Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments
Abstract
1. Introduction
2. Geological Occurrence and Distribution of REEs
3. Development of Analytical Techniques for REE Study
3.1. Ultraviolet-Visible (UV-Vis) Spectroscopy
3.2. X-Ray Fluorescence Spectrometry (XRF)
3.3. Instrumental Neutron Activation Analysis (INAA)
3.4. Indirect Radiometric-Based Measurement
3.5. Atomic Absorption Spectrometry (AAS)
3.6. Microwave Plasma Atomic Emission Spectrometry (MP-AES)
3.7. Laser-Induced Breakdown Spectroscopy (LIBS)
3.8. Inductively Coupled Plasma (ICP)
3.8.1. ICP-Optical Emission Spectrometry (ICP-OES)
3.8.2. ICP-Mass Spectrometry (ICP-MS)
3.8.3. ICP-Tandem MS (ICP-MS/MS)
3.8.4. ICP-TOF-MS
3.8.5. Magnetic Sector/High-Resolution ICP-MS (HR-ICP-MS)
3.8.6. MH-ICP-MS
3.8.7. Multi-Collector ICP-MS (MC-ICP-MS)
3.8.8. Thermal Ionization MS (TIMS)
3.8.9. Sensitive High-Resolution Ion Micro Probe (SHRIMP)
3.9. In Situ Analytical Techniques
3.9.1. X-Ray Diffractometry (XRD)
3.9.2. Electron Probe Micro Analyzer (EPMA)
3.9.3. Secondary Ion Mass Spectrometry (SIMS)/Ion Microprobe
3.9.4. Scanning Electron Microprobe-Energy Dispersive X-Ray Spectroscopy (SEM-EDS)
3.9.5. Laser Ablation ICP-MS (LA-ICP-MS)
3.9.6. LA-ICP-MS/MS
3.9.7. Laser Ablation Split Stream (LASS)
3.10. Handheld Analytical Techniques
3.10.1. Portable XRF
3.10.2. Portable LIBS
3.10.3. Portable XRD
3.10.4. Portable Raman Spectrometer
3.10.5. Portable FT-IR Spectrometry
3.11. Hyperspectral Remote Sensing Techniques
3.12. Chemical Sensors
3.13. Miscellaneous
4. Comparison of Analytical Techniques in REE Study
5. Conclusions and Challenges
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Lambert, C.E. Lanthanide Series of Metals. In Encyclopedia of Toxicology; Academic Press: Oxford, UK, 2005; pp. 691–694. [Google Scholar]
- Nurdeni; Saputra, H.A.; Atje Setiawan, A.; Budi Nurani, R.; Husein Hernandi, B.; Hedi. Quantitative Structure-Property Relationship of the Rare-Earth Elements-Dibutyl Dithiophosphate Derivative Complexes Using Principal Component Analysis. Fine Chem. Eng. 2024, 5, 333–344. [Google Scholar] [CrossRef]
- Horovitz, C.T. Chemical and physical properties of scandium and yttrium. In Biochemistry of Scandium and Yttrium, Part 1: Physical and Chemical Fundamentals; Springer: Berlin/Heidelberg, Germany, 1999; Volume 13A, pp. 29–74. [Google Scholar] [CrossRef]
- Drobniak, A.; Mastalerz, M. Rare Earth Elements: A brief overview. Indiana J. Earth Sci. 2022, 4. [Google Scholar] [CrossRef]
- Balaram, V. Sources and applications of rare earth elements. In Environmental Technologies to Treat Rare Earth Element Pollution: Principles and Engineering; IWA Publishing: London, UK, 2022; pp. 75–114. [Google Scholar]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Dijkstra, A.H.; Bakker, W.H.; Deon, F.; Marcatelli, C.; Plokker, M.P.; Hintzen, H.T. Identification of rare earth elements in synthetic and natural monazite and xenotime by visible-to-shortwave infrared reflectance spectroscopy. Phys. Chem. Miner. 2024, 51, 16. [Google Scholar] [CrossRef]
- Attry, B.; Subramanyam, K.S.V.; Tiwari, V.M.; Saikia, B.K. Exploring rare earth elements in coalmine overburden: Nanoscale insights from FESEM, TEM and XPS analysis. RSC Adv. 2025, 15, 19218–19235. [Google Scholar] [CrossRef]
- Klimpel, F.; Bau, M. Decoupling of scandium and rare earth elements in organic (nano)particle-rich boreal rivers draining the Fennoscandian Shield. Sci. Rep. 2023, 13, 10357. [Google Scholar] [CrossRef]
- Liang, B.; Gu, J.; Zeng, X.; Yuan, W.; Rao, M.; Xiao, B.; Hu, H. A Review of the Occurrence and Recovery of Rare Earth Elements from Electronic Waste. Molecules 2024, 29, 4624. [Google Scholar] [CrossRef] [PubMed]
- Palle Paul Mejame, M.; King, D.; Banhalmi-zakar, Z.; He, Y. Circular economy: A sustainable management strategy for rare earth elements consumption in Australia. Curr. Res. Environ. Sustain. 2022, 4, 100157. [Google Scholar] [CrossRef]
- Duchna, M.; Cieślik, I. Rare Earth Elements in New Advanced Engineering Applications. In Rare Earth Elements—Emerging Advances, Technology Utilization, and Resource Procurement; IntechOpen: London, UK, 2023. [Google Scholar]
- Preinfalk, C.; Morteani, G. The Industrial Applications of Rare Earth Elements. In Lanthanides, Tantalum and Niobium; Springer: Berlin/Heidelberg, Germany, 1989; pp. 359–370. [Google Scholar]
- Giese, E.C. Rare Earth Elements: Therapeutic and diagnostic applications in modern medicine. Clin. Med. Rep. 2018, 2, 1–2. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements, resources, applications, extraction technologies, chemical characterization, and global trade—A comprehensive review. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2025; pp. 193–233. [Google Scholar]
- Gkika, D.A.; Chalaris, M.; Kyzas, G.Z. Review of Methods for Obtaining Rare Earth Elements from Recycling and Their Impact on the Environment and Human Health. Processes 2024, 12, 1235. [Google Scholar] [CrossRef]
- Leal Filho, W.L.; Kotter, R.; Özuyar, P.G.; Abubakar, I.R.; Eustachio, J.H.P.P.; Matandirotya, N.R. Understanding Rare Earth Elements as Critical Raw Materials. Sustainability 2023, 15, 1919. [Google Scholar] [CrossRef]
- Dushyantha, N.; Ilankoon, I.M.S.K.; Ratnayake, N.P.; Premasiri, H.M.R.; Dharmaratne, P.G.R.; Abeysinghe, A.M.K.B.; Rohitha, L.P.S.; Chandrajith, R.; Ratnayake, A.S.; Dissanayake, D.M.D.O.K.; et al. Recovery Potential of Rare Earth Elements (REEs) from the Gem Mining Waste of Sri Lanka: A Case Study for Mine Waste Management. Minerals 2022, 12, 1411. [Google Scholar] [CrossRef]
- Dushyantha, N.; Ratnayake, N.; Premasiri, R.; Batapola, N.; Panagoda, H.; Jayawardena, C.; Chandrajith, R.; Ilankoon, I.M.S.K.; Rohitha, S.; Ratnayake, A.S.; et al. Geochemical exploration for prospecting new rare earth elements (REEs) sources: REE potential in lake sediments around Eppawala Phosphate Deposit, Sri Lanka. J. Asian Earth Sci. 2023, 243, 105515. [Google Scholar] [CrossRef]
- Judge, T.A.; Dadzie, R.A.; Skinner, W.; Abaka-Wood, G.B. Characterisation and magnetic separation of complex low grade saprolite ore for rare earth elements minerals recovery. Miner. Eng. 2025, 231, 109437. [Google Scholar] [CrossRef]
- Adeti, P.J.; Amoako, G.; Tandoh, J.B.; Gyampo, O.; Ahiamadjie, H.; Amable, A.S.K.; Kansaana, C.; Annan, R.A.T.; Bamford, A. Rare-earth element comparative analysis in chosen geological samples using nuclear-related analytical techniques. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2023, 540, 122–128. [Google Scholar] [CrossRef]
- Jolis, E.M.; Szentpéteri, K.; O’Brien, H.; Menzies, A.H.; Nikkola, P.; Heikkilä, P.; Butcher, A.R.; Heino, P. Modern scanning- and micro-analytical spectroscopy—Technologies and workflow to characterise critical raw materials: A case study of the Sokli Phosphate and Rare Earth Elements deposit, Finland. Ore Geol. Rev. 2025, 185, 106683. [Google Scholar] [CrossRef]
- VanBommel, S.J.; Sharma, S.; Kizovski, T.V.; Heirwegh, C.M.; Christian, J.R.; Knight, A.L.; Ganly, B.; Allwood, A.C.; Hurowitz, J.A.; Tice, M.M.; et al. Rare earth element assessment in Jezero crater using the Planetary Instrument for X-ray Lithochemistry on the Mars 2020 rover Perseverance: A case study of cerium. Icarus 2025, 425, 116355. [Google Scholar] [CrossRef]
- Balaram, V. Rare Earth Element Deposits: Sources, and Exploration Strategies. J. Geol. Soc. India 2022, 98, 1210–1216. [Google Scholar] [CrossRef]
- Al-Ani, T.; Molnár, F.; Lintinen, P.; Leinonen, S. Geology and Mineralogy of Rare Earth Elements Deposits and Occurrences in Finland. Minerals 2018, 8, 116355. [Google Scholar] [CrossRef]
- Balaram, V. Potential Future Alternative Resources for Rare Earth Elements: Opportunities and Challenges. Minerals 2023, 13, 425. [Google Scholar] [CrossRef]
- Dostal, J. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources 2017, 6, 34. [Google Scholar] [CrossRef]
- Patel, K.S.; Sharma, S.; Maity, J.P.; Martín-Ramos, P.; Fiket, Ž.; Bhattacharya, P.; Zhu, Y. Occurrence of uranium, thorium and rare earth elements in the environment: A review. Front. Environ. Sci. 2023, 10, 1058053. [Google Scholar] [CrossRef]
- Ober, J.A. Mineral Commodity Summaries 2018; U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Sager, M.; Wiche, O. Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review. Environments 2024, 11, 24. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Santosh, M.; Hu, J.; Wei, H.; Yang, J.; Liu, S.; Zhang, G.; Yang, D.; Li, S. A review of retrieving pristine rare earth element signatures from carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 586, 110765. [Google Scholar] [CrossRef]
- Ahmadnejad, F.; Mongelli, G. Geology, geochemistry, and genesis of REY minerals of the late Cretaceous karst bauxite deposits, Zagros Simply Folded Belt, SW Iran: Constraints on the ore-forming process. J. Geochem. Explor. 2022, 240, 107030. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408–412, 1339–1343. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.A.; Dreisinger, D.; Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28. [Google Scholar] [CrossRef]
