Potential Impact of Metabolic Syndrome Control on Cardiovascular Risk in Elderly Patients with Diabetes: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study
2.2. Data Collection
2.3. Cardiovascular Risk Score Calculations and Estimations
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic Characteristics of the Population and Metabolic Syndrome Diagnosis
3.2. Calculation of the ADVANCE Risk Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J.; George, K.; Alberti, M.M.; Aschner, P.; Balkau, B.; Bennett, P.; Boyko, E.; Brunzell, J.; et al. Metabolic Syndrome-a New World-Wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Kharroubi, A.T.; Darwish, H.M. Diabetes Mellitus: The Epidemic of the Century. World J. Diabetes 2015, 6, 850–867. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef] [PubMed]
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Maric-Bilkan, C. Sex Differences in Micro- and Macro-Vascular Complications of Diabetes Mellitus. Clin. Sci. 2017, 131, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex Differences in Metabolic Regulation and Diabetes Susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Damaskos, C.; Garmpis, N.; Kollia, P.; Mitsiopoulos, G.; Barlampa, D.; Drosos, A.; Patsouras, A.; Gravvanis, N.; Antoniou, V.; Litos, A.; et al. Assessing Cardiovascular Risk in Patients with Diabetes: An Update. Curr. Cardiol. Rev. 2020, 16, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Neppala, S.; Rajan, J.; Yang, E.; DeFronzo, R.A. Unexplained Residual Risk In Type 2 Diabetes: How Big Is The Problem? Curr. Cardiol. Rep. 2024, 26, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, A.; Minhas, A.S.; Kazzi, B.; Varma, B.; Choi, E.; Thakkar, A.; Michos, E.D. Sex-Specific Differences in Cardiovascular Risk Factors and Implications for Cardiovascular Disease Prevention in Women. Atherosclerosis 2023, 384, 117269. [Google Scholar] [CrossRef]
- PORDATA Índice de Envelhecimento. Available online: https://www.pordata.pt/Europa/%C3%8Dndice+de+envelhecimento-1609 (accessed on 5 May 2024).
- Sociedade Portuguesa de Diabetologia. Diabetes: Factos e Números—O Ano de 2019, 2020 e 2021—Relatório Anual Do Observatório Nacional Da Diabetes 03/2023; Sociedade Portuguesa de Diabetologia: Lisboa, Portugal, 2023. [Google Scholar]
- Bitton, A.; Physician, A. The Framingham Heart Study’s Impact on Global Risk Assessment. Prog. Cardiovasc. Dis. 2010, 53, 68–78. [Google Scholar] [CrossRef]
- Piepoli, M.F. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Int. J. Behav. Med. 2016, 24, 321–419. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and Validation of QRISK3 Risk Prediction Algorithms to Estimate Future Risk of Cardiovascular Disease: Prospective Cohort Study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.A.E.M.D.; Naing, L.; Johar, S.; Ong, S.; Rahman, H.A.; Tengah, D.S.N.A.P.; Chong, C.L.; Tuah, N.A.A. Evaluation of Cardiovascular Diseases Risk Calculators for CVDs Prevention and Management: Scoping Review. BMC Public Health 2022, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Quaglini, S.; Stefanelli, M.; Boiocchi, L.; Campari, F.; Cavallini, A.; Micieli, G. Cardiovascular Risk Calculators: Understanding Differences and Realising Economic Implications. Int. J. Med. Inform. 2005, 74, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E. Cardiovascular Risk Scores: Usefulness and Limitations. Rev. Port. Cardiol. (Engl. Ed.) 2016, 35, 15–18. [Google Scholar] [CrossRef] [PubMed]
- U Prevent ADVANCE Risk Score. Available online: https://u-prevent.com/calculators/advanceScore (accessed on 5 May 2024).
- WHO Consultation on Obesity 1999: World Health Organization Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. Available online: https://iris.who.int/handle/10665/42330 (accessed on 7 May 2024).
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S144–S174. [Google Scholar] [CrossRef] [PubMed]
- The SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103. [Google Scholar] [CrossRef]
- The ACCORD Study Group. Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1575. [Google Scholar] [CrossRef] [PubMed]
- Gourdy, P.; Schiele, F.; Halimi, J.M.; Kownator, S.; Hadjadj, S.; Valensi, P. Atherosclerotic Cardiovascular Disease Risk Stratification and Management in Type 2 Diabetes: Review of Recent Evidence-Based Guidelines. Front. Cardiovasc. Med. 2023, 10, 1227769. [Google Scholar] [CrossRef]
- PORDATA Instituto Nacional de Estatística I.P. Resident Population Aged 15 and over by Level of Education Completed. Available online: https://www.pordata.pt/ (accessed on 6 May 2024).
