Metabolic Syndrome and Pharmacological Interventions in Clinical Development
Abstract
:1. Introduction
1.1. Atherogenic Dyslipidemia
1.2. Arterial Hypertension
1.3. Management of Hyperglycemia
1.4. Weight Management
2. Material and Methods
3. Results
3.1. Type 2 Diabetes, Obesity and/or Overweight
3.2. Dyslipidemia and Lipoprotein Disorder
3.3. Hypertension
3.4. Metabolic Syndrome and Insulin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive summary. Circulation 2005, 112, e285–e290. [Google Scholar] [CrossRef] [PubMed]
- Rask Larsen, J.; Dima, L.; Correll, C.U.; Manu, P. The pharmacological management of metabolic syndrome. Expert Rev. Clin. Pharmacol. 2018, 11, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Mokdad, A.H. Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care 2004, 27, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Athyros, V.G.; Bouloukos, V.I.; Pehlivanidis, A.N.; Papageorgiou, A.A.; Dionysopoulou, S.G.; Symeonidis, A.N.; Petridis, D.I.; Kapousouzi, M.I.; Satsoglou, E.A.; Mikhailidis, D.P. The prevalence of the metabolic syndrome in Greece: The MetS-Greece Multicentre Study. Diabetes Obes. Metab. 2005, 7, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Romero-Corral, A.; Collazo-Clavell, M.L.; Sarr, M.G.; Somers, V.K.; Lopez-Jimenez, F. Effect of bariatric surgery on the metabolic syndrome: A population-based, long-term controlled study. Mayo Clin. Proc. 2008, 83, 897–906. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham heart study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: American College of Cardiology/American Heart Association on clinical practice guidelines. Circulation 2019, 139, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaddoura, R.; Orabi, B.; Salam, A.M. PCSK9 monoclonal antibodies: An overview. Heart Views 2020, 21, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Hong, L.; Wang, H.; Li, B.; Zhang, M.; Li, J.; Yang, L.; Liu, F. Inclisiran: A new generation of lipid-lowering siRNA therapeutic. Front. Pharmacol. 2023, 14, 1260921. [Google Scholar] [CrossRef]
- Shrestha, S.; Wu, B.J.; Guiney, L.; Barter, P.J.; Rye, K.A. Cholesteryl ester transfer protein and its inhibitors. J. Lipid Res. 2018, 59, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, R.; Chiarelli, F. Treatment of dyslipidaemia in children. Biomedicines 2021, 9, 1078. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.; et al. 2023 ESH guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 3. Prevention or delay of type 2 diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Spector, R. A revolution in the treatment of obesity. Am. J. Med. 2024, 22, S0002934324003346. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 8. Obesity and weight management for the prevention and treatment of type 2 diabetes: Standards of care in diabetes—2023. Diabetes Care 2023, 46, S128–S139. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). FDA Approves New Medication for Chronic Weight Management. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-medication-chronic-weight-management (accessed on 28 June 2024).
- Grundy, S.M. Drug therapy of the metabolic syndrome: Minimizing the emerging crisis in polypharmacy. Nat. Rev. Drug Discov. 2006, 5, 295–309. [Google Scholar] [CrossRef]
- Matfin, G. Developing therapies for the metabolic syndrome: Challenges, opportunities, and… the unknown. Ther. Adv. Endocrinol. Metab. 2010, 1, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Global Observatory on Health Research and Development. Clinical Trials. Available online: https://www.who.int/observatories/global-observatory-on-health-research-and-development/resources/databases/databases-on-processes-for-r-d/clinical-trials (accessed on 28 May 2024).