- Voncken, J.H.L. SpringerBriefs in Earth Sciences. In The Rare Earth Elements; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Chen, W.; Honghui, H.; Bai, T.; Jiang, S. Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources 2017, 6, 51. [Google Scholar] [CrossRef]
- Thompson, W.; Lombard, A.; Santiago, E.; Singh, A. Mineralogical Studies in Assisting Beneficiation of Rare Earth Element Minerals from Carbonatite Deposits. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 1–5 August 2011; pp. 665–672. [Google Scholar]
- Gupta, C.K.; Krishnamurthy, N. Extractive metallurgy of rare earths. Int. Mater. Rev. 2013, 37, 197–248. [Google Scholar] [CrossRef]
- Cesbron, F.P. Mineralogy of the Rare-Earth Elements. In Lanthanides, Tantalum and Niobium; Springer: Berlin/Heidelberg, Germany, 1989; pp. 3–26. [Google Scholar]
- Rasoulnia, P.; Barthen, R.; Lakaniemi, A.-M. A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Crit. Rev. Environ. Sci. Technol. 2020, 51, 378–427. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, W. Review of allanite: Properties, occurrence and mineral processing technologies. Green Smart Min. Eng. 2024, 1, 40–52. [Google Scholar] [CrossRef]
- Long, K.R.; Van Gosen, B.S.; Foley, N.K.; Cordier, D. The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective. In Non-Renewable Resource Issues; Springer: Berlin/Heidelberg, Germany, 2012; pp. 131–155. [Google Scholar]
- Balaram, V.; Subramanyam, K.S.V. Sample preparation for geochemical analysis: Strategies and significance. Adv. Sample Prep. 2022, 1, 100010. [Google Scholar] [CrossRef]
- Dinali, G.S.; Ramos, S.J.; de Carvalho, T.S.; Carvalho, G.S.; de Oliveira, C.; Siqueira, J.O.; Guilherme, L.R.G. Dissolution techniques for determination of rare earth elements in phosphate products: Acid digestion or alkaline fusion? J. Geochem. Explor. 2019, 197, 114–121. [Google Scholar] [CrossRef]
- Helmeczi, E.; Wang, Y.; Brindle, I.D. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry. Talanta 2016, 160, 521–527. [Google Scholar] [CrossRef]
- Cora Jofre, F.; Savio, M. Infrared radiation: A sustainable and promising sample preparation alternative for inorganic analysis. TrAC Trends Anal. Chem. 2024, 170, 117469. [Google Scholar] [CrossRef]
- Balaram, V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments. Rapid Commun. Mass Spectrom. 2021, 35, e9065. [Google Scholar] [CrossRef]
- Leitzke, F.P.; Wegner, A.C.; Porcher, C.C.; Vieira, N.I.M.; Berndt, J.; Klemme, S.; Conceição, R.V. Whole-rock trace element analyses via LA-ICP-MS in glasses produced by sodium borate flux fusion. Braz. J. Geol. 2021, 51, e20200057. [Google Scholar] [CrossRef]
- Schramm, R. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements. Phys. Sci. Rev. 2016, 1, 20160061. [Google Scholar] [CrossRef]
- Hanchar, J.M.; Finch, R.J.; Hoskin, P.W.O.; Watson, E.B.; Cherniak, D.J.; Mariano, A.N. Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am. Mineral. 2001, 86, 667–680. [Google Scholar] [CrossRef]
- Kasar, S.; Murugan, R.; Arae, H.; Aono, T.; Sahoo, S.K. A Microwave Digestion Technique for the Analysis of Rare Earth Elements, Thorium and Uranium in Geochemical Certified Reference Materials and Soils by Inductively Coupled Plasma Mass Spectrometry. Molecules 2020, 25, 5178. [Google Scholar] [CrossRef]
- Lee, S.-G.; Ko, K.-S. Development of an analytical method for accurate and precise determination of rare earth element concentrations in geological materials using an MC-ICP-MS and group separation. Front. Chem. 2023, 10, 906160. [Google Scholar] [CrossRef]
- Wilschefski, S.; Baxter, M. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Jatteau, M.; Cauzid, J.; Fabre, C.; Voudouris, P.; Soulamidis, G.; Tarantola, A. Portable Analyses of Strategic Metal-Rich Minerals Using pXRF and pLIBS: Methodology and Database Development. Data 2025, 10, 12. [Google Scholar] [CrossRef]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106013. [Google Scholar] [CrossRef]
- Zhu, Y.; Nakano, K.; Shikamori, Y.; Itoh, A. Direct determination of rare earth elements in natural water samples by inductively coupled plasma tandem quadrupole mass spectrometry with oxygen as the reaction gas for separating spectral interferences. Spectrochim. Acta Part B At. Spectrosc. 2021, 179, 106100. [Google Scholar] [CrossRef]
- Fernández, A.S.; Gago, A.G.; Naveda, F.A.; Calleja, J.G.; Zawadzka, A.; Czarnocki, Z.; Barrallo, J.C.M.; Menéndez, R.M.S.; Rodríguez-González, P.; Alonso, J.I.G. Evaluation of different internal standardization approaches for the quantification of melatonin in cell culture samples by multiple heart-cutting two dimensional liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2022, 1663, 462752. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Gysi, A.P. UV-Vis spectrophotometric determination of rare earth elements (REE) speciation at near-neutral to alkaline pH. Part I: M-cresol purple properties from 25–75 °C and Er hydrolysis. Dalton Trans. 2024, 53, 13129–13141. [Google Scholar] [CrossRef]
- Dadi, M.; Yasir, M. Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric and Related Other Analysis. In Colorimetry; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Alaboodi, A.S.; Kadhim, S.A.; Hussein, A.S. Ultraviolet-Visible Spectroscopy, Importance, Principle, Structure and Most Important Applications: A Study Review. Int. J. Nov. Res. Phys. Chem. Math. 2025, 12, 53–60. [Google Scholar] [CrossRef]
- Pu, Q.; Liu, P.; Hu, Z.; Su, Z. Spectrophotometric Determination of the Sum of Rare Earth Elements by Flow-Injection on-Line Preconcentration with a Novel Aminophosphonic–Carboxylic Acid Resin. Anal. Lett. 2002, 35, 1401–1414. [Google Scholar] [CrossRef]
- Saputra, H.A.; Anggraeni, A.; Mutalib, A.; Bahti, H.H. Development of a Fast Simultaneous Analysis Method for Determination of Middle Rare-Earth Elements in Monazite Samples. J. Kim. Sains Dan Apl. 2021, 24, 177–184. [Google Scholar] [CrossRef]
- Wyantuti, S.; Nurwulanda, S.; Mardiah, N.; Anggraeni, A.; Pratomo, U.; Fauzia, R.P.; Bahti, H.H. Comparative Study of Voltammetric Analysis with UV-Vis Spectrophotometry in Determining the Results of Liquid-Liquid Extraction of Samarium (III). J. Kim. Val. 2024, 10, 229–236. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef]
- Neikov, O.D.; Lotsko, D.V.; Gopienko, V.G. Powder characterization and testing. Handb. Non-Ferr. Met. Powders 2009, 2, 7–44. [Google Scholar] [CrossRef]
- Jaworowski, R.J.; Cosgrove, J.F.; Bracco, D.J.; Walters, R.M. Determination of trace rare earths by X-ray excited optical fluorescence. Spectrochim. Acta Part B At. Spectrosc. 1968, 23, 751–763. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, J.; Tang, Q.; Zhang, J.; Jiang, X.; Hou, X. Phosphonic Acid-Functionalized MIL-53(Al) As an Efficient Sorbent for Trace Rare Earth Elements Preconcentration, Storage and Their Determination by X-ray Fluorescence Spectrometry. Anal. Chem. 2023, 95, 14169–14174. [Google Scholar] [CrossRef] [PubMed]
- Juras, S.J.; Hickson, C.J.; Horsky, S.J.; Godwin, C.I.; Mathews, W.H. A practical method for the analysis of rare-earth elements in geological samples by graphite furnace atomic absorption and X-ray fluorescence. Chem. Geol. 1987, 64, 143–148. [Google Scholar] [CrossRef]
- De Vito, I.E.; Olsina, R.A.; Masi, A.N. Enrichment method for trace amounts of rare earth elements using chemofiltration and XRF determination. Fresenius’ J. Anal. Chem. 2000, 368, 392–396. [Google Scholar] [CrossRef]
- Wu, W.; Xu, T.; Hao, Q.; Wang, Q.; Zhang, S.; Zhao, C. Applications of X-ray fluorescence analysis of rare earths in China. J. Rare Earths 2010, 28, 30–36. [Google Scholar] [CrossRef]
- Losev, V.N.; Buyko, O.V.; Borodina, E.V.; Zhizhaev, A.M.; Samoilo, A.S. Preconcentration and ICP-OES determination of rare earth elements using silicas chemically modified with aminophosphonic groups in fossil raw materials. Int. J. Environ. Anal. Chem. 2023, 104, 7523–7539. [Google Scholar] [CrossRef]
- De Pauw, E.; Tack, P.; Lindner, M.; Ashauer, A.; Garrevoet, J.; Vekemans, B.; Falkenberg, G.; Brenker, F.E.; Vincze, L. Highly Sensitive Nondestructive Rare Earth Element Detection by Means of Wavelength-Dispersive X-ray Fluorescence Spectroscopy Enabled by an Energy Dispersive pn-Charge-Coupled-Device Detector. Anal. Chem. 2019, 92, 1106–1113. [Google Scholar] [CrossRef]
- Sarker, S.K.; Bruckard, W.; Haque, N.; Roychand, R.; Bhuiyan, M.; Pramanik, B.K. Characterization of a carbonatite-derived mining tailing for the assessment of rare earth potential. Process Saf. Environ. Prot. 2023, 173, 154–162. [Google Scholar] [CrossRef]
- Yao, M.; Wang, D.; Zhao, M. Element Analysis Based on Energy-Dispersive X-Ray Fluorescence. Adv. Mater. Sci. Eng. 2015, 2015, 290593. [Google Scholar] [CrossRef]
- Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, B.; Seshadreesan, N.P.; Nair, K.G.M. Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 251, 496–500. [Google Scholar] [CrossRef]