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the Management of Cardiovascular Disease in Patients with Diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, K.N.; Han, K.; Lee, S.-H. Diabetes Duration, Cholesterol Levels, and Risk of Cardiovascular Diseases in Individuals With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, dgae092. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.; Woodward, M.; Peters, S.A.E. Duration of Diabetes and the Risk of Major Cardiovascular Events in Women and Men: A Prospective Cohort Study of UK Biobank Participants. Diabetes Res. Clin. Pract. 2022, 188, 109899. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, J.; Zhang, X.; Jiang, T.; Zhang, Y.; Dai, F.; Hu, H.; Zhang, Q. Age at Diagnosis, Diabetes Duration and the Risk of Cardiovascular Disease in Patients with Diabetes Mellitus: A Cross-Sectional Study. Front. Endocrinol. 2023, 14, 1131395. [Google Scholar] [CrossRef]
- WHO. WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: Copenhagen, Denmark, 2022; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Gaio, V.; Antunes, L.; Namorado, S.; Barreto, M.; Gil, A.; Kyslaya, I.; Rodrigues, A.P.; Santos, A.; Bøhler, L.; Castilho, E.; et al. Prevalence of Overweight and Obesity in Portugal: Results from the First Portuguese Health Examination Survey (INSEF 2015). Obes. Res. Clin. Pract. 2018, 12, 40–50. [Google Scholar] [CrossRef]
- Oliveira, A.; Araújo, J.; Severo, M.; Correia, D.; Ramos, E.; Torres, D.; Lopes, C.; Rodrigues, S.; Vilela, S.; Guiomar, S.; et al. Prevalence of General and Abdominal Obesity in Portugal: Comprehensive Results from the National Food, Nutrition and Physical Activity Survey 2015–2016. BMC Public Health 2018, 18, 614. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Bes-Rastrollo, M.; Bulló, M.; Corella, D.; Fito, M.; Ros, E.; Lamuela-Raventós, R.M.; Rekondo, J.; et al. Obesity Indexes and Total Mortality among Elderly Subjects at High Cardiovascular Risk: The PREDIMED Study. PLoS ONE 2014, 9, e103246. [Google Scholar] [CrossRef] [PubMed]
- Chiazor, E.I.; Evans, M.; van Woerden, H.; Oparah, A.C. A Systematic Review of Community Pharmacists’ Interventions in Reducing Major Risk Factors for Cardiovascular Disease. Value Health Reg. Issues 2015, 7, 9–21. [Google Scholar] [CrossRef]
- Hu, C.; Lin, L.; Zhu, Y.; Zhang, Y.; Wang, S.; Zhang, J.; Qi, H.; Li, M.; Zhu, Y.; Huo, Y.; et al. Association Between Age at Diagnosis of Type 2 Diabetes and Cardiovascular Diseases: A Nationwide, Population-Based, Cohort Study. Front. Endocrinol. 2021, 12, 717069. [Google Scholar] [CrossRef]
- Instituto Nacional Estatística. Inquérito Nacional de Saúde 2019; Instituto Nacional de Estatística: Lisboa, Portugal, 2020. [Google Scholar]
- Relimpio, F.; Martinez-Brocca, M.A.; Leal-Cerro, A.; Losada, F.; Mangas, M.A.; Pumar, A.; Astorga, R. Variability in the Presence of the Metabolic Syndrome in Type 2 Diabetic Patients Attending a Diabetes Clinic: Influences of Age and Gender. Diabetes Res. Clin. Pract. 2004, 65, 135–142. [Google Scholar] [CrossRef]
- Del Cañizo-Gómez, F.J.; Moreira-Andrés, M.N. Cardiovascular Risk Factors in Patients with Type 2 Diabetes: Do We Follow the Guidelines? Diabetes Res. Clin. Pract. 2004, 65, 125–133. [Google Scholar] [CrossRef]