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Qin, H.H.; Zheng, Q.; Ning, J.; Zhu, Z.; Mengying, G.; Bu, Y.; Jones, C.; Fenaux, M.; Xu, S.; et al. 755-p: A phase 2 evaluation of a novel GLP-1 analog ecnoglutide (Xw003) for glycemic control in adults with type 2 diabetes. Diabetes 2023, 72, 755-P. [Google Scholar] [CrossRef]
- Ji, L.; Jiang, H.; An, P.; Deng, H.; Liu, M.; Li, L.; Feng, L.; Song, B.; Han-Zhang, H.; Ma, Q.; et al. IBI362 (LY3305677), a weekly-dose GLP-1 and glucagon receptor dual agonist, in Chinese adults with overweight or obesity: A randomised, placebo-controlled, multiple ascending dose phase 1b study. EClinicalMedicine 2021, 39, 101088. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, T.; Thomas, L.; Baader-Pagler, T.; Haebel, P.; Simon, E.; Reindl, W.; Bajrami, B.; Rist, W.; Uphues, I.; Drucker, D.J.; et al. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol. Metab. 2022, 66, 101633. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; D‘Alessio, D.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L.; et al. Triple–hormone-receptor agonist retatrutide for obesity—A phase 2 trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Deenadayalan, S.; Erichsen, L.; Knop, F.K.; Lingvay, I.; Macura, S.; Mathieu, C.; Pedersen, S.D.; Davies, M. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: A multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 2023, 402, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, P.G.; Grace, C. New thoughts on managing obesity. Gut 2004, 53, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Niethammer, A.G.; Zheng, Z.; Timmer, A.; Lee, T.L. First-in-human evaluation of oral denatonium acetate (ARD-101), a potential bitter taste receptor agonist: A randomized, double-blind, placebo-controlled phase 1 trial in healthy adults. Clin. Pharmacol. Drug Dev. 2022, 11, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Teng, P.; Montgomery, N.T.; Li, X.; Tang, W. Development of triantennary N-Acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 2021, 7, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.A.; Liu, W.; Perez, S.; Xing, G.; Sonnenberg, G.; Kou, K.; Blatnik, M.; Allen, R.; Weng, Y.; Vera, N.B.; et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol. Metab. 2021, 48, 101196. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Coleman, L.A.; Miller, R.; Rooks, D.S.; Laurent, D.; Petricoul, O.; Praestgaard, J.; Swan, T.; Wade, T.; Perry, R.G.; et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: A phase 2 randomized clinical trial. JAMA Netw. Open 2021, 4, e2033457. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xing, B.; Cao, Y.; He, X.; Bennett, K.E.; Tong, C.; An, C.; Hojnacki, T.; Feng, Z.; Deng, S.; et al. Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation. EMBO Mol. Med. 2021, 13, e13524. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.P.; Xiong, Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front. Pharmacol. 2022, 13, 1043828. [Google Scholar] [CrossRef] [PubMed]
- Neary, N.M.; Small, C.J.; Druce, M.R.; Park, A.J.; Ellis, S.M.; Semjonous, N.M.; Dakin, C.L.; Filipsson, K.; Wang, F.; Kent, A.S.; et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005, 146, 5120–5127. [Google Scholar] [CrossRef] [PubMed]
- Benichou, O.; Coskun, T.; Gonciarz, M.D.; Garhyan, P.; Adams, A.C.; Du, Y.; Dunbar, J.D.; Martin, J.A.; Mather, K.J.; Pickard, R.T.; et al. Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist. Cell Metab. 2023, 35, 274–286.e10. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.L.; Vissing, J.; Krag, T.O. Antimyostatin treatment in health and disease: The story of great expectations and limited success. Cells 2021, 10, 533. [Google Scholar] [CrossRef] [PubMed]
- ProKidney Corp. (Nasdaq: PROK). ProKidney Receives Allowance from the UK Medicines and Healthcare Products Regulatory Agency (MHRA) for proact 1 (REGEN-006) and EMA Scientific Advice on Phase 3 Protocols of REACT for Diabetic Chronic Kidney Disease. 2022. Available online: https://investors.prokidney.com/news-releases/news-release-details/prokidney-receives-allowance-uk-medicines-and-healthcare (accessed on 28 June 2024).
