A Pilot Study on the Glucose-Lowering Effects of a Nutritional Supplement in People with Prediabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Nutritional Supplement
2.2. Study Design
2.3. Study Population
2.4. Nutritional Supplement Administration
2.5. Evaluation of Somatometric Characteristics, Laboratory, and Other Parameters
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Safety Evaluation
3.3. Efficacy of the Nutritional supplement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. Biomed. Res. Int. 2015, 2015, 925631. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, V.; Haselgrübler, R.; Lanzerstorfer, P.; Plochberger, B.; Borgmann, D.; Jacak, J.; Winkler, S.M.; Schröder, K.; Höglinger, O.; Weghuber, J. Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS ONE 2016, 11, e0148109. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Najafgholizadeh, A.; Kafeshani, M.; Sahebkar, A. Effect of purslane on blood lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.; Brzeziński, M.; Park, E.; Sandhu, A.; Xiao, D.; Edirisinghe, I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Polat, R.; Satıl, F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir-Turkey). J. Ethnopharmacol. 2012, 139, 626–641. [Google Scholar] [CrossRef]
- Sayah, K.; Marmouzi, I.; NaceiriMrabti, H.; Cherrah, Y.; Faouzi, M.E. Antioxidant Activity and Inhibitory Potential of Cistussalviifolius (L.) and Cistusmonspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed. Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef]
- Orhan, N.; Aslan, M.; Süküroğlu, M.; DeliormanOrhan, D. In vivo and in vitro antidiabetic effect of Cistuslaurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J. Ethnopharmacol. 2013, 146, 859–865. [Google Scholar] [CrossRef]
- Kühn, C.; Arapogianni, N.E.; Halabalaki, M.; Hempel, J.; Hunger, N.; Wober, J.; Skaltsounis, A.L.; Vollmer, G. Constituents from Cistus salvifolius (Cistaceae) activate peroxisome proliferator-activated receptor-γ but not -δ and stimulate glucose uptake by adipocytes. Planta Med. 2011, 77, 346–353. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Suksomboon, N.; Poolsup, N.; Yuwanakorn, A. Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J. Clin. Pharm. Ther. 2014, 39, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Sun, W.; Fu, Y.; Miao, L.; Cai, L. Zinc homeostasis in the metabolic syndrome and diabetes. Front. Med. 2013, 7, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Ruz, M.; Carrasco, F.; Rojas, P.; Basfi-Fer, K.; Hernández, M.C.; Pérez, A. Nutritional Effects of Zinc on Metabolic Syndrome and Type 2 Diabetes: Mechanisms and Main Findings in Human Studies. Biol. Trace Elem. Res. 2019, 188, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Dakshinamurti, K. Vitamins and their derivatives in the prevention and treatment of metabolic syndrome diseases (diabetes). Can. J. Physiol. Pharmacol. 2015, 93, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, J.; Landau, Z.; Dayan, Y.B.; Jakubowicz, D.; Grothe, T.; Perrinjaquet-Moccetti, T.; Boaz, M. Purslane Extract and Glucose Homeostasis in Adults with Type 2 Diabetes: A Double-Blind, Placebo-Controlled Clinical Trial of Efficacy and Safety. J. Med. Food 2016, 19, 133–140. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New creatinine-and cystatin C–based equations to estimate GFR without race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Patti, A.M.; Al-Rasadi, K.; Giglio, R.V.; Nikolic, D.; Mannina, C.; Castellino, G.; Chianetta, R.; Banach, M.; Cicero, A.F.; Lippi, G.; et al. Natural approaches in metabolic syndrome management. Arch. Med. Sci. 2018, 14, 422–441. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, V.; Neuhauser, C.; Aumiller, T.; Stallinger, A.; Iken, M.; Weghuber, J. Identification of Insulin-Mimetic Plant Extracts: From an In Vitro High-Content Screen to Blood Glucose Reduction in Live Animals. Molecules 2021, 26, 4346. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.I. Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J. Ethnopharmacol. 2011, 137, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.; Shoaibinobarian, N.; Dehghani, A.; Rad, A.; Mirmohammadali, S.N.; Alaeian, M.; Asbaghi, O. The effects of purslane consumption on glycemic control and oxidative stress: A systematic review and dose–response meta-analysis. Food Sci. Nutr. 2023, 11, 2530–2546. [Google Scholar] [CrossRef]
