor of Glucose-6-phosphate Translocase. Arch. Biochem. Biophys. 2000, 373, 418–428. [Google Scholar] [CrossRef]
- Nie, J.; Yu, C.; Guo, Y.; Pei, P.; Chen, L.; Pang, Y.; Du, H.; Yang, L.; Chen, Y.; Yan, S.; et al. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: A cohort study of 0.5 million Chinese adults. Am. J. Clin. Nutr. 2021, 114, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Lee, J.E.; Loftfield, E.; Shu, X.O.; Abe, S.K.; Rahman, M.S.; Saito, E.; Islam, M.R.; Tsugane, S.; Sawada, N.; et al. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: A pooled analysis of prospective studies from the Asia Cohort Consortium. Int. J. Epidemiol. 2022, 51, 626–640. [Google Scholar] [CrossRef]
- Zhao, L.-G.; Li, H.-L.; Sun, J.-W.; Yang, Y.; Ma, X.; Shu, X.-O.; Zheng, W.; Xiang, Y.-B. Green tea consumption and cause-specific mortality: Results from two prospective cohort studies in China. J. Epidemiol. 2017, 27, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Aaqil, M.; Peng, C.; Kamal, A.; Nawaz, T.; Zhang, F.; Gong, J. Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. Foods 2023, 12, 4467. [Google Scholar] [CrossRef]
- Sharma, V.; Vijay Kumar, H.; Jagan Mohan Rao, L. Influence of milk and sugar on antioxidant potential of black tea. Food Res. Int. 2008, 41, 124–129. [Google Scholar] [CrossRef]
- Kondo, Y.; Goto, A.; Noma, H.; Iso, H.; Hayashi, K.; Noda, M. Effects of Coffee and Tea Consumption on Glucose Metabolism: A Systematic Review and Network Meta-Analysis. Nutrients 2019, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
Variables | Coffee Consumption Groups | ||||
---|---|---|---|---|---|
Never | <1 Cup/Day | 1 Cup/Day | 2–3 Cups/Day | ≥4 Cups/Day | |
n | 237 | 449 | 311 | 488 | 183 |
Age, years | 64.0 (8.5) | 64.3 (8.2) | 64.7 (8.4) | 62.8 (7.8) | 60.5 (7.2) |
Female, % | 69.2 | 60.6 | 54.0 | 57.0 | 48.6 |
Smoking status, % | |||||
Never | 57.0 | 56.8 | 54.0 | 51.6 | 35.5 |
Previous | 32.5 | 35.2 | 37.3 | 37.9 | 33.3 |
Current | 10.5 | 8.0 | 8.7 | 10.5 | 31.1 |
Obtained qualification after high school, % | 44.7 | 38.8 | 29.9 | 35.5 | 40.4 |
Family history of T2DM, % | 19.8 | 20.9 | 23.2 | 23.4 | 20.8 |
Alcoholic beverages intake, g/day | 100.5 (263.9) | 167.1 (349.7) | 185.1 (307.6) | 182.2 (315.5) | 181.6 (339.9) |
BMI, kg/m2 | 25.6 (4.2) | 26.0 (4.1) | 26.2 (4.2) | 26.4 (4.3) | 26.5 (4.4) |
Total diet score (TDS) | 9.8 (2.1) | 9.5 (2.3) | 9.4 (2.2) | 9.4 (2.1) | 8.8 (1.9) |
Tea consumption group, % | |||||
Never | 16.0 | 4.9 | 5.8 | 14.1 | 27.9 |
Up to 1 cup/week | 5.5 | 12.0 | 4.5 | 8.2 | 19.7 |
2–6 cups/week | 3.0 | 6.5 | 2.9 | 5.3 | 8.2 |
1 cup/day | 6.8 | 29.8 | 15.1 | 13.5 | 13.1 |
2–3 cups/day | 27.0 | 46.8 | 45.3 | 41.4 | 19.7 |
>4 cups/day | 41.8 | 8.9 | 26.4 | 17.4 | 11.5 |
T2DM incidence, % | 9.7 | 4.9 | 4.2 | 7.0 | 10.4 |
Coffee Consumption Group | ptrend | |||||
---|---|---|---|---|---|---|
Never | <1 Cup/Day | 1 Cup/Day | 2–3 Cups/Day | ≥4 Cups/Day | ||
ncase/ntotal | 22/237 | 40/449 | 13/311 | 34/488 | 19/183 | - |
Model 1 | 1 (Ref) | 0.87 (0.50, 1.51) | 0.50 (0.25, 1.00) | 0.76 (0.43, 1.33) | 1.25 (0.65, 2.44) | 0.769 |
Model 2 | 1 (Ref) | 0.83 (0.48, 1.44) | 0.46 (0.23, 0.92) | 0.67 (0.37, 1.19) | 1.06 (0.53, 2.12) | 0.448 |
Model 3 | 1 (Ref) | 0.82 (0.47, 1.43) | 0.46 (0.23, 0.91) | 0.66 (0.37, 1.18) | 1.04 (0.52, 2.08) | 0.419 |
Sensitivity analysis * | ||||||
ncase/ntotal | 22/235 | 39/446 | 13/311 | 34/486 | 19/183 | - |
Model 1 | 1 (Ref) | 0.89 (0.51, 1.56) | 0.53 (0.26, 1.05) | 0.80 (0.45, 1.41) | 1.31 (0.67, 2.57) | 0.928 |