- Salameh, A.B.; Hyassat, D.; Suhail, A.; Makahleh, Z.; Khader, Y.; EL-Khateeb, M.; Ajlouni, K. The Prevalence of Hypertension and Its Progression among Patients with Type 2 Diabetes in Jordan. Ann. Med. Surg. 2022, 73, 103162. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.W.; Esmat, H.A.; Bahee, M.D. Prevalence of Hypertension in Type-2 Diabetes Mellitus. Ann. Med. Surg. 2022, 78, 103758. [Google Scholar] [CrossRef]
- Hicks, C.W.; Selvin, E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Curr. Diab Rep. 2019, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, H.; Tavares Bello, C.; Andrade, L.; Sobral do Rosário, F.; Louro, J.; Nogueira, C.; Rodrigues, E.; Vieira, N.B.; Carqueja, T. High Prevalence of Cardiovascular Disease and Risk Factors among Type 2 Diabetes Patients Followed in a Hospital Setting in Portugal: The PICT2RE Observational Study. Rev. Port. Cardiol. 2023, 42, 319–330. [Google Scholar] [CrossRef] [PubMed]
- SCORE2 working group; ESC Cardiovascular risk collaboration. SCORE2 Risk Prediction Algorithms: New Models to Estimate 10-Year Risk of Cardiovascular Disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef] [PubMed]
- Gencer, B.; Marston, N.A.; Im, K.A.; Cannon, C.P.; Sever, P.; Keech, A.; Braunwald, E.; Giugliano, R.P.; Sabatine, M.S. Efficacy and Safety of Lowering LDL Cholesterol in Older Patients: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Lancet 2020, 396, 1637. [Google Scholar] [CrossRef] [PubMed]
- SCORE2-OP Working Group. ESC Cardiovascular Risk SCORE2-OP Risk Prediction Algorithms: Estimating Incident Cardiovascular Event Risk in Older Persons in Four Geographical Risk Regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef] [PubMed]
- Kengne, A.P. The ADVA NCE Cardiovascular Risk Model and Current Strategies for Cardiovascular Disease Risk Evaluation in People with Diabetes. Cardiovasc. J. Afr. 2013, 24, 376. [Google Scholar] [CrossRef]
- Kengne, A.P.; Patel, A.; Marre, M.; Travert, F.; Lievre, M.; Zoungas, S.; Chalmers, J.; Colagiuri, S.; Grobbee, D.E.; Hamet, P.; et al. Contemporary Model for Cardiovascular Risk Prediction in People with Type 2 Diabetes. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 393–398. [Google Scholar] [CrossRef]
- Rossello, X.; Dorresteijn, J.A.; Janssen, A.; Lambrinou, E.; Scherrenberg, M.; Bonnefoy-Cudraz, E.; Cobain, M.; Piepoli, M.F.; Visseren, F.L.; Dendale, P. Risk Prediction Tools in Cardiovascular Disease Prevention: A Report from the ESC Prevention of CVD Programme Led by the European Association of Preventive Cardiology (EAPC) in Collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur. J. Prev. Cardiol. 2019, 26, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Kweon, Y.N.; Ko, H.J.; Kim, A.S.; Choi, H.I.; Song, J.E.; Park, J.Y.; Kim, S.M.; Hong, H.E.; Min, K.J. Prediction of Cardiovascular Risk Using Nonalcoholic Fatty Liver Disease Scoring Systems. Healthcare 2021, 9, 899. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- U-Prevent. Available online: https://u-prevent.com/calculators/dialModel (accessed on 6 May 2024).
- Østergaard, H.B.; Hageman, S.H.J.; Read, S.H.; Taylor, O.; Pennells, L.; Kaptoge, S.; Petitjean, C.; Xu, Z.; Shi, F.; Mcevoy, J.W.; et al. Estimating Individual Lifetime Risk of Incident Cardiovascular Events in Adults with Type 2 Diabetes: An Update and Geographical Calibration of the DIAbetes Lifetime Perspective Model (DIAL2). Eur. J. Prev. Cardiol. 2023, 30, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Thumboo, J.; Lim, G.H.; Salim, N.N.M.; Chia, S.Y.; Bee, Y.M. Associations Between Mean HbA1c, HbA1c Variability, and Both Mortality and Macrovascular Complications in Patients with Diabetes Mellitus: A Registry-Based Cohort Study. Clin. Epidemiol. 2023, 15, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Boye, K.S.; Thieu, V.T.; Lage, M.J.; Miller, H.; Paczkowski, R. The Association Between Sustained HbA1c Control and Long-Term Complications Among Individuals with Type 2 Diabetes: A Retrospective Study. Adv. Ther. 2022, 39, 2208. [Google Scholar] [CrossRef]