- Enkhmaa, B.; Berglund, L. Non-genetic influences on lipoprotein(A) concentrations. Atherosclerosis 2022, 349, 53–62. [Google Scholar] [CrossRef]
- Vasas, S.; Azizad, M.; Clifton, P.; Gaudet, D.; Goldenberg, R.; Modesto, K.; Chang, T.; Melquist, S.; Fu, R.; San Martin, J.; et al. Abstract 17091: ARO-APOC3, an investigational RNAi therapeutic, silences APOC3 and reduces atherosclerosis-associated lipoproteins in patients with mixed dyslipidemia: MUIR study results. Circulation 2023, 148, A17091. [Google Scholar] [CrossRef]
- Gaudet, D.; Pall, D.; Watts, G.F.; Nicholls, S.J.; Rosenson, R.S.; Modesto, K.; San Martin, J.; Hellawell, J.; Ballantyne, C.M. Plozasiran (ARO-APOC3) for severe hypertriglyceridemia: The SHASTA-2 randomized clinical trial. JAMA Cardiol. 2024, 9, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Marston, N.A.; Prohaska, T.A.; Alexander, V.J.; Zimerman, A.; Moura, F.A.; Murphy, S.A.; Goodrich, E.L.; Zhang, S.; Gaudet, D.; et al. Olezarsen for hypertriglyceridemia in patients at high cardiovascular risk. N. Engl. J. Med. 2024, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Linnebjerg, H.; Shen, X.; Wolski, K.; Ma, X.; Lim, S.; Michael, L.F.; Ruotolo, G.; Gribble, G.; Navar, A.M.; et al. Lepodisiran, an extended-duration short interfering RNA targeting lipoprotein(A): A randomized dose-ascending clinical trial. JAMA 2023, 330, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Gaudet, D.; Hegele, R.A.; Ballantyne, C.M.; Nicholls, S.J.; Lucas, K.J.; San Martin, J.; Zhou, R.; Muhsin, M.A.; Chang, T.; et al. Zodasiran, an RNAi therapeutic targeting ANGPTL3, for mixed hyperlipidemia. N. Engl. J. Med. 2024, NEJMoa2404147. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Wolski, K.; Watts, G.F.; Koren, M.J.; Fok, H.; Nicholls, S.J.; Rider, D.A.; Cho, L.; Romano, S.; Melgaard, C.; et al. Single ascending and multiple-dose trial of zerlasiran, a short interfering RNA targeting lipoprotein(A): A randomized clinical trial. JAMA 2024, 331, 1534. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Nissen, S.E.; Fleming, C.; Urva, S.; Suico, J.; Berg, P.H.; Linnebjerg, H.; Ruotolo, G.; Turner, P.K.; Michael, L.F.; et al. Muvalaplin, an oral small molecule inhibitor of lipoprotein(A) formation: A randomized clinical trial. JAMA 2023, 330, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, C.M.; Ditmarsch, M.; Kastelein, J.J.P.; Nelson, A.J.; Kling, D.; Hsieh, A.; Curcio, D.L.; Maki, K.C.; Davidson, M.H.; Nicholls, S.J. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: A randomized phase 2 trial. J. Clin. Lipidol. 2023, 17, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Yokote, K.; Yamashita, S.; Arai, H.; Araki, E.; Suganami, H.; Ishibashi, S. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int. J. Mol. Sci. 2019, 20, 706. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.W.; Halvorsen, Y.D.; Marshall, W.; Pater, M.; Isaacsohn, J.; Pearce, C.; Murphy, B.; Alp, N.; Srivastava, A.; Bhatt, D.L.; et al. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N. Engl. J. Med. 2023, 388, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Presented by Bhatt, D.L. Results from a Phase 2, Double-Blind, Placebo-Controlled Trial Evaluating the Efficacy and Safety of Baxdrostat in Patients with Uncontrolled Hypertension; Session 403-08; ACC Scientific Session: New Orleans, LA, USA, 2023. [Google Scholar] [CrossRef]
- Laffin, L.J.; Rodman, D.; Luther, J.M.; Vaidya, A.; Weir, M.R.; Rajicic, N.; Slingsby, B.T.; Nissen, S.E. Aldosterone synthase inhibition with lorundrostat for uncontrolled hypertension: The Target-HTN randomized clinical trial. JAMA 2023, 330, 1140. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Duran, J.M.; Weinland, J.; Lin, T.; Mullick, A.E.; Geary, R.; Tsimikas, S. Abstract 17395: Effect ION904, an antisense inhibitor of angiotensinogen production: Results of phase 1 and phase 2 pilot studies. Circulation 2023, 148, A17395. [Google Scholar] [CrossRef]
- Bakris, G.L.; Yang, Y.F.; McCabe, J.M.; Liu, J.R.; Tan, X.J.; Benn, V.J.; Pitt, B. Efficacy and safety of ocedurenone: Subgroup analysis of the BLOCK-CKD study. Am. J. Hypertens. 2023, 36, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Presented by Bakris, G.L. Zilebesiran in Combination with a Standard-of-Care Antihypertensive in Patients with Inadequately Controlled Hypertension—KARDIA-2. 2024. Available online: https://www.acc.org/Latest-in-Cardiology/Clinical-Trials/2024/04/05/04/26/kardia-2 (accessed on 28 May 2024).