- Suganya, N.; Bhakkiyalakshmi, E.; Sarada, D.V.L.; Ramkumar, K.M. Reversibility of endothelial dysfunction in diabetes: Role of polyphenols. Br. J. Nutr. 2016, 116, 223–246. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Oak, M.H.; Auger, C.; Belcastro, E.; Park, S.H.; Lee, H.H.; Schini-Kerth, V.B. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic. Biol. Med. 2018, 122, 161–170. [Google Scholar] [CrossRef]
- Attaguile, G.; Russo, A.; Campisi, A.; Savoca, F.; Acquaviva, R.; Ragusa, N.; Vanella, A. Antioxidant activity and protective effect on DNA cleavage of extracts from Cistus incanus L. and Cistus monspeliensis L. Cell Biol. Toxicol. 2000, 16, 83–90. [Google Scholar] [CrossRef]
- Enomoto, S.; Okada, Y.; Guvenc, A.; Erdurak, C.S.; Coskun, M.; Okuyama, T. Inhibitory Effect of Traditional Turkish Folk Medicines on Aldose Reductase (AR) and Hematological Activity and on AR Inhibitory Activity of Quercetin-3-O-methyl Ether Isolated from Cistus laurifolius L. Biol. Pharm. Bull. 2004, 27, 1140–1143. [Google Scholar] [CrossRef]
- Lim, W.X.J.; Gammon, C.S.; von Hurst, P.; Chepulis, L.; Page, R.A. A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients 2021, 13, 3733. [Google Scholar] [CrossRef] [PubMed]
Characteristics * | At Baseline (t = 0 Months) | After Treatment (t = 3 Months) | p-Value |
---|---|---|---|
Body weight (kg) | 86.1 ± 17.7 | 85.6 ± 18.4 | 0.559 * |
BMI (kg/m2) | 29.1± 5.2 | 28.4 ± 7.2 | 0.308 * |
Waist circumference (cm) | 105.6 ± 14.2 | 104.4 ± 14.4 | 0.264 * |
Hip circumference (cm) | 109.8 ± 12.5 | 108.0 ± 11.3 | 0.410 * |
WHR | 0.96 ± 0.08 | 0.96 ± 0.07 | 0.881 * |
SBP (mmHg) | 135.8 ± 18.9 | 130.0 ± 17.4 | 0.143 * |
DBP (mmHg) | 81.1 ± 13.5 | 79.5 ± 11.1 | 0.491 * |
HbA1c (%) | 5.9 (5.7–6.1) | 5.7 (5.7–6.0) | 0.062 ** |
Fasting glucose (mg/dL) | 110.8 ± 7.0 | 103.9 ± 10.3 | 0.005 * |
Total cholesterol (mg/dL) | 209.4 ± 43.7 | 209.5 ± 38.7 | 0.744 * |
HDL (mg/dL) | 48.5 ± 13.0 | 48.2 ± 9.5 | 0.663 * |
LDL (mg/dL) | 116.3 ± 26.1 | 107.4 ± 22.0 | 0.283 * |
TG (mg/dL) | 138.5 (88.5–189.0) | 131.0 (114.0–159.5) | 0.527 ** |
Creatinine (mg/dL) | 0.71 ± 0.18 | 0.71 ± 0.15 | 0.723 * |
GFR | 103.4 ± 24.7 | 113.9 ± 32.8 | <0.001 * |
SGOT (U/L) | 21.7 ± 4.8 | 22.5 ± 8.5 | 0.558 * |
SGPT (U/L) | 26.2 ± 10.3 | 27.1 ± 12.5 | 0.456 * |
γ-GT (U/L) | 26.0 ± 13.2 | 26.1 ± 17.3 | 0.705 * |
ALP (IU/L) | 88.8 ± 36.7 | 77.1 ± 34.0 | 0.014 * |
Uric acid (mg/dL) | 5.7 ± 1.3 | 5.31 ± 1.1 | 0.016 * |
Fasting insulin (mL U/L) | 20.7 (9.3–34.2) | 15.1 (8.6–19.0) | 0.028 ** |
HOMA IR | 3.6 (2.5–8.9) | 3.5 (2.0–4.6) | 0.035 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bemplidakis, T.; Eleftheriadou, I.; Kosta, O.; Tentolouris, K.; Anastasiou, I.; Agelaki, C.; Lamprinos, D.; Papaioannou, A.; Kolovou, I.; Kouka, V.; et al. A Pilot Study on the Glucose-Lowering Effects of a Nutritional Supplement in People with Prediabetes. Diabetology 2023, 4, 418-426. https://doi.org/10.3390/diabetology4040035
Bemplidakis T, Eleftheriadou I, Kosta O, Tentolouris K, Anastasiou I, Agelaki C, Lamprinos D, Papaioannou A, Kolovou I, Kouka V, et al. A Pilot Study on the Glucose-Lowering Effects of a Nutritional Supplement in People with Prediabetes. Diabetology. 2023; 4(4):418-426. https://doi.org/10.3390/diabetology4040035
Chicago/Turabian StyleBemplidakis, Thrasyvoulos, Ioanna Eleftheriadou, Ourania Kosta, Konstantinos Tentolouris, Ioanna Anastasiou, Christina Agelaki, Dimitrios Lamprinos, Anastasia Papaioannou, Ioanna Kolovou, Vasiliki Kouka, and et al. 2023. "A Pilot Study on the Glucose-Lowering Effects of a Nutritional Supplement in People with Prediabetes" Diabetology 4, no. 4: 418-426. https://doi.org/10.3390/diabetology4040035
APA StyleBemplidakis, T., Eleftheriadou, I., Kosta, O., Tentolouris, K., Anastasiou, I., Agelaki, C., Lamprinos, D., Papaioannou, A., Kolovou, I., Kouka, V., Bristianou, M., Lanaras, L., & Tentolouris, N. (2023). A Pilot Study on the Glucose-Lowering Effects of a Nutritional Supplement in People with Prediabetes. Diabetology, 4(4), 418-426. https://doi.org/10.3390/diabetology4040035