- Wu, T.E.; Su, Y.W.; Chen, H.S. Mean HbA1c and HbA1c Variability Are Associated with Differing Diabetes-Related Complications in Patients with Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2022, 192, 110069. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Longo, M.; Scappaticcio, L.; Bellastella, G.; Chiodini, P.; Esposito, K.; Giugliano, D. Improvement of Glycemic Control and Reduction of Major Cardiovascular Events in 18 Cardiovascular Outcome Trials: An Updated Meta-Regression. Cardiovasc. Diabetol. 2021, 20, 210. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S111–S125. [Google Scholar] [CrossRef]
- Albus, C. Health Literacy: Is It Important for Cardiovascular Disease Prevention? Eur. J. Prev. Cardiol. 2018, 25, 934–935. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Feng, Y.; Ma, A.; Wang, T. The Burden of Cardiovascular Diseases Attributable to Metabolic Risk Factors and Its Change from 1990 to 2019: A Systematic Analysis and Prediction. Front. Epidemiol. 2023, 3, 1048515. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Sample | Males | Females | p-Value | |
---|---|---|---|---|---|
(n = 87) | (n = 54) | (n = 33) | |||
Age (years) M ± SD | 71.6 ± 5.2 | 70.8 ± 4.8 | 72.8 ± 5.6 | 0.113 a | |
Academic level: | Cannot read or write; n (%) | 5 (5.7) | 3 (5.6) | 2 (6.1) | 0.697 b |
Primary school (4 years); n (%) | 59 (67.8) | 33 (61.1) | 26 (78.8) | ||
Middle school (5–9 years); n (%) | 13 (14.9) | 10 (18.5) | 3 (9.1) | ||
High school (10–12 years); n (%) | 6 (6.9) | 5 (9.3) | 1 (3.0) | ||
College level degree; n (%) | 4 (4.6) | 3 (5.6) | 1 (3.0) | ||
Years after T2DM diagnosis | M ± SD | 12.9 ± 8.0 | 12.5 ± 8.2 | 13.5 ± 7.7 | 0.371 a |
Number of medications | M ± SD | 6.0 ± 2.9 | 5.7 ± 2.8 | 6.5 ± 3.0 | 0.240 a |
Weight (kg) | M ± SD | 80.6 ± 11.8 | 83.8 ± 10.0 | 75.4 ± 12.9 | 0.001 c |
Waist circumference (cm) | M ± SD | 96.8 ± 8.3 | 99.7 ± 5.1 | 92.0 ± 10.2 | <0.001 a |
BMI (kg/m2) | M ± SD | 29.8 ± 3.9 | 29.1 ± 2.7 | 31.0 ± 5.2 | 0.07 c |
BMI (category): | Normal weight; n (%) | 5 (5.7) | 1 (1.9) | 4 (12.1) | 0.008 b |
Overweight; n (%) | 45 (51.7) | 33 (61.1) | 12 (36.4) | ||
Moderate obesity; n (%) | 28 (32.2) | 18 (33.3) | 10 (30.3) | ||
Severe obesity; n (%) | 7 (8.0) | 2 (3.7) | 5 (15.2) | ||
Very severe obesity; n (%) | 2 (2.3) | 0 | 2 (6.1) | ||
Systolic BP (mmHg) | M ± SD | 153.6 ± 22.4 | 153 ± 22.6 | 154.5 ± 22.7 | 0.776 c |
Diastolic BP (mmHg) | M ± SD | 80.4 ± 11.0 | 79.5 ± 10.3 | 81.8 ± 12.0 | 0.349 c |
Total cholesterol (mg/dL) | M ± SD | 184.3 ± 37.8 | 180.2 ± 36.8 | 191 ± 39.1 | 0.195 a |
HDL cholesterol (mg/dL) | M ± SD | 46.5 ± 12.0 | 45.4 ± 12.5 | 48.4 ± 11.2 | 0.261 a |
LDL cholesterol (mg/dL) | M ± SD | 106.9 ± 27.6 | 105.1 ± 26.6 | 109.9 ± 29.5 | 0.441 a |
Triglycerides (mg/dL) | M ± SD | 143.5 ± 57.2 | 146.1 ± 56.7 | 139.4 ± 58.6 | 0.47 a |
HbA1c (%) | M ± SD | 8.3 ± 1.1 | 8.1 ± 1.0 | 8.6 ± 1.2 | 0.072 a |