- Tokudome, T.; Otani, K.; Mao, Y.; Jensen, L.J.; Arai, Y.; Miyazaki, T.; Sonobe, T.; Pearson, J.T.; Osaki, T.; Minamino, N.; et al. Endothelial natriuretic peptide receptor 1 play crucial role for acute and chronic blood pressure regulation by atrial natriuretic peptide. Hypertension 2022, 79, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- He, Y.L.; Wu, X.; Serra Roma, A.; Markiewicz, M.; Healy, E.; Yan, J.-H.; Bitsaktsis, C.; Kulmatycki, K.; Kinhikar, A.; Zhang, T.; et al. 23281: Safety and Blood Pressure Lowering Effects of a Novel and Long-Acting Natriuretic Peptide Receptor 1 Agonist in Healthy Participants: A First-in-Human Clinical Study. Late-breaking science abstracts and featured science abstracts from the American Heart Association’s scientific sessions 2023 and late-breaking abstracts in resuscitation science from the resuscitation science symposium 2023. Circulation 2023, 148, 25. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Crater, G.D.; Lalonde, K.; Ravenelle, F.; Harvey, M.; Després, J.P. Effects of CB1R inverse agonist, INV-202, in patients with features of metabolic syndrome. A randomized, placebo-controlled, double-blind phase 1b study. Diabetes Obes. Metab. 2024, 26, 642–649. [Google Scholar] [CrossRef] [PubMed]
- King, A. Neuropsychiatric adverse effects signal the end of the line for rimonabant. Nat. Rev. Cardiol. 2010, 7, 602. [Google Scholar] [CrossRef] [PubMed]
- Glund, S.; Schoelch, C.; Thomas, L.; Niessen, H.G.; Stiller, D.; Roth, G.J.; Neubauer, H. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. Diabetologia 2012, 55, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, A.; Murakami, E.; Huss, R.S.; Sroda, N.; Shimazaki, A.; Kashiwagi, Y.; Myers, R.P.; Subramanian, M.; Shulman, G.I. 849-P: Antidiabetic effects of TLC-3595, a selective ACC2 inhibitor, in ZDF rats. Diabetes 2023, 72, 849-P. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Steen, O.; Lucas, K.J.; Startseva, E.; Unseld, A.; Hennige, A.M. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: A randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol. 2024, 12, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Imran, L.; Banatwala, U.E.S.S. Unleashing the power of retatrutide: A possible triumph over obesity and overweight: A correspondence. Health Sci. Rep. 2024, 7, e1864. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Wei, S.; Nguyen, T.T.; Yi, H.S.; Ryu, D.; Gariani, K. Overview of growth differentiation factor 15 in metabolic syndrome. J. Cell. Mol. Med. 2023, 27, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Stavas, J.; Silva, A.L.; Wooldridge, T.D.; Aqeel, A.; Saad, T.; Prakash, R.; Bakris, G. Rilparencel (Renal autologous cell therapy-REACT®) for chronic kidney disease and type 1 and type 2 diabetes: Phase 2 trial design evaluating bilateral kidney dosing and redosing triggers. Am. J. Nephrol. 2024, 55, 389–398. [Google Scholar] [CrossRef] [PubMed]
- European Renal Association. 61st ERA Congress, Congress Review. 2024. Available online: https://www.era-online.org/wp-content/uploads/2024/06/ERA24-Congress-Review.pdf (accessed on 28 June 2024).
- Bejar, N.; Tat, T.T.; Kiss, D.L. RNA therapeutics: The next generation of drugs for cardiovascular diseases. Curr. Atheroscler. Rep. 2022, 24, 307–321. [Google Scholar] [CrossRef] [PubMed]
Measure | Categorical Cut Points |
---|---|
Elevated waist circumference * | Population- and country-specific definitions |
Elevated triglycerides (drug treatment for elevated triglycerides is an alternate indicator **) | ≥150 mg/dL (1.7 mmol/L) |
Reduced HDL-C (drug treatment for reduced HDL-C is an alternate indicator **) | <40 mg/dL (1.0 mmol/L) in males; <50 mg/dL (1.3 mmol/L) in females |