Model 2 | 1 (Ref) | 0.85 (0.48, 1.49) | 0.49 (0.24, 0.98) | 0.71 (0.39, 1.27) | 1.11 (0.55, 2.24) | 0.578 |
Model 3 | 1 (Ref) | 0.84 (0.48, 1.49) | 0.48 (0.24, 0.98) | 0.70 (0.39, 1.26) | 1.09 (0.54, 2.21) | 0.552 |
Variables | Tea Consumption Group | ||||
---|---|---|---|---|---|
Never | <1 Cup per Day | 1 Cup/Day | 2–3 Cups/Day | ≥4 Cups/Day | |
n | 198 | 214 | 182 | 577 | 497 |
Age, years | 61.9 (7.8) | 61.2 (7.5) | 63.2 (8.1) | 64.7 (8.6) | 63.9 (7.9) |
Female, % | 51.5 | 55.6 | 55.5 | 57.2 | 64.2 |
Smoking status, % | |||||
Never | 45.5 | 52.3 | 50.5 | 52.5 | 55.9 |
Previous | 35.4 | 33.2 | 34.6 | 39.0 | 33.8 |
Current | 19.2 | 14.5 | 14.8 | 8.5 | 10.3 |
Obtained qualification after high school, % | 42.9 | 36.0 | 39.6 | 33.8 | 38.4 |
Family history of T2DM, % | 16.2 | 20.1 | 23.1 | 20.3 | 26.4 |
Alcoholic beverage intake, g/day | 211.6 (403.5) | 173.4 (327.5) | 255.1 (404.6) | 165.6 (307.2) | 115.9 (243.1) |
BMI, kg/m2 | 26.9 (4.7) | 26.5 (4.1) | 26.2 (4.1) | 26.1 (4.3) | 25.8 (4.0) |
Total diet score (TDS) | 9.2 (2.2) | 9.2 (2.0) | 9.3 (2.4) | 9.5 (2.1) | 9.6 (2.2) |
Coffee consumption group, % | |||||
Never | 19.2 | 9.3 | 8.8 | 11.1 | 19.9 |
Up to 1 cup/week | 5.6 | 25.2 | 8.8 | 12.3 | 27.4 |
2–6 cups/week | 5.6 | 10.7 | 7.1 | 10.9 | 14.9 |
1 cup/day | 9.1 | 30.8 | 25.8 | 24.4 | 16.5 |
2–3 cups/day | 34.8 | 23.8 | 36.3 | 35.0 | 17.1 |
>4 cups/day | 25.8 | 9.8 | 13.2 | 6.2 | 4.2 |
T2DM incidence, % | 6.6 | 9.3 | 8.8 | 5.7 | 9.3 |
Tea Consumption Group | ptrend | |||||
---|---|---|---|---|---|---|
Never | <1 Cup/Day | 1 Cup/Day | 2–3 Cups/Day | ≥4 Cups/Day | ||
ncase/ntotal | 13/198 | 21/214 | 16/182 | 33/577 | 46/497 | - |
Model 1 | 1 (Ref) | 1.43 (0.67, 3.02) | 1.43 (0.66, 3.13) | 1.00 (0.51, 1.99) | 1.36 (0.69, 2.66) | 0.670 |
Model 2 | 1 (Ref) | 1.53 (0.72, 3.25) | 1.69 (0.77, 3.71) | 1.18 (0.59, 2.37) | 1.51 (0.75, 3.02) | 0.645 |
Model 3 | 1 (Ref) | 1.53 (0.72, 3.26) | 1.70 (0.77, 3.72) | 1.18 (0.59, 2.37) | 1.50 (0.75, 3.02) | 0.641 |
Sensitivity analysis * | ||||||
ncase/ntotal | 13/198 | 21/214 | 15/180 | 33/575 | 45/494 | - |
Model 1 | 1 (Ref) | 1.43 (0.67, 3.02) | 1.35 (0.61, 2.97) | 1.01 (0.51, 1.99) | 1.33 (0.68, 2.61) | 0.698 |
Model 2 | 1 (Ref) | 1.52 (0.72, 3.23) | 1.59 (0.72, 3.53) | 1.18 (0.59, 2.38) | 1.50 (0.74, 3.01) | 0.654 |
Model 3 | 1 (Ref) | 1.53 (0.72, 3.24) | 1.60 (0.72, 3.55) | 1.19 (0.59, 2.38) | 1.49 (0.74, 3.00) | 0.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, T.H.T.; Burlutsky, G.; Gopinath, B.; Flood, V.M.; Mitchell, P.; Louie, J.C.Y. Coffee and Tea Consumption and Risk of Type 2 Diabetes in Older Australians. Diabetology 2025, 6, 12. https://doi.org/10.3390/diabetology6020012
Wong THT, Burlutsky G, Gopinath B, Flood VM, Mitchell P, Louie JCY. Coffee and Tea Consumption and Risk of Type 2 Diabetes in Older Australians. Diabetology. 2025; 6(2):12. https://doi.org/10.3390/diabetology6020012
Chicago/Turabian StyleWong, Tommy Hon Ting, George Burlutsky, Bamini Gopinath, Victoria M. Flood, Paul Mitchell, and Jimmy Chun Yu Louie. 2025. "Coffee and Tea Consumption and Risk of Type 2 Diabetes in Older Australians" Diabetology 6, no. 2: 12. https://doi.org/10.3390/diabetology6020012
APA StyleWong, T. H. T., Burlutsky, G., Gopinath, B., Flood, V. M., Mitchell, P., & Louie, J. C. Y. (2025). Coffee and Tea Consumption and Risk of Type 2 Diabetes in Older Australians. Diabetology, 6(2), 12. https://doi.org/10.3390/diabetology6020012