Fasting glycaemia (mg/dL) | M ± SD | 164.7 ± 45.4 | 165.6 ± 51.4 | 163.2 ± 33.9 | 0.726 a |
Smokes tobacco | n (%) | 2 (2.3) | 2 (3.7) | 0 | <0.001 d |
Drinks alcohol | n (%) | 59 (67.8) | 47 (87.0) | 12 (36.4) | <0.001 d |
Exercises regularly | n (%) | 53 (60.9) | 34 (63.0) | 19 (57.6) | 0.656 b |
Hypertension | n (%) | 79 (90.8) | 50 (92.6) | 29 (87.9) | 0.471 f |
Dyslipidaemia | n (%) | 49 (56.3) | 31 (57.4) | 18 (54.5) | 0.827 b |
Retinopathy | n (%) | 27 (31.0) | 16 (29.6) | 11 (33.3) | 0.812 b |
Neuropathy | n (%) | 2 (2.3) | 2 (3.7) | 0 | 0.524 f |
Nephropathy | n (%) | 3 (3.4) | 2 (3.7) | 1 (3.0) | 0.680 d |
Metabolic Syndrome Characteristics | Total Sample | Males | Females | p-Value |
---|---|---|---|---|
(n = 87) | (n = 54) | (n = 33) | ||
BMI showing obesity; n (%) | 37 (42.5) | 20 (37.0) | 17 (51.5) | 0.264 a |
Triglycerides ≥ 150 mg/dL; n (%) | 35 (40.2) | 23 (42.6) | 12 (36.4) | 0.655 a |
HDL cholesterol < 40 mg/dL in males or <50 mg/dL in females; n (%) | 38 (43.7) | 19 (35.2) | 19 (57.6) | 0.040 a |
Blood pressure ≥ 130/85 mmHg | 78 (89.7) | 48 (88.9) | 30 (90.9) | 1 a |
Fasting glucose ≥ 100 mg/dL | 85 (97.7) | 52 (96.3) | 33 (100) | 0.524 b |
No. of clinical features for MS diagnosis in addition to increased waist circumference: | ||||
M ± SD | 3.1 ± 0.8 | 3.0 ± 0.7 | 3.4 ± 1.0 | |
Md (IQR) | 3.0 (1.0) | 3.0 (0.0) | 3.0 (1.0) | 0.109 c |
Risk for Myocardial Infarction, Stroke, or Vascular Death in the Next 10 Years (%) | ADVANCE Risk Score Mean (95% Confidence Interval) | Sex Differences p-Value | ||
---|---|---|---|---|
Total Sample | Males | Females | ||
(n = 87) | (n = 54) | (n = 33) | ||
Current risk score | 22.5 (20.3–24.7) | 24.2 (21.3–27) | 19.7 (16.2–23.3) | 0.028 |
Risk score if SBP < 130 mm Hg * | 13.4 (11.8–15.1) | 14.6 (12.4–16.8) | 11.7 (9.1–14.4) | 0.061 |
Risk score if SBP < 120 mm Hg *,** | 11.8 (10.3–13.3) | 13.0 (11.1–14.9) | 9.8 (7.6–11.9) | 0.024 |
Risk score if LDL cholesterol < 70 mg/dL * | 18.8 (16.6–20.9) | 20.3 (17.6–23.1) | 16.3 (12.9–19.8) | 0.026 |
Risk score if SBP < 120 mmHg and LDLC < 7 0 mg/dL * | 9.7 (8.4–11.0) | 10.8 (9.1–12.6) | 7.9 (6.1–9.7) | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, T.; Espírito-Santo, M.; Gonçalves, A.; Pinto, E.; De Sousa-Coelho, A.L.; Estêvão, M.D. Potential Impact of Metabolic Syndrome Control on Cardiovascular Risk in Elderly Patients with Diabetes: A Cross-Sectional Study. Diabetology 2024, 5, 321-332. https://doi.org/10.3390/diabetology5030024
Nascimento T, Espírito-Santo M, Gonçalves A, Pinto E, De Sousa-Coelho AL, Estêvão MD. Potential Impact of Metabolic Syndrome Control on Cardiovascular Risk in Elderly Patients with Diabetes: A Cross-Sectional Study. Diabetology. 2024; 5(3):321-332. https://doi.org/10.3390/diabetology5030024
Chicago/Turabian StyleNascimento, Tânia, Margarida Espírito-Santo, Adriana Gonçalves, Ezequiel Pinto, Ana Luísa De Sousa-Coelho, and Maria Dulce Estêvão. 2024. "Potential Impact of Metabolic Syndrome Control on Cardiovascular Risk in Elderly Patients with Diabetes: A Cross-Sectional Study" Diabetology 5, no. 3: 321-332. https://doi.org/10.3390/diabetology5030024
APA StyleNascimento, T., Espírito-Santo, M., Gonçalves, A., Pinto, E., De Sousa-Coelho, A. L., & Estêvão, M. D. (2024). Potential Impact of Metabolic Syndrome Control on Cardiovascular Risk in Elderly Patients with Diabetes: A Cross-Sectional Study. Diabetology, 5(3), 321-332. https://doi.org/10.3390/diabetology5030024