Elevated blood pressure (antihypertensive drug treatment in a patient with a history of hypertension is an alternate indicator) | Systolic ≥ 130 and/or diastolic ≥ 85 mm Hg |
Elevated fasting glucose *** (drug treatment of elevated glucose is an alternate indicator) | ≥100 mg/dL |
N | Investigational Drug | Mechanism of Action | Indication | Main Site Location | Phase | NCT |
---|---|---|---|---|---|---|
1 | 6-bromotryptophan (6-BT) | Endogenous plasma microbiome-derived tryptophan metabolite | Metabolic Syndrome | USA and/or Europe | Phase 1 Phase 2 | NCT05971524 |
2 | AD-209 | N/A | Essential Hypertension | South Korea | Phase 2 | NCT05631990 |
3 | AD-218 | N/A | Dyslipidemia | South Korea | Phase 3 | NCT05631990 |
4 | AD-221 and AD-221A | N/A | Primary Hypercholesterolemia | China | Phase 3 | NCT05131997 |
5 | AD-223 | N/A | Essential Hypertension | South Korea | Phase 3 | NCT06052748 |
6 | ALN-KHK | RNAi targeting ketohexokinase | Type 2 Diabetes Mellitus with Obesity | USA and/or Europe | Phase 1 Phase 2 | NCT05761301 |
7 | ALT-801 (SP-1373) | Dual GCGR and GLP-1 receptor agonist | Obesity | USA and/or Europe | Phase 2 | NCT05295875 |
8 | AP-325 | Binds and modulates the GABAA receptor (an ionotropic receptor and ligand-gated ion channel) | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05160272 |
9 | APHD-012 | Distal jejunal-release dextrose | Obesity | USA and/or Europe | Phase 2 | NCT05385978 |
10 | ATB-1011 and ATB-1012 | N/A | Essential Hypertension and Type 2 Diabetes Mellitus | China | Phase 3 | NCT05573477 |
11 | AZD0780 | Oral PCSK9 Inhibitor | Dyslipidemia | USA and/or Europe | Phase 2 | NCT06173570 |
12 | AZD8233 | ASO targeting PCSK9 | Hyperlipidaemia | USA and/or Europe | Phase 2 | NCT04964557, NCT06173570 |
13 | AZD9550 | Dual GCGR and GLP-1 receptor agonist | Type 2 Diabetes Mellitus with Overweight or Obesity | USA and/or Europe | Phase 1 Phase 2 | NCT06151964 |
14 | Baxdrostat (CIN-107) | Aldosterone synthase inhibitors | Uncontrolled Hypertension and Resistant Hypertension; Uncontrolled Hypertension and Chronic Kidney Disease | USA and/or Europe | Phase 2 Phase 3 | NCT06344104, NCT05432167 |
15 | BC Lispro (THDB0206) | Insulin | Type 2 Diabetes Mellitus | China | Phase 3 | NCT05834868 |
16 | Berlim 25/2 | N/A | Type 2 Diabetes Mellitus and Dyslipidemia | Brazil | Phase 3 | NCT04602754 |
17 | Bimagrumab | mAb inhibitor of ActRII | Overweight or Obesity | USA and/or Europe | Phase 2 | NCT05616013 |
18 | BMF-219 | Oral irreversible covalent inhibitor of menin | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 1 Phase 2 | NCT05731544 |
19 | BR1017A and BR1017B | N/A | Essential Hypertension and Primary Hypercholesterolemia | South Korea | Phase 3 | NCT05930028 |
20 | BR1018B and BR1018C | N/A | Essential Hypertension and Primary Hypercholesterolemia | South Korea | Phase 3 | NCT06165250 |
21 | Cagrilintide | Amylin receptor agonist | Type 2 Diabetes Mellitus; Overweight or Obesity | USA and/or Europe | Phase 2 Phase 3 | NCT05813925, NCT04982575 |
22 | CKD-391 and CKD-331 | N/A | Primary Hypercholesterolemia | China, South Korea | Phase 3 | NCT05657574 |
23 | CPL207280 | GPR40 (also known as FFA receptor 1) agonist | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05248776 |
24 | D064 and D702 | N/A | Essential Hypertension | South Korea | Phase 3 | NCT06121518 |
25 | D150, D745 and D759 | N/A | Type 2 Diabetes Mellitus | South Korea | Phase 3 | NCT05566028 |
26 | Dapiglutide | Dual GLP-1R/GLP-2R agonist | Obesity | USA and/or Europe | Phase 2 | NCT05788601 |
27 | Denatonium Acetate (ARD-101) | Oral potential TAS2R agonist | Obesity | USA and/or Europe | Phase 2 | NCT05121441 |
28 | DW1125 and DW1125A | N/A | Primary Hypercholesterolemia or Dyslipidemia | South Korea | Phase 3 | NCT05970679 |