- Glascock, M.D. Instrumental Neutron Activation Analysis and Its Application to Cultural Heritage Materials. In Handbook of Cultural Heritage Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 69–94. [Google Scholar]
- Alghem Hamidatou, L. Overview of Neutron Activation Analysis. In Advanced Technologies and Applications of Neutron Activation Analysis; IntechOpen: London, UK, 2019. [Google Scholar]
- Mathew, J.; Kshirsagar, R.; Abidin, D.Z.; Griffin, J.; Kanarachos, S.; James, J.; Alamaniotis, M.; Fitzpatrick, M.E. A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data. Sci. Rep. 2023, 13, 9948. [Google Scholar] [CrossRef]
- Krishnan, K.; Saion, E. Distributions of rare earth element (REE) in mangrove surface sedimentby nuclear technique. INTI J. 2022, 2022, 1–6. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Bounouira, H.; Abbo, M.A.; Amsil, H.; Didi, A.; Aarab, I. Utilizing the k0-IAEA program to determine rare earth elements in soil samples from gold-mining areas in Sudan. J. Radioanal. Nucl. Chem. 2023, 332, 1707–1721. [Google Scholar] [CrossRef]
- Kin, F.D.; Prudêncio, M.I.; Gouveia, M.Â.; Magnusson, E. Determination of Rare Earth Elements in Geological Reference Materials: A Comparative Study by INAA and ICP-MS. Geostand. Newsl. 2007, 23, 47–58. [Google Scholar] [CrossRef]
- El-Taher, A. Nuclear Analytical Techniques for Detection of Rare Earth Elements. J. Radiat. Nucl. Appl. 2018, 3, 53–64. [Google Scholar] [CrossRef]
- Ghannadpour, S.S.; Hezarkhani, A. Prospecting rare earth elements (REEs) using radiation measurement: Case study of Baghak mine, Central Sangan iron ore mine, NE of Iran. Environ. Earth Sci. 2022, 81, 363. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, W.; Liu, J.; Liang, X.; Yuan, W.; Ouyang, Q.e.; Liu, S.; Gok, C.; Wang, J.; Song, G. Preliminary Screening of Soils Natural Radioactivity and Metal(loid) Content in a Decommissioned Rare Earth Elements Processing Plant, Guangdong, China. Int. J. Environ. Res. Public Health 2022, 19, 14566. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Khan, R.; Tamim, U.; Adak, S.; Bhunia, G.S.; Sengupta, D. Geochemical and Radionuclide studies of sediments as tracers for enrichment of beach and alluvial placers along the eastern coast of India. Reg. Stud. Mar. Sci. 2023, 63, 103003. [Google Scholar] [CrossRef]
- Walsh, A. The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta 1955, 7, 108–117. [Google Scholar] [CrossRef]
- L’vov, B.V. A continuum source vs. line source on the way toward absolute graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1999, 54, 1637–1646. [Google Scholar] [CrossRef]
- Ring, G.; O’Mullane, J.; O’Riordan, A.; Furey, A. Trace metal determination as it relates to metallosis of orthopaedic implants: Evolution and current status. Clin. Biochem. 2016, 49, 617–635. [Google Scholar] [CrossRef]
- Balaram, V. Microwave plasma atomic emission spectrometry (MP-AES) and its applications—A critical review. Microchem. J. 2020, 159, 105483. [Google Scholar] [CrossRef]
- Kamala, C.T.; Balaram, V.; Dharmendra, V.; Satyanarayanan, M.; Subramanyam, K.S.V.; Krishnaiah, A. Application of Microwave Plasma Atomic Emission Spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad City. Environ. Monit. Assess. 2014, 186, 7097–7113. [Google Scholar] [CrossRef]
- Balaram, V.; Vummiti, D.; Roy, P.; Taylor, C.; Kar, P.; Raju, A.K.; Abburi, K. Determination of precious metals in rocks and ores by microwave plasma-atomic emission spectrometry for geochemical prospecting studies. Curr. Sci. 2013, 104, 1207–1215. [Google Scholar]
- Fayyaz, A.; Baig, M.A.; Waqas, M.; Liaqat, U. Analytical Techniques for Detecting Rare Earth Elements in Geological Ores: Laser-Induced Breakdown Spectroscopy (LIBS), MFA-LIBS, Thermal LIBS, Laser Ablation Time-of-Flight Mass Spectrometry, Energy-Dispersive X-ray Spectroscopy, Energy-Dispersive X-ray Fluorescence Spectrometer, and Inductively Coupled Plasma Optical Emission Spectroscopy. Minerals 2024, 14, 1004. [Google Scholar] [CrossRef]
- Pedarnig, J.D.; Trautner, S.; Grünberger, S.; Giannakaris, N.; Eschlböck-Fuchs, S.; Hofstadler, J. Review of Element Analysis of Industrial Materials by In-Line Laser—Induced Breakdown Spectroscopy (LIBS). Appl. Sci. 2021, 11, 9274. [Google Scholar] [CrossRef]
- Gaft, M.; Raichlin, Y.; Pelascini, F.; Panzer, G.; Motto Ros, V. Imaging rare-earth elements in minerals by laser-induced plasma spectroscopy: Molecular emission and plasma-induced luminescence. Spectrochim. Acta Part B At. Spectrosc. 2019, 151, 12–19. [Google Scholar] [CrossRef]
- Afgan, M.S.; Hou, Z.; Song, W.; Liu, J.; Song, Y.; Gu, W.; Wang, Z. On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy. Chemosensors 2022, 10, 350. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen, M.; Abedin, K.M.; Haider, A.F.M.Y.; Galić, N. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J. Spectrosc. 2022, 2022, 3887038. [Google Scholar] [CrossRef]
- Abedin, K.M.; Haider, A.F.M.Y.; Rony, M.A.; Khan, Z.H. Identification of multiple rare earths and associated elements in raw monazite sands by laser-induced breakdown spectroscopy. Opt. Laser Technol. 2011, 43, 45–49. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Jain, J.C.; Goueguel, C.L.; McIntyre, D.L.; Singh, J.P. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2017, 72, 114–121. [Google Scholar] [CrossRef]
- Unnikrishnan, V.K.; Nayak, R.; Devangad, P.; Tamboli, M.M.; Santhosh, C.; Kumar, G.A.; Sardar, D.K. Calibration based laser-induced breakdown spectroscopy (LIBS) for quantitative analysis of doped rare earth elements in phosphors. Mater. Lett. 2013, 107, 322–324. [Google Scholar] [CrossRef]
- Long, J.; Song, W.; Hou, Z.; Wang, Z. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2023, 25, 075501. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, J.; Jiang, J.; Zhou, Z.; Ye, S. Automatic Coal-Rock Recognition by Laser-Induced Breakdown Spectroscopy Combined with an Artificial Neural Network. Spectroscopy 2023, 38, 25–32. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Jain, J.C.; Bol’shakov, A.A.; McIntyre, D.L. Chemistry imaging and distribution analysis of rare earth elements in coal using LIBS and LA-ICP-MS instruments. Int. J. Coal Geol. 2025, 301, 104710. [Google Scholar] [CrossRef]
- Olesik, J. ICP-OES capabilities, developments, limitations, and any potential challengers? Spectroscopy 2020, 35, 18–21. [Google Scholar]
- Nóbrega, J.; Schiavo, D.; Amaral, C.; Barros, J.; Mogueira, A.R.; Virgilio, A.; Machado, R. Determination of rare earth elements in geological and agricultural samples by ICP-OES. Spectroscopy 2017, 32, 32–36. [Google Scholar]
- Jaron, I.; Kudowska, B.; Bulska, E. Determination of rare earth elements in geological samples by ICP-OES. At. Spectrosc. 2000, 21, 105–110. [Google Scholar]
- Makombe, M.; Horst, C.v.d.; Silwana, B.; Iwuoha, E.; Somerset, V. Optimisation of Parameters for Spectroscopic Analysis of Rare Earth Elements in Sediment Samples. In Rare Earth Element; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Gorbatenko, A.A.; Revina, E.I. A review of instrumental methods for determination of rare earth elements. Inorg. Mater. 2015, 51, 1375–1388. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Ambade, B. Extractive separation of rare earth elements and their determination by inductively coupled plasma optical emission spectrometry in geological samples. J. Anal. At. Spectrom. 2020, 35, 1395–1404. [Google Scholar] [CrossRef]
- Beauchemin, D. Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2008, 80, 4455–4486. [Google Scholar] [CrossRef]
- Thomas, R. 40 Years Old and Still Solving Problems: Evolution of the ICP-MS Application Landscape. Spectroscopy 2023, 38, 8–13. [Google Scholar] [CrossRef]
- Houk, R.S.; Fassel, V.A.; Flesch, G.D.; Svec, H.J.; Gray, A.L.; Taylor, C.E. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem. 2002, 52, 2283–2289. [Google Scholar] [CrossRef]
- Mazarakioti, E.C.; Zotos, A.; Thomatou, A.-A.; Kontogeorgos, A.; Patakas, A.; Ladavos, A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products’ and Foods’ Origin. Foods 2022, 11, 3705. [Google Scholar] [CrossRef]
- Nakamura, A.; Kubota, R.; Ohta, A. Multi-element analysis of geological samples using ICP-MS equipped with integrated sample introduction and aerosol dilution systems. Bull. Geol. Surv. Jpn. 2023, 74, 71–85. [Google Scholar] [CrossRef]
- Bulska, E.; Wagner, B. Quantitative aspects of inductively coupled plasma mass spectrometry. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150369. [Google Scholar] [CrossRef]
- Montaser, A. Inductively Coupled Plasma Mass Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- McMahon, P.G. ICP-MS–ICP-MS instrumentation, ICP-MS analysis, strengths and limitations. Technol. Netw. 2021. Available online: https://www.technologynetworks.com/analysis/webinars/changing-the-landscape-of-screening-ai-powered-asms-ligand-identification-404407 (accessed on 10 August 2025).