29 | DWP16001 | SGLT2 inhibitor | Type 2 Diabetes Mellitus | China, South Korea | Phase 3 | NCT05376930, NCT05505994 |
30 | Ecnoglutide (XW003) | Long-acting cAMP Signaling Biased GLP-1 Analog | Obesity; Type 2 Diabetes Mellitus | USA and/or Europe, China | Phase 2 Phase 3 | NCT05111912, NCT05813795, NCT05680155, NCT05680129 |
31 | Efsitora Alfa (BIF, LY3209590, or insulin efsitora alfa) | Basal Insulin Fc | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 3 | NCT05462756 |
32 | GLY-200 | Mucin-complexing polymer | Obesity; Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT06259981, NCT05478525 |
33 | GSBR-1290 | Oral GLP-1 receptor agonist | Type 2 Diabetes Mellitus, and Overweight or Obesity | USA and/or Europe | Phase 1 Phase 2 | NCT05762471 |
34 | GZR18 | GLP-1 receptor agonist | Type 2 Diabetes Mellitus; Overweight or Obesity | China | Phase 1 Phase 2 | NCT06256523, NCT06256536, NCT06256562 |
35 | GZR4 | INSR agonist | Type 2 Diabetes Mellitus | China | Phase 2 | NCT06202079 |
36 | HCP1803 | N/A | Essential Hypertension | South Korea | Phase 3 | NCT05362110 |
37 | HCP1904-3 | N/A | Essential Hypertension | South Korea | Phase 3 | NCT05199129 |
38 | HCP2102 | N/A | Essential Hypertension | South Korea | Phase 3 | NCT05450601 |
39 | HD-6277 | Selective GPR40 agonist | Type 2 Diabetes Mellitus | South Korea | Phase 2 | NCT05666128 |
40 | HEC88473 | Dual FGF21 receptor and GLP-1 receptor agonist | Type 2 Diabetes Mellitus | China | Phase 2 | NCT06148649 |
41 | HRS9531 | Dual GIP and GLP-1 receptor agonist | Obesity; Type 2 Diabetes Mellitus | China | Phase 2 | NCT05881837, NCT05966272 |
42 | HS-20094 | Dual GIP and GLP-1 receptor agonist | Type 2 Diabetes Mellitus; Overweight or Obesity | China | Phase 2 | NCT06118008, NCT06118021 |
43 | HSG4112 | Analog of glabridin | Overweight or Obesity | South Korea | Phase 2 | NCT05197556 |
44 | iGlarLixi vs. IDegAsp | Insulins | Type 2 Diabetes Mellitus | China | Phase 3 | NCT05413369 |
45 | INS068 | Long-acting insulin analog | Type 2 Diabetes Mellitus | South Korea | Phase 3 | NCT05702073, NCT05699408 |
46 | Insulin Efsitora Alfa (LY3209590) | Basal Insulin Fc (BIF) | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 3 | NCT05662332, NCT05275400 |
47 | INV-202 | CB1R inverse agonist | Obesity and Metabolic Syndrome; Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05891834, NCT05514548 |
48 | ION904 (IONIS-AGT-LRx) | Hepatocyte-directed ASO targeting AGT mRNA | Uncontrolled Hypertension | USA and/or Europe | Phase 2 | NCT05314439 |
49 | JS002 | Humanized anti-PCSK9 mAb | Hyperlipidaemia | China | Phase 3 | NCT05532800 |
50 | JW0101+C2101 | Livalo (pitavastatin) | Dyslipidemia and Hypertension | South Korea | Phase 3 | NCT05331014 |
51 | JW0201 | N/A | Type 2 Diabetes Mellitus | South Korea | Phase 3 | NCT05814393 |
52 | Lepodisiran (LY3819469) | siRNA (binds to the hepatic asialoglycoprotein receptor) targeting Lp(a) | Elevated Lipoprotein(a) | USA and/or Europe | Phase 2 Phase 3 | NCT05565742, NCT06292013 |
53 | Lerodalcibep (LIB003) | PCSK9 Inhibitor | Hyperlipidaemia and High risk Cardiovascular Disease (CVD) | USA and/or Europe | Phase 3 | NCT05004675, NCT05234775 |
54 | Lorundrostat (MLS-101) | Aldosterone synthase inhibitor | Resistant Hypertension; Uncontrolled Hypertension | USA and/or Europe | Phase 2 Phase 3 | NCT06153693, NCT05968430, NCT05001945 |
55 | Eloralintide (LY3841136) | Amylin receptor agonist | Overweight or Obesity | USA and/or Europe | Phase 2 | NCT06230523 |
56 | MAR001 | Maresin 1 (MaR1) specialised pro-resolving lipid mediator | Metabolic dysfunction at screening (triglyceride levels > 2.8 mmol/L) | USA and/or Europe | Phase 1 Phase 2 | NCT05896254 |