- Iglesias, M.n.; Gilon, N.; Poussel, E.; Mermet, J.-M. Evaluation of an ICP-collision/reaction cell-MS system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions. J. Anal. At. Spectrom. 2002, 17, 1240–1247. [Google Scholar] [CrossRef]
- Mnculwane, H.T. Rare Earth Elements Determination by Inductively Coupled Plasma Mass Spectrometry after Alkaline Fusion Preparation. Analytica 2022, 3, 135–143. [Google Scholar] [CrossRef]
- Lin, R.; Bank, T.L.; Roth, E.A.; Granite, E.J.; Soong, Y. Organic and inorganic associations of rare earth elements in central Appalachian coal. Int. J. Coal Geol. 2017, 179, 295–301. [Google Scholar] [CrossRef]
- Buyko, O.V.; Metelitsa, S.I.; Losev, V.N.; Panasenko, A.E.; Shimanskii, A.F. Biosilica layer-by-layer modified with polyamines and carboxyarsenazo for REE preconcentration prior to ICP-MS determination in lignites and volcanic fumarole sediment. Anal. Methods 2020, 12, 3813–3822. [Google Scholar] [CrossRef]
- Baghaliannejad, R.; Aghahoseini, M.; Amini, M.K. Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP. Talanta 2021, 222, 121509. [Google Scholar] [CrossRef]
- Xu, J.; Li, F.; Xia, F.; Zhu, T.; Wu, D.; Chingin, K.; Chen, H. High throughput online sequential extraction of natural rare earth elements and determination by mass spectrometry. Sci. China Chem. 2021, 64, 642–649. [Google Scholar] [CrossRef]
- Petrova, K.V.; Es’kina, V.V.; Baranovskaya, V.B.; Doronina, M.S.; Korotkova, N.A.; Arkhipenko, A.A. Separation and Preconcentration of Impurities in Rare-Earth-Based Materials for Spectrometric Methods. Russ. J. Non-Ferr. Met. 2022, 63, 510–525. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Ramzan, M.; Kifle, D.; Wibetoe, G. A simple separation system for elimination of molecular interferences for purity determination of europium and ytterbium oxides by HPLC-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 2594–2599. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Gregorio, C.G.C.; Arcilla, C. Determination of Scandium (Sc), Yttrium (Y), and Rare-Earth Elements (REEs) in Mafic and Ultramafic Rock Powder by a Modified and Validated Digestion Protocol and Inductively Coupled Plasma—Mass Spectrometry (ICP-MS). Anal. Lett. 2022, 56, 932–943. [Google Scholar] [CrossRef]
- Liu, W.; An, Y.; Qu, Q.; Li, P.; Zhang, L.; Li, C.; Wei, S.; Zhou, H.; Chen, J. An efficient method for the separation of REEs from Ba for the accurate determination of REE content in Ba-rich samples by ICP-MS. J. Anal. At. Spectrom. 2023, 38, 449–456. [Google Scholar] [CrossRef]
- Wysocka, I. Determination of rare earth elements concentrations in natural waters—A review of ICP-MS measurement approaches. Talanta 2021, 221, 121636. [Google Scholar] [CrossRef] [PubMed]
- Palozzi, J.; Bailey, J.G.; Tran, Q.A.; Stanger, R. A characterization of rare earth elements in coal ash generated during the utilization of Australian coals. Int. J. Coal Prep. Util. 2023, 43, 2106–2135. [Google Scholar] [CrossRef]
- El-Taher, A.; Ashry, A.; Ene, A.; Almeshari, M.; Zakaly, H.M. Determination of phosphate rock mines signatures using XRF and ICP-MS elemental analysis techniques: Radionuclides, oxides, rare earth, and trace elements. Rom. Rep. Phys. 2023, 75, 701. [Google Scholar]
- Krasavtseva, E.; Sandimirov, S.; Elizarova, I.; Makarov, D. Assessment of Trace and Rare Earth Elements Pollution in Water Bodies in the Area of Rare Metal Enterprise Influence: A Case Study—Kola Subarctic. Water 2022, 14, 3406. [Google Scholar] [CrossRef]
- Li, H.; Tong, R.; Guo, W.; Xu, Q.; Tao, D.; Lai, Y.; Jin, L.; Hu, S. Development of a fully automatic separation system coupled with online ICP-MS for measuring rare earth elements in seawater. RSC Adv. 2022, 12, 24003–24013. [Google Scholar] [CrossRef]
- Agnieszka Wysocka, I.; Kaczor-Kurzawa, D.; Porowski, A. Development and validation of seaFAST-ICP-QMS method for determination of rare earth elements total concentrations in natural mineral waters. Food Chem. 2022, 388, 133008. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Huang, K.; Wang, Z. Multielemental Determination of Rare Earth Elements in Seawater by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) After Matrix Separation and Pre-concentration With Crab Shell Particles. Front. Environ. Sci. 2021, 9, 781996. [Google Scholar] [CrossRef]
- Balaram, V. Inductively Coupled Plasma-Tandem Mass Spectrometry (ICP-MS/MS) and Its Applications. J. ISAS 2022, 1, 1–26. [Google Scholar] [CrossRef]
- Zhu, Y. Determination of Rare Earth Elements by Inductively Coupled Plasma–Tandem Quadrupole Mass Spectrometry with Nitrous Oxide as the Reaction Gas. Front. Chem. 2022, 10, 912938. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Thoss, V.; Ribeiro Guevara, S.; Urgast, D.; Raab, A.; Mastrolitti, S.; Feldmann, J. Assessing rare earth elements in quartz rich geological samples. Appl. Radiat. Isot. 2016, 107, 323–329. [Google Scholar] [CrossRef]
- Lancaster, S.T.; Prohaska, T.; Irrgeher, J. Characterisation of gas cell reactions for 70+ elements using N2O for ICP tandem mass spectrometry measurements. J. Anal. At. Spectrom. 2023, 38, 1135–1145. [Google Scholar] [CrossRef]
- Zhu, Y. Determination of rare earth elements in seawater samples by inductively coupled plasma tandem quadrupole mass spectrometry after coprecipitation with magnesium hydroxide. Talanta 2020, 209, 120536. [Google Scholar] [CrossRef]
- Ntiharirizwa, S.; Boulvais, P.; Poujol, M.; Branquet, Y.; Morelli, C.; Ntungwanayo, J.; Midende, G. Geology and U-Th-Pb Dating of the Gakara REE Deposit, Burundi. Minerals 2018, 8, 394. [Google Scholar] [CrossRef]
- Myers, D.P.; Li, G.; Yang, P.; Hieftje, G.M. An inductively coupled plasma-time-of-flight mass spectrometer for elemental analysis. Part I: Optimization and characteristics. J. Am. Soc. Mass Spectrom. 1994, 5, 1008–1016. [Google Scholar] [CrossRef]
- Mahoney, P.P.; Ray, S.J.; Hieftje, G.M.; Li, G. Continuum background reduction in orthogonal-acceleration time-of-flight mass spectrometry with continuous ion sources. J. Am. Soc. Mass Spectrom. 1997, 8, 125–131. [Google Scholar] [CrossRef][Green Version]
- Balaram, V.; Satyanarayanan, M.; Murthy, P.K.; Mohapatra, C.; Prasad, K.L. Chemical Characterization of Cobalt Crust from Afanasy-Nikitin Seamount in the Eastern Indian Ocean by Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Mapan 2013, 28, 63–77. [Google Scholar] [CrossRef]
- Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M. Rare earth elements determined in Antarctic ice by inductively coupled plasma—Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study. Anal. Chim. Acta 2008, 621, 140–147. [Google Scholar] [CrossRef]
- Nakazato, M.; Asanuma, H.; Niki, S.; Iwano, H.; Hirata, T. Depth-Profiling Determinations of Rare Earth Element Abundances and U-Pb Ages from Zircon Crystals Using Sensitivity-Enhanced Inductively Coupled Plasma-Time of Flight-Mass Spectrometry. Geostand. Geoanal. Res. 2022, 46, 603–620. [Google Scholar] [CrossRef]
- Peng, J.; Li, D.; Hollings, P.; Fu, Y.; Sun, X. Visualization of critical metals in marine nodules by rapid and high-resolution LA-ICP-TOFMS mapping. Ore Geol. Rev. 2023, 154, 105342. [Google Scholar] [CrossRef]
- Chew, D.; Drost, K.; Marsh, J.H.; Petrus, J.A. LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chem. Geol. 2021, 559, 119917. [Google Scholar] [CrossRef]
- Manard, B.T.; Bradley, V.C.; Quarles, C.D.; Hendriks, L.; Dunlap, D.R.; Hexel, C.R.; Sullivan, P.; Andrews, H.B. Towards Automated and High-Throughput Quantitative Sizing and Isotopic Analysis of Nanoparticles via Single Particle-ICP-TOF-MS. Nanomaterials 2023, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, N.; Hall, E.F.H.; Sanderson, N.E. Communication. Inductively coupled plasma as an ion source for high-resolution mass spectrometry. J. Anal. At. Spectrom. 1989, 4, 801–803. [Google Scholar] [CrossRef]