57 | Maridebart cafraglutide (AMG 133) | Dual GIP and GLP-1 receptor agonist | Overweight or Obesity With or Without Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05669599 |
58 | Mazdutide (IBI362, LY3305677) | Dual GCGR and GLP-1 receptor agonist | Type 2 Diabetes Mellitus with Obesity; Overweight or Obesity | USA and/or Europe, China | Phase 2 Phase 3 | NCT06184568, NCT06143956, NCT04904913 |
59 | MBL949 | GDF15 agonist (agonist at the GFRAL/RET receptor) | Obesity with or without Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05199090 |
60 | MK-0616 | Oral PCSK9 inhibitor | Hyperlipidaemia | USA and/or Europe | Phase 3 | NCT05952856 |
61 | Muvalaplin (LY3473329) | Orally active inhibitor of Lp(a) | Elevated Lipoprotein(a) at High Risk for Cardiovascular Events | USA and/or Europe | Phase 2 | NCT05563246 |
62 | NNC0165-1875 | NPY2R or Y2R agonist | Obesity | USA and/or Europe | Phase 2 | NCT04969939 |
63 | NNC0480-0389 | N/A | Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT05144984 |
64 | NNC0519-0130 | Dual GIP and GLP-1 receptor agonist | Overweight or Obesity, Type 2 Diabetes Mellitus | USA and/or Europe | Phase 2 | NCT06326060, NCT06326047 |
65 | NST-1024 (SEFA-1024) | CETP inhibitor | Hypertriglyceridemia | USA and/or Europe | Phase 2 | NCT05889156 |
66 | Obicetrapib (AMG-899, DEZ-001, TA-8995) | CETP inhibitor | Hyperlipidaemia; Heterozygous familial hypercholesterolemia (HeFH) and/or atherosclerotic cardiovascular disease (ASCVD) or multiple ASCVD risk factors | USA and/or Europe | Phase 2 Phase 3 | NCT05421078, NCT06005597, NCT05266586 |
67 | Ocedurenone(KBP-5074) | Third-generation non-steroidal MRA | Uncontrolled Hypertension and Moderate or Severe Chronic Kidney Disease | USA and/or Europe | Phase 3 | NCT04968184 |
68 | Olezarsen (ISIS 678354, AKCEA-APOCIII-LRx) | ASO targeting mRNA for APOC3 | Hypertriglyceridemia and Atherosclerotic Cardiovascular Disease, or With Severe Hypertriglyceridemia; Severe Hypertriglyceridemia | USA and/or Europe | Phase 3 | NCT05552326, NCT05079919, NCT05610280 |
69 | Olpasiran (AMG-890, ARO-LPA) | siRNA (binds to the hepatic asialoglycoprotein receptor) targeting Lp(a) | Atherosclerotic cardiovascular disease (ASCVD) and elevated Lipoprotein(a). | USA and/or Europe | Phase 3 | NCT05581303 |
70 | Orforglipron (LY3502970) | Non-peptide GLP-1 receptor agonist | Type 2 Diabetes Mellitus with Overweight or Obesity; Type 2 Diabetes Mellitus; Overweight or Obesity and related comorbidities, Overweight or Obesity | USA and/or Europe | Phase 3 | NCT05803421, NCT06010004, NCT05869903, NCT05872620, NCT05051579, NCT05048719 |
71 | PB-201 | Glucokinase activator (partial, pancreas- and liver-dual activator of glucokinase) | Type 2 Diabetes Mellitus | China | Phase 3 | NCT05102149 |
72 | Pegozafermin (BIO89-100) | FGF21 analog | Severe Hypertriglyceridemia | USA and/or Europe | Phase 3 | NCT05852431 |
73 | Pelacarsen (IONIS-APO(a)-LRx, AKCEA-APO(a)-LRx, or TQJ230) | Apo(a) inhibitor, hepatocyte-directed ASO targeting mRNA transcribed from the LPA gene | Hyperlipoproteinemia(a) and Established Cardiovascular Disease | USA and/or Europe | Phase 3 | NCT05305664, NCT05900141 |
74 | Pemafibrate (K-877, LY3473329) | Selective peroxisome proliferator-activated receptor (PPAR)-α modulator (SPPARM) | Hypercholesterolemia and statin intolerance; Elevated Lipoprotein(a) | USA and/or Europe | Phase 2 Phase 3 | NCT05923281, NCT05563246 |
75 | Plozasiran (ARO-APOC3) | siRNA targeting mRNA for APOC3 | Hypertriglyceridemia; Severe Hypertriglyceridemia; Dyslipidemia | USA and/or Europe | Phase 2 Phase 3 | NCT06347133, NCT06347016, NCT05413135, NCT04720534, NCT04998201 |
76 | RAY1225 | Dual GIP and GLP-1 receptor agonist | Type 2 Diabetes Mellitus; Obesity | China | Phase 2 | NCT06254274, NCT06254261 |