- Satyanarayanan, M.; Balaram, V.; Sawant, S.S.; Subramanyam, K.S.V.; Vamsi Krishna, G.; Dasaram, B.; Manikyamba, C. Rapid Determination of REEs, PGEs, and Other Trace Elements in Geological and Environmental Materials by High Resolution Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Thomas, R. A beginner’s guide to ICP-MS-Part VII: Mass separation devices-Double-focusing magnetic-sector technology. Spectroscopy 2001, 16, 22–27. [Google Scholar]
- Balaram, V.; Roy, P.; Subramanyam, K.S.V.; Durai, L.; Mohan, M.R.; Satyanarayanan, M.; Vani, K. REE geochemistry of seawater from Afanasy-Nikitin seamount in the eastern equatorial Indian Ocean by high resolution inductively coupled plasma mass spectrometry. Indian J. Geo-Mar. Sci. 2015, 44, 339–347. [Google Scholar]
- Gao, J.; Lv, D.; Tom van Loon, A.J.; Hower, J.C.; Raji, M.; Yang, Y.; Ren, Z.; Wang, Y.; Zhang, Z. Reconstruction of provenance and tectonic setting of the Middle Jurrasic Yan’an Formation (Ordos Basin, North China) by analysis of major, trace and rare earth elements in the coals. Ore Geol. Rev. 2022, 151, 105218. [Google Scholar] [CrossRef]
- Pedreira, W.R.; Sarkis, J.E.S.; Rodrigues, C.; Tomiyoshi, I.A.; da Silva Queiroz, C.A.; Abrão, A. Determination of trace amounts of rare earth elements in highly pure praseodymium oxide by double focusing inductively coupled plasma mass spectrometry and high-performance liquid chromatography. J. Alloys Compd. 2001, 323–324, 49–52. [Google Scholar] [CrossRef]
- Soto-Jiménez, M.F.; Martinez-Salcido, A.I.; Morton-Bermea, O.; Ochoa-Izaguirre, M.J. Lanthanoid analysis in seawater by seaFAST-SP3™ system in off-line mode and magnetic sector high-resolution inductively coupled plasma source mass spectrometer. MethodsX 2022, 9, 101625. [Google Scholar] [CrossRef]
- Bäuchle, M.; Lüdecke, T.; Rabieh, S.; Calnek, K.; Bromage, T.G. Quantification of 71 detected elements from Li to U for aqueous samples by simultaneous-inductively coupled plasma-mass spectrometry. RSC Adv. 2018, 8, 37008–37020. [Google Scholar] [CrossRef]
- Louis Brown, J.H.B.; Augustyn, A.; Gaur, A.; Lotha, G.; Rodriguez, E.; Setia, V.; Young, G. The Editors of Encyclopaedia Britannica. In Electrostatic Field Analysis in Mass Spectrometry in General Principles. 2025. Available online: https://www.britannica.com/science/mass-spectrometry/Hydrogen-carbon-nitrogen-oxygen-and-sulfur-in-nature (accessed on 10 August 2025).
- Walder, A.J.; Freedman, P.A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. At. Spectrom. 1992, 7, 571–575. [Google Scholar] [CrossRef]
- Balaram, V.; Rahaman, W.; Roy, P. Recent advances in MC-ICP-MS applications in Earth and environmental sciences: Challenges and solutions. Geosyst. Geoenviron. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Bai, J.-H.; Liu, F.; Zhang, Z.-F.; Ma, J.-L.; Zhang, L.; Liu, Y.-F.; Zhong, S.-X.; Wei, G.-J. Simultaneous measurement stable and radiogenic Nd isotopic compositions by MC-ICP-MS with a single-step chromatographic extraction technique. J. Anal. At. Spectrom. 2021, 36, 2695–2703. [Google Scholar] [CrossRef]
- Kent, A.J.R.; Jacobsen, B.; Peate, D.W.; Waight, T.E.; Baker, J.A. Isotope Dilution MC-ICP-MS Rare Earth Element Analysis of Geochemical Reference Materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2, BCR-2G, JB-2, WS-E, W-2, AGV-1 and AGV-2. Geostand. Geoanal. Res. 2007, 28, 417–429. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Baker, J.; Waight, T.; Ulfbeck, D. Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochim. Cosmochim. Acta 2002, 66, 3635–3646. [Google Scholar] [CrossRef]
- Li, X.-C.; Yang, K.-F.; Spandler, C.; Fan, H.-R.; Zhou, M.-F.; Hao, J.-L.; Yang, Y.-H. The effect of fluid-aided modification on the Sm-Nd and Th-Pb geochronology of monazite and bastnäsite: Implication for resolving complex isotopic age data in REE ore systems. Geochim. Cosmochim. Acta 2021, 300, 1–24. [Google Scholar] [CrossRef]
- Guerra-Sommer, M.; Cazzulo-Klepzig, M.; Menegat, R.; Formoso, M.L.L.; Basei, M.Â.S.; Barboza, E.G.; Simas, M.W. Geochronological data from the Faxinal coal succession, southern Paraná Basin, Brazil: A preliminary approach combining radiometric U-Pb dating and palynostratigraphy. J. S. Am. Earth Sci. 2008, 25, 246–256. [Google Scholar] [CrossRef]
- Ramesh, R.; Ramanathan, A.; Ramesh, S.; Purvaja, R.; Subramanian, V. Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochem. J. 2000, 34, 295–319. [Google Scholar] [CrossRef]
- Natarajan, T.; Inoue, K.; Sahoo, S.K. Rare Earth Elements Geochemistry and 234U/238U, 235U/238U Isotope Ratios of the Kanyakumari Beach Placer Deposits: Occurrence and Provenance. Minerals 2023, 13, 886. [Google Scholar] [CrossRef]
- Compston, W.; Pidgeon, R.T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 1986, 321, 766–769. [Google Scholar] [CrossRef]
- Balaram, V. Current and emerging analytical techniques for geochemical and geochronological studies. Geol. J. 2020, 56, 2300–2359. [Google Scholar] [CrossRef]
- Sindern, S. Analysis of rare earth elements in rock and mineral samples by ICP-MS and LA-ICP-MS. Phys. Sci. Rev. 2017, 2, 20160066. [Google Scholar] [CrossRef]
- Campbell, L.S.; Compston, W.; Sircombe, K.N.; Wilkinson, C.C. Zircon from the East Orebody of the Bayan Obo Fe–Nb–REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events. Contrib. Mineral. Petrol. 2014, 168, 1041. [Google Scholar] [CrossRef]
- Bhunia, S.; Chalapathi Rao, N.V.; Belyatsky, B.; Talukdar, D.; Pandey, R.; Lehmann, B. SHRIMP U-Pb zircon geochronology of the carbonatite-hosted REE deposit of Kamthai, Late Cretaceous polychronous Sarnu Dandali alkaline complex, NW India: Links to plume-related metallogeny and CO2 outgassing at the K-Pg boundary. Gondwana Res. 2022, 112, 116–125. [Google Scholar] [CrossRef]
- Sano, Y.; Terada, K.; Fukuoka, T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: Lack of matrix dependency. Chem. Geol. 2002, 184, 217–230. [Google Scholar] [CrossRef]
- Kolker, A.; Scott, C.; Hower, J.C.; Vazquez, J.A.; Lopano, C.L.; Dai, S. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 2017, 184, 1–10. [Google Scholar] [CrossRef]
- Hong, J.; Khan, T.; Li, W.; Khalil, Y.S.; Narejo, A.A.; Rashid, M.U.; Zeb, M.J. SHRIMP U–Pb ages, mineralogy, and geochemistry of carbonatite–alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: Implications for petrogenesis and REE mineralization. Ore Geol. Rev. 2021, 139, 104547. [Google Scholar] [CrossRef]
- Balaram, V.; Sawant, S.S. Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals 2022, 12, 394. [Google Scholar] [CrossRef]
- Jo, J.; Shin, D. Geochemical characteristics of REE-enriched weathered anorthosite complex in Hadong district, South Korea. Geochem. J. 2023, 57, 13–27. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Proenza, J.A.; Torró, L.; Aiglsperger, T.; Domènech, C.; Domínguez-Carretero, D.; Llovet, X.; Suñer, P.; Ramírez, A.; Rodríguez, J. REE ultra-rich karst bauxite deposits in the Pedernales Peninsula, Dominican Republic: Mineralogy of REE phosphates and carbonates. Ore Geol. Rev. 2023, 157, 105422. [Google Scholar] [CrossRef]
- Kumar, O.P.; Gopinathan, P.; Naik, A.S.; Subramani, T.; Singh, P.K.; Sharma, A.; Maity, S.; Saha, S. Characterization of lignite deposits of Barmer Basin, Rajasthan: Insights from mineralogical and elemental analysis. Environ. Geochem. Health 2023, 45, 6471–6493. [Google Scholar] [CrossRef]
- Reed, S.J.B.; Buckley, A. Rare-earth element determination in minerals by electron-probe microanalysis: Application of spectrum synthesis. Mineral. Mag. 2018, 62, 1–8. [Google Scholar] [CrossRef]
- Wu, L.; Ma, L.; Huang, G.; Li, J.; Xu, H. Distribution and Speciation of Rare Earth Elements in Coal Fly Ash from the Qianxi Power Plant, Guizhou Province, Southwest China. Minerals 2022, 12, 1089. [Google Scholar] [CrossRef]
- Sano, Y.; Terada, K.; Hidaka, H.; Nishio, Y.; Amakawa, H.; Nozaki, Y. Ion-Microprobe Analysis of Rare Earth Elements in Oceanic Basalt Glass. Anal. Sci. 1999, 15, 743–748. [Google Scholar] [CrossRef]
- MacRae, N.D. Quantitative analysis of REEs by SIMS. Am. Mineral. 1987, 72, 1263–1268. [Google Scholar]
- Zinner, E.; Crozaz, G. A method for the quantitative measurement of rare earth elements in the ion microprobe. Int. J. Mass Spectrom. Ion Process. 1986, 69, 17–38. [Google Scholar] [CrossRef]
- Shi, L.; Sano, Y.; Takahata, N.; Koike, M.; Morita, T.; Koyama, Y.; Kagoshima, T.; Li, Y.; Xu, S.; Liu, C. NanoSIMS Analysis of Rare Earth Elements in Silicate Glass and Zircon: Implications for Partition Coefficients. Front. Chem. 2022, 10, 844953. [Google Scholar] [CrossRef]
- Ling, X.X.; Li, Q.L.; Liu, Y.; Yang, Y.H.; Liu, Y.; Tang, G.Q.; Li, X.H. In situ SIMS Th–Pb dating of bastnaesite: Constraint on the mineralization time of the Himalayan Mianning–Dechang rare earth element deposits. J. Anal. At. Spectrom. 2016, 31, 1680–1687. [Google Scholar] [CrossRef]
- Sahijpal, S.; Marhas, K.K.; Goswami, J.N. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe. J. Earth Syst. Sci. 2003, 112, 485–498. [Google Scholar] [CrossRef][Green Version]
- Singh, S.P.; Balaram, V.; Satyanarayanan, M.; Sarma, D.S.; Subramanyam, K.S.V.; Anjaiah, K.V.; Kharia, A.; Tiwari, V.M.; Pichamuthu, D.V.; Pichamuthu, D.V.; et al. Platinum Group Minerals from the Madawara Ultramafic-mafic Complex, Bundelkhand Massif, Central India: A Preliminary Note, XXV IUGG General Assembly, Melbourne. “Earth on the Edge: Science for a Sustainable Planet”, Note on the Evolution of India’s Mineral Policy and its Impact on the Mineral Industry, A Vision for the Mineral Sector in Karnataka, Recent Research in Ediacaran Fauna. J. Geol. Soc. India 2011, 78, 281–294. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; Wen, Z.; Nie, T.; Zhang, N.; Zhou, C. The mechanism study on the integrated process of NaOH treatment and citric acid leaching for rare earth elements recovery from coal fly ash. J. Environ. Chem. Eng. 2023, 11, 109921. [Google Scholar] [CrossRef]
- Li, X.; Qiao, W.; Chen, D.; Wu, P.; Xie, Y.; Chen, X. Anomalous concentrations of rare earth elements in acid mine drainage and implications for rare earth resources from late Permian coal seams in northern Guizhou. Sci. Total Environ. 2023, 879, 163051. [Google Scholar] [CrossRef] [PubMed]
- Van Rythoven, A.D.; Pfaff, K.; Clark, J.G. Use of QEMSCAN® to characterize oxidized REE ore from the Bear Lodge carbonatite, Wyoming, USA. Ore Energy Resour. Geol. 2020, 2–3, 100005. [Google Scholar] [CrossRef]
- Gray, A.L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 1985, 110, 551–556. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Jiang, S.-Y.; Chen, W.; Wang, C.Y.; Su, H.-M.; Cao, Y.; Zhang, H.-X.; Li, W.-T. Precise determination of major and trace elements in micrometer-scale ilmenite lamellae in titanomagnetite using LA-ICP-MS technique: Application of regression analysis to time-resolved signals. RSC Adv. 2023, 13, 13303–13313. [Google Scholar] [CrossRef]
- Guo, Z.; Li, J.; Xu, X.; Song, Z.; Dong, X.; Tian, J.; Yang, Y.; She, H.; Xiang, A.; Kang, Y. Sm-Nd dating and REE Composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China. Lithos 2016, 261, 307–321. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Spiro, B.; Hao, R.; Mu, N.; Wen, L.; Hao, H. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. Int. J. Coal Geol. 2023, 267, 104184. [Google Scholar] [CrossRef]
- Chi, G.; Potter, E.; Petts, D.; Jackson, S.; Chu, H. LA-ICP-MS Mapping of Barren Sandstone from the Proterozoic Athabasca Basin (Canada)—Footprint of U- and REE-Rich Basinal Fluids. Minerals 2022, 12, 733. [Google Scholar] [CrossRef]
- Oostingh, K.F. Analysis of Rare Earth Element Concentrations in Barite (BaSO4). Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2012. [Google Scholar]
- Liu, Y.; Hu, Z.; Li, M.; Gao, S. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin. Sci. Bull. 2013, 58, 3863–3878. [Google Scholar] [CrossRef]
- Maruyama, S.; Hattori, K.; Hirata, T.; Suzuki, T.; Danhara, T. Simultaneous determination of 58 major and trace elements in volcanic glass shards from the INTAV sample mount using femtosecond laser ablation-inductively coupled plasma-mass spectrometry. Geochem. J. 2016, 50, 403–422. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; Yang, Y.; Niu, J.; Lan, Z.; Zhang, L.; Huang, C.; Xie, L.; Xu, L.; Yang, J.; et al. In situLu–Hf geochronology with LA-ICP-MS/MS analysis. J. Anal. At. Spectrom. 2023, 38, 1285–1300. [Google Scholar] [CrossRef]
- Van Ham-Meert, A.; Bolea-Fernandez, E.; Belza, J.; Bevan, D.; Jochum, K.P.; Neuray, B.; Stoll, B.; Vanhaecke, F.; Van Wersch, L. Comparison of Minimally Invasive Inductively Coupled Plasma–Mass Spectrometry Approaches for Strontium Isotopic Analysis of Medieval Stained Glass with Elevated Rubidium and Rare-Earth Element Concentrations. ACS Omega 2021, 6, 18110–18122. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.-P.; Zhang, L. Simultaneous in situ determination of rare earth element concentrations and Nd isotope ratio in apatite by laser ablation ICP-MS. Geochem. J. 2019, 53, 319–328. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Cottle, J.M. Laser-ablation split-stream ICP petrochronology. Chem. Geol. 2013, 345, 99–112. [Google Scholar] [CrossRef]
- Simandl, G.J.; Fajber, R.; Paradis, S. Portable X-ray fluorescence in the assessment of rare earth element-enriched sedimentary phosphate deposits. Geochem. Explor. Environ. Anal. 2014, 14, 161–169. [Google Scholar] [CrossRef]
- Yang, X.; Kozar, D.; Gorski, D.; Marchese, A.; Pagnotti, J.; Sutterlin, R.; Rezaee, M.; Klima, M.S.; Pisupati, S.V. Using yttrium as an indicator to estimate total rare earth element concentration: A case study of anthracite-associated clays from northeastern Pennsylvania. Int. J. Coal Sci. Technol. 2020, 7, 652–661. [Google Scholar] [CrossRef]
- Fajber, R.; Simandl, G.J. Evaluation of rare earth element-enriched sedimentary phosphate deposits using portable X-ray fluorescence (XRF) instruments. Geol. Fieldwork 2011, 2012, 199–210. [Google Scholar]
- Sukadana, I.G.; Warmada, I.W.; Pratiwi, F.; Harijoko, A.; Adimedha, T.B.; Yogatama, A.W. Elemental Mapping for Characterizing of Thorium and Rare Earth Elements (REE) Bearing Minerals Using µXRF. At. Indones. 2022, 48, 87–98. [Google Scholar] [CrossRef]
- Figueiredo, F.M.J.; Fátima Araújo, M.; Marçalo, J.; Leal, J.P.; Sardinha, J.P. Determination of rare earth elements in CRT phosphors and NdFeB magnets residues using an ED-XRF portable spectrometer to assist field semi-quantitative screening. Microchem. J. 2024, 198, 110136. [Google Scholar] [CrossRef]
- van der Ent, A.; Echevarria, G.; Pollard, A.J.; Erskine, P.D. X-Ray Fluorescence Ionomics of Herbarium Collections. Sci. Rep. 2019, 9, 4746. [Google Scholar] [CrossRef]
- Gibaga, C.R.; Montano, M.; Samaniego, J.; Tanciongco, A.; Quierrez, R.N. Comparative Study on Determination of Selected Rare Earth Elements (REEs) in Ion Adsorption Clays Using Handheld LIBS and ICP-MS. Philipp. J. Sci. 2022, 151, 1595–1600. [Google Scholar] [CrossRef]
- Bellie, V.; Gokulraju, R.; Rajasekar, C.; Vinoth, S.; Mohankumar, V.; Gunapriya, B. Laser induced Breakdown Spectroscopy for new product development in mining industry. Mater. Today Proc. 2021, 45, 8157–8161. [Google Scholar] [CrossRef]
- Gerardo, S.; Davletshin, A.R.; Loewy, S.L.; Song, W. From Ashes to Riches: Microscale Phenomena Controlling Rare Earths Recovery from Coal Fly Ash. Environ. Sci. Technol. 2022, 56, 16200–16208. [Google Scholar] [CrossRef] [PubMed]
- Brewer, P.G.; Malby, G.; Pasteris, J.D.; White, S.N.; Peltzer, E.T.; Wopenka, B.; Freeman, J.; Brown, M.O. Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 739–753. [Google Scholar] [CrossRef]
- Moroz, T.N.; Edwards, H.G.M.; Zhmodik, S.M. Detection of carbonate, phosphate minerals and cyanobacteria in rock from the Tomtor deposit, Russia, by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 250, 119372. [Google Scholar] [CrossRef] [PubMed]
- Solutions, P.A. Portable FTIR Analysis: Revolutionising Industries with the Agilent 4300 Handheld FTIR. 2025. Available online: https://www.portableas.com/news/portable-ftir-analysis-revolutionising-industries-with-the-agilent-4300-handheld-ftir/ (accessed on 10 August 2025).