77 | Recaticimab (SHR-1209) | mAb against PCSK9 | Hyperlipidaemia | China | Phase 3 | NCT04885218 |
78 | Rilparencel (Renal Autologous Cell Therapy-REACT®) | Renal Autologous Cell Therapy | Type 2 Diabetes Mellitus and Chronic Kidney Disease | USA and/or Europe | Phase 3 | NCT05099770 |
79 | Retatrutide (LY3437943) | Triple GIP, GLP-1 and GCGR receptor agonist | Overweight or Obesity and Chronic Kidney Disease With or Without Type 2 Diabetes Mellitus; Type 2 Diabetes Mellitus; Overweight or Obesity; Type 2 Diabetes Mellitus with Overweight or Obesity; Overweight or Obesity with Cardiovascular Disease | USA and/or Europe | Phase 2 Phase 3 | NCT05936151, NCT06297603, NCT05929066, NCT05929079, NCT05882045, NCT04881760 |
80 | RGT-075 | Oral GLP-1 receptor agonist | Overweight or Obesity | USA and/or Europe | Phase 2 | NCT06277934 |
81 | Solbinsiran (LY3561774) | siRNA that targets ANGPTL3 | Dyslipidemia | USA and/or Europe | Phase 2 | NCT05256654 |
82 | SPC1001 | N/A | Essential Hypertension | South Korea | Phase 2 | NCT06212648 |
83 | SPH3127 | Renin inhibitor (direct) | Essential Hypertension | China | Phase 3 | NCT05359068 |
84 | Supaglutide | GLP-1 receptor agonist | Type 2 Diabetes Mellitus | China | Phase 2 Phase 3 | NCT04994288, NCT04998032 |
85 | Survodutide (BI 456906) | Dual GCGR and GLP-1 receptor agonist | Type 2 Diabetes Mellitus with Overweight or Obesity; Obesity; Overweight or Obesity | USA and/or Europe | Phase 3 | NCT06066528, NCT06176365, NCT06066515, NCT06077864 |
86 | TLC-3595 (S-723595) | Allosteric inhibitor of acetyl-CoA carboxylase 2 (ACC2) | Insulin Resistance | USA and/or Europe | Phase 2 | NCT05665751 |
87 | Trevogrumab (REGN1033) and Garetosmab (REGN2477) | Trevogrumab is GFD8 fully humanized mAb, Garetosmab (REGN2477) Act-A mAb | Obesity | USA and/or Europe | Phase 2 | NCT06299098 |
88 | Vericiguat | Stimulator of soluble guanylate cyclase (sGC) | Metabolic Syndrome and Coronary Vascular Dysfunction | USA and/or Europe | Phase 2 | NCT05711719 |
89 | VK2735 | Dual GIP and GLP-1 receptor agonist | Overweight or Obesity | USA and/or Europe | Phase 2 | NCT06068946 |
90 | XXB750 | mAb, NPR1 agonist | Resistant Hypertension | USA and/or Europe | Phase 2 | NCT05562934 |
91 | Yogliptin | DPP-4 inhibitor | Type 2 Diabetes Mellitus | China | Phase 3 | NCT05318326 |
92 | Zerlasiran (SLN360) | siRNA (binds to the hepatic asialoglycoprotein receptor) targeting Lp(a) | Elevated lipoprotein(a) at high risk of atherosclerotic cardiovascular disease events | USA and/or Europe | Phase 2 | NCT05537571 |
93 | Zilebesiran (ALN-AGT) | siRNA targeting AGT mRNA | High cardiovascular risk and Uncontrolled Hypertension; Hypertension | USA and/or Europe | Phase 2 | NCT06272487, NCT04936035, NCT05103332 |
94 | Zodasiran (ARO-ANG3) | siRNA that targets ANGPTL3 | Dyslipidemia | USA and/or Europe | Phase 2 | NCT04832971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javor, E.; Šarčević, D.; Rešić, A. Metabolic Syndrome and Pharmacological Interventions in Clinical Development. Diabetology 2024, 5, 300-320. https://doi.org/10.3390/diabetology5030023
Javor E, Šarčević D, Rešić A. Metabolic Syndrome and Pharmacological Interventions in Clinical Development. Diabetology. 2024; 5(3):300-320. https://doi.org/10.3390/diabetology5030023
Chicago/Turabian StyleJavor, Eugen, David Šarčević, and Arnes Rešić. 2024. "Metabolic Syndrome and Pharmacological Interventions in Clinical Development" Diabetology 5, no. 3: 300-320. https://doi.org/10.3390/diabetology5030023
APA StyleJavor, E., Šarčević, D., & Rešić, A. (2024). Metabolic Syndrome and Pharmacological Interventions in Clinical Development. Diabetology, 5(3), 300-320. https://doi.org/10.3390/diabetology5030023