- Ye, X.; Bai, F. Spectral Characteristics, Rare Earth Elements, and Ore-Forming Fluid Constrains on the Origin of Fluorite Deposit in Nanlishu, Jilin Province, China. Minerals 2022, 12, 1195. [Google Scholar] [CrossRef]
- Davletshina, N.y.; Ermakova, E.; Dolgova, D.; Davletshin, R.; Ivshin, K.; Fedonin, A.; Stoikov, I.; Cherkasov, R. Structure and FT-IR spectroscopic analyses of complexes phosphorylated betaines with rare earth metal ions. Inorganica Chim. Acta 2023, 545, 121245. [Google Scholar] [CrossRef]
- Qasim, M.; Khan, S.D. Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data. Sensors 2022, 22, 7537. [Google Scholar] [CrossRef]
- Boesche, N.; Rogass, C.; Lubitz, C.; Brell, M.; Herrmann, S.; Mielke, C.; Tonn, S.; Appelt, O.; Altenberger, U.; Kaufmann, H. Hyperspectral REE (Rare Earth Element) Mapping of Outcrops—Applications for Neodymium Detection. Remote Sens. 2015, 7, 5160–5186. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Tangestani, M.H. Potential of Sentinel-2 MSI data in targeting rare earth element (Nd3+) bearing minerals in Esfordi phosphate deposit, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 697–710. [Google Scholar] [CrossRef]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with lightweight UAV-based hyperspectral imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef]
- Maia, A.J.; da Silva, Y.J.A.B.; do Nascimento, C.W.A.; Veras, G.; Escobar, M.E.O.; Cunha, C.S.M.; da Silva, Y.J.A.B.; Nascimento, R.C.; de Souza Pereira, L.H. Near-infrared spectroscopy for the prediction of rare earth elements in soils from the largest uranium-phosphate deposit in Brazil using PLS, iPLS, and iSPA-PLS models. Environ. Monit. Assess. 2020, 192, 675. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Pan, X. Potential of visible and near-infrared reflectance spectroscopy for the determination of rare earth elements in soil. Geoderma 2017, 306, 120–126. [Google Scholar] [CrossRef]
- Turner, D.J.; Rivard, B.; Groat, L.A. Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals. Am. Mineral. 2018, 103, 927–943. [Google Scholar] [CrossRef]
- Balaram, V. Advances in Analytical Techniques and Applications in Exploration, Mining, Extraction, and Metallurgical Studies of Rare Earth Elements. Minerals 2023, 13, 1031. [Google Scholar] [CrossRef]
- Saputra, H.A. Electrochemical sensors: Basic principles, engineering, and state of the art. Monatshefte Für Chem.-Chem. Mon. 2023, 154, 1083–1100. [Google Scholar] [CrossRef]
- Paderni, D.; Giorgi, L.; Fusi, V.; Formica, M.; Ambrosi, G.; Micheloni, M. Chemical sensors for rare earth metal ions. Coord. Chem. Rev. 2021, 429, 213639. [Google Scholar] [CrossRef]
- Rocha, D.L.; Maringolo, V.; Araújo, A.N.; Amorim, C.M.P.G.; Montenegro, M.d.C.B.S.M. An overview of Structured Biosensors for Metal Ions Determination. Chemosensors 2021, 9, 324. [Google Scholar] [CrossRef]
- Featherston, E.R.; Issertell, E.J.; Cotruvo, J.A. Probing Lanmodulin’s Lanthanide Recognition via Sensitized Luminescence Yields a Platform for Quantification of Terbium in Acid Mine Drainage. J. Am. Chem. Soc. 2021, 143, 14287–14299. [Google Scholar] [CrossRef]
- Cruickshank, L.; Officer, S.; Pollard, P.; Prabhu, R.; Stutter, M.; Fernandez, C. Rare Elements Electrochemistry: The Development of a Novel Electrochemical Sensor for the Rapid Detection of Europium in Environmental Samples Using Gold Electrode Modified with 2-pyridinol-1-oxide. Anal. Sci. 2015, 31, 623–627. [Google Scholar] [CrossRef]
- Dehabadi, M.; Legin, E.; Legin, A.; Yaghmaei, S.; Nechaev, A.; Babain, V.; Kirsanov, D. Developing potentiometric sensors for scandium. Sens. Actuators B Chem. 2021, 348, 130699. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, L.; Wu, Y.; Gong, C.; Feng, Z.; Wang, Z.; Huang, Y.; Zheng, Z. A ligand-free hydrogel as a visual fluorescence sensor for detection of rare-earth ions. Opt. Commun. 2024, 570, 130885. [Google Scholar] [CrossRef]
- Crawford, S.E.; Burgess, W.A.; Kim, K.-J.; Baltrus, J.P.; Diemler, N.A. Zinc adeninate metal–organic framework-coated optical fibers for enhanced luminescence-based detection of rare earth elements. RSC Appl. Interfaces 2024, 1, 689–698. [Google Scholar] [CrossRef]
- Tse, P.; Espley, A.F.; Rakos, J.M.; Wang, Q.; Subban, C.V.; Bryan, S.A.; Lines, A.M. Developing Fluorescence-Based Sensors to Support Rare Earth Element Separation. ACS Sens. 2025, 10, 4974–4982. [Google Scholar] [CrossRef]
- Gidado Shehu, I.M.B. Mineralogical and Structural Analyses of Natural Fluorite from Yantuwaru Mining Site, Nigeria. UMYU Sci. 2023, 2, 53–61. [Google Scholar] [CrossRef]
- Hirose, F.; Itoh, S.; Okochi, H. Determination of Rare-earth Elements in Metallic La, Pr, Nd, Gd and Tb by Glow Discharge Mass Spectrometry. Tetsu-to-Hagane 1991, 77, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Jiang, T.; Qi, W.; Zuo, J.; Yang, M.; Fei, Q.; Xiao, S.; Yu, A.; Zhu, Z.; Chen, H. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry. Int. J. Anal. Chem. 2015, 2015, 156509. [Google Scholar] [CrossRef]
- Yuan, L.; Zhou, X.; Cao, Y.; Yan, N.; Peng, L.; Lai, X.; Tao, H.; Li, L.; Jiang, T.; Zhu, Z. Microwave plasma torch mass spectrometry for some rare earth elements. Arab. J. Chem. 2022, 15, 104379. [Google Scholar] [CrossRef]
- Fayyaz, A.; Ali, R.; Waqas, M.; Liaqat, U.; Ahmad, R.; Umar, Z.A.; Baig, M.A. Analysis of Rare Earth Ores Using Laser-Induced Breakdown Spectroscopy and Laser Ablation Time-of-Flight Mass Spectrometry. Minerals 2023, 13, 787. [Google Scholar] [CrossRef]
- Jamil Maia, A.; Cabral Nascimento, R.; Jacques Agra Bezerra da Silva, Y.; Williams Araújo do Nascimento, C.; de Sousa Mendes, W.; Germano Veras Neto, J.; Coelho de Araújo Filho, J.; Tiecher, T.; Jacques Agra Bezerra da Silva, Y. Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchem. J. 2022, 179, 107544. [Google Scholar] [CrossRef]
- Imashuku, S. Rapid determination of the approximate content of bastnäsite in ores using cathodoluminescence imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 287, 122055. [Google Scholar] [CrossRef] [PubMed]
- Duplouy, L. Preliminary Investigation of Rare Earth Elements Ion Exchange on Zeolites. Master’s Thesis, University of Helsinki Open Repository, Helsinki, Finland, 2016. [Google Scholar]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Obhođaš, J.; Sudac, D.; Meric, I.; Pettersen, H.E.S.; Uroić, M.; Nađ, K.; Valković, V. In-situ measurements of rare earth elements in deep sea sediments using nuclear methods. Sci. Rep. 2018, 8, 4925. [Google Scholar] [CrossRef]
- Stuckman, M.Y.; Lopano, C.L.; Granite, E.J. Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy. Int. J. Coal Geol. 2018, 195, 125–138. [Google Scholar] [CrossRef]
- Jochum, K.P.; Seufert, H.M.; Midinet-Best, S.; Rettmann, E.; Schönberger, K.; Zimmer, M. Multi-element analysis by isotope dilution-spark source mass spectrometry (ID-SSMS). Fresenius Z. Anal. Chem. 1988, 331, 104–110. [Google Scholar] [CrossRef]
- Zhao, J.; Xing, Y.; Ge, L.; Wang, Y.; Li, T.; Zhang, Q.; Wu, H.; Li, X.; Liu, Y. Direct analysis of lanthanum in extraction process by in-situ gamma spectrometry. J. Radioanal. Nucl. Chem. 2022, 331, 3807–3817. [Google Scholar] [CrossRef]
- Shen, S.; Krogstad, E.; Conte, E.; Brown, C. Rapid unseparated rare earth element analyses by isotope dilution multicollector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS). Int. J. Mass Spectrom. 2022, 471, 116726. [Google Scholar] [CrossRef]
- Folkedahl, B.; Nyberg, C.; Biswas, S.; Zhang, X. Round-Robin Interlaboratory Study on Rare-Earth Elements in U.S.-Based Geologic Materials. Minerals 2023, 13, 944. [Google Scholar] [CrossRef]
- Ardini, F.; Soggia, F.; Rugi, F.; Udisti, R.; Grotti, M. Comparison of inductively coupled plasma spectrometry techniques for the direct determination of rare earth elements in digests from geological samples. Anal. Chim. Acta 2010, 678, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zuma, M.C.; Lakkakula, J.; Mketo, N. Recent trends in sample preparation methods and plasma-based spectrometric techniques for the determination of rare earth elements in geological and fossil fuel samples. Appl. Spectrosc. Rev. 2020, 57, 353–377. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Heise, S.; Saviano, L.; Zhang, K.; Giarra, A.; Bau, M.; Tommasi, F.; Guida, M.; Libralato, G.; Trifuoggi, M. Levels of rare earth elements on three abandoned mining sites of bauxite in southern Italy: A comparison between TXRF and ICP-MS. Talanta 2024, 275, 126093. [Google Scholar] [CrossRef] [PubMed]
Deposits | Country | Indigenous | Main Components of REEs | Minerals |
---|---|---|---|---|
Bayan Obo | China | Carbonatite or hydrothermal | La, Ce, and Nd | Bastnäsite, monazite, and parisite |
Chinese ion adsorption | China | Soils | Y, La, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Clay |
Dong Pao | Vietnam | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite and parisite |
Hoidas Lake | Canada | Vein | La, Ce, Pr, and Nd | Allanite and apatite |
Illimaussaq | Denmark | Peralkaline igneous | Y, La, Ce, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Eudialyte and steenstrupine |
Kagankunde | Malawi | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite-Ce and monazite-Ce |
Khibina and Lovenzero | Russia | Peralkaline igneous | Y, light REEs, and minor heavy REEs | Apatite and eudialyte |
Maoniuping | China | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite |
Mountain Pass | United States of America | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite |
Mount Weld | Australia | Laterite or carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Apatite, churchite, monazite, and synchysite |
Nkwombwa Hill | Zambia | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite and monazite |
Nolans Bore | Australia | Vein | La, Ce, and Nd | Allanite and Apatite |
Norra Kärr | Sweden | Peralkaline igneous | Y, La, Ce, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Eudialyte |
Pilanesberg | Republic of South Africa | Peralkaline igneous | La and Ce | Eudialyte |
Steenkampskraal | Republic of South Africa | Vein | La, Ce, and Nd | Apatite and monazite |
Songwe | Malawi | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Apatite and synchysite |
Strange Lake and Misery Lake | Canada | Alkaline igneous or hydrothermal | Y, La, Ce, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Bastnäsite and gadolinite |
Thor Lake | Canada | Alkaline igneous | Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | Bastnäsite |
Tundulu | Malawi | Carbonatite | La, Ce, Pr, Nd, Pm, Sm, and Eu | Bastnäsite, parisite, and synchysite |
Mineral | Chemical Formula |
---|---|
Bastnäsite | (La,Y)(CO3)F |
Monazite | (La,Th)PO4 |
Xenotime | YPO4 |
Allanite | (Y,La,Ca)2(Al,Fe3+)3(SiO4)3(OH) |
Apatite | (Ca,La)5(PO4)3(F,Cl,OH) |
Cerite | (La,Ce,Ca)9(Mg,Fe3+)(SiO4)6(SiO3)(OH)4 |
Loparite | (La,Na,Ca)(Ti,Nb)O3 |
Eudialyte | Na4(Ca,La)2(Fe2+,Mn2+,Y)ZrSi8O22(OH,Cl)2 |
Fergusonite | (La,Y)NbO4 |
Gadolinite | (Ce,La,Nd,Y)2Fe2+Be2Si2O10 |
Gittinsite | CaZrSi2O7 |
Limoriite | Y2(SiO4)(CO3) |
Kainosite | Ca2(Y,La)2Si4O12(CO3).H2O |
Mosandrite | (Na,Ca)3Ca3La (Ti,Nb,Zr)(Si2O7)2(O,OH,F)4 |
Parisite-(La) | Ca(La)2(CO3)3F2 |
Pyrochlore | (Ca,Na,La)2Nb2O6(OH,F) |
Rinkite (Rinkolite) | (Ca,La)4Na(Na,Ca)2Ti(Si2O7)2(O,F)2 |
Rinkite-(Ce) | (Ca3Ce)Na(NaCa)Ti(Si2O7)2(OF)F2 |
Steenstrupine | Na14La6Mn2Fe2(Zr,Th)(Si6O18)2(PO4)7·3H2O |
Synchysite-(Ce) | Ca(Ce,La)(CO3)2F |
Titanite | (Ca,La,Ce)TiSiO5 |
Zircon | (Zr,La)SiO4 |
Parameters | ED-XRF | WD-XRF |
---|---|---|
Background |
|
|
Resolution |
|
|
Spectral overlaps |
|
|
Techniques | Samples | Analyzed REEs | Performance | Description | Ref. | |
---|---|---|---|---|---|---|
Linearity | LOD | |||||
UV-Vis and multivariate analysis | Monazite | Sm, Eu, Gd, Tb, and Dy | - | 1.38, 0.33, 42.12, 1.77, and 0.58 ppm, respectively, for Sm, Eu, Gd, Tb, and Dy | Sample digestion using concentrated nitric acid | [66] |
XRF | Water samples | Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu | - | In the range of 0.4–4.7 ng mL−1 | Requiring solid phase extraction | [71] |
NAA | Soil samples | La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, and Lu | - | - | No requirement for sample dissolution | [84] |
MP-AES | REE ore samples (OREAS-465, REE-1 and OKA-2) | La, Ce, Pr, Nd, Sm, Dy, and Yb | - | La (0.45 µg mL−1), Ce (2.7 µg mL−1), Pr (2.3 µg mL−1), Nd (0.7 µg mL−1), Sm (0.76 µg mL−1), and Yb (0.31 µg mL−1) | Sample treatment using the fusion digestion method | [49] |
LIBS | Monazite, xenotime, cerite, and white fluorapatite | Eu, Sm, Gd, Tb, Ce, Ho, Er, Tm, and Yb | - | - | - | [98] |
ICP-OES | Rock, soil, and core samples | - | - | - | Solvent extraction separation using a bi-dentate ligand, 2,3-dihydroxynaphthalene (2,3-H2ND) performed prior to measurements | [112] |
ICP-MS | Lignites and volcanic fumarole sediment | 13 lanthanides, La, Sc, and Y | - | In the range of 0.04–10.9 ng L−1 | Preconcentration conducted with biosilica layer-by-layer modified with polyamines and carboxyarsenazo | [124] |
SHRIMP-RG ion microprobe | Coal combustion fly ash | 139La+, 140Ce+, 146Nd+, 147Sm+, 151Eu+, 158Gd16O+, 159Tb16O+, 159Dy16O+, 166Er16O+, 172Yb16O+, 175Lu16O+, Pr, 89Y+, and 93Nb+ | - | mg kg−1 to sub-mg kg−1 level | - | [177] |
µXRF and advanced minerals identification and characterization system (AMICS) software | Britholite, aeschynite, cerite, monazite, thorite, andthorutite, pyrite, actinolite, apatite, ilmenite, hematite, zircon, and ankerite | All REEs in the analyzed minerals | - | - | - | [210] |
Handheld LIBS device | Geological solid and concentrated liquid samples | - | - | - | Device development | [214] |
Raman micro-spectroscopy | Carbonate, phosphate minerals, and cyanobacteria in rock | Sm3+, Eu3+, Pr3+, Ho3+, and Er3+ | - | - | - | [217] |
Hyperspectral remote sensing | Carbonatite samples | Nd and associated REEs, e.g., Sm, Pr, and Eu | - | - | - | [221] |
Fluorescence sensor | Lanthanide metals (Dy, Eu, Tb, and Nd) | Industrial stream | Up to 8 mM | 0.227 mM | - | [237] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, H.A.; Aji, D.; Ali, B.T.I.; Asranudin. Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments. Analytica 2025, 6, 35. https://doi.org/10.3390/analytica6030035
Saputra HA, Aji D, Ali BTI, Asranudin. Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments. Analytica. 2025; 6(3):35. https://doi.org/10.3390/analytica6030035
Chicago/Turabian StyleSaputra, Heru Agung, Demas Aji, Badrut Tamam Ibnu Ali, and Asranudin. 2025. "Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments" Analytica 6, no. 3: 35. https://doi.org/10.3390/analytica6030035
APA StyleSaputra, H. A., Aji, D., Ali, B. T. I., & Asranudin. (2025). Emerging Analytical Techniques for Rare Earth Element Study: Basic Principles and Cutting-Edge Developments. Analytica, 6(3), 35. https://doi.org/10.3390/analytica6030035