Physicochemical Parameters and Terroir Assessment of Mineral Water from Mount Smolikas in Greece: A Two-Year Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Sampling Protocol
2.2. pH
2.3. Conductivity
2.4. Turbidity
2.5. Color Analysis
2.6. Total Hardness
2.7. Inorganic Compounds
2.7.1. Metals
2.7.2. Anions
2.7.3. Cations
2.8. Total Organic Carbon
2.9. Volatile Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. pH
3.2. Conductivity
3.3. Turbidity
3.4. Color Analysis
3.5. Total Hardness
3.6. Inorganic Compounds
3.6.1. Metals
3.6.2. Anions
3.6.3. Cations
3.7. Total Organic Carbon (TOC)
3.8. Volatile Compounds
3.9. Principal Component Analysis
3.10. Multivariate Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varsha, M.; Senthil Kumar, P.; Senthil Rathi, B. A Review on Recent Trends in the Removal of Emerging Contaminants from Aquatic Environment Using Low-Cost Adsorbents. Chemosphere 2022, 287, 132270. [Google Scholar] [CrossRef] [PubMed]
- Thekkedath, A.; Sugaraj, S.; Sridharan, K. Nanomaterials in Advanced Oxidation Processes (AOPs) in Anionic Dye Removal. In Advanced Oxidation Processes in Dye-Containing Wastewater: Volume 1; Muthu, S.S., Khadir, A., Eds.; Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer Nature: Singapore, 2022; pp. 129–165. ISBN 978-981-19098-7-0. [Google Scholar]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Ritter, L.; Solomon, K.; Sibley, P.; Hall, K.; Keen, P.; Mattu, G.; Linton, B. Sources, Pathways, and Relative Risks of Contaminants in Surface Water and Groundwater: A Perspective Prepared for the Walkerton Inquiry. J. Toxicol. Environ. Health Part A 2002, 65, 1–142. [Google Scholar] [CrossRef]
- Azoulay, A.; Garzon, P.; Eisenberg, M.J. Comparison of the Mineral Content of Tap Water and Bottled Waters. J. Gen. Intern. Med. 2001, 16, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Pampaloni, B.; Brandi, M.L. Mineral Water as Food for Bone: An Overview. Int. J. Bone Fragility 2022, 2, 48–55. [Google Scholar] [CrossRef]
- Baghel, A.; Singh, B. Emerging Potable Water Technologies. Def. Life Sci. J. 2016, 1, 113. [Google Scholar] [CrossRef]
- Diduch, M.; Polkowska, Ż.; Namieśnik, J. Chemical Quality of Bottled Waters: A Review. J. Food Sci. 2011, 76, R178–R196. [Google Scholar] [CrossRef] [PubMed]
- Levallois, P.; Grondin, J.; Gingras, S. Evaluation of Consumer Attitudes on Taste and Tap Water Alternatives in Québec. Water Sci. Technol. 1999, 40, 135–139. [Google Scholar] [CrossRef]
- Castaño-Vinyals, G.; Cantor, K.P.; Villanueva, C.M.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; Malats, N.; Rothman, N.; Silverman, D.; et al. Socioeconomic Status and Exposure to Disinfection By-Products in Drinking Water in Spain. Environ. Health 2011, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Parag, Y.; Roberts, J.T. A Battle Against the Bottles: Building, Claiming, and Regaining Tap-Water Trustworthiness. Soc. Nat. Resour. 2009, 22, 625–636. [Google Scholar] [CrossRef]
- LeChevallier, M.W. Coliform Regrowth in Drinking Water: A Review. J. AWWA 1990, 82, 74–86. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Yang, Y.; Tsang, Y.F.; Sarkar, B.; Hou, D.; Cao, X.; Meers, E.; Rinklebe, J.; Kim, K.-H.; Ok, Y.S. Occurrence of Contaminants in Drinking Water Sources and the Potential of Biochar for Water Quality Improvement: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 549–611. [Google Scholar] [CrossRef]
- Pintar, K.D.M.; Waltner-Toews, D.; Charron, D.; Pollari, F.; Fazil, A.; McEwen, S.A.; Nesbitt, A.; Majowicz, S. Water Consumption Habits of a South-Western Ontario Community. J. Water Health 2009, 7, 276–292. [Google Scholar] [CrossRef] [Green Version]
- de França Doria, M.; Pidgeon, N.; Hunter, P.R. Perceptions of Drinking Water Quality and Risk and Its Effect on Behaviour: A Cross-National Study. Sci. Total Environ. 2009, 407, 5455–5464. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.A.; Cain, O.L.; Mullally, R.A.; Holliday, K.S.; Wernham, A.G.; Baillie, P.D.; Greenfield, S.M. Health Beliefs about Bottled Water: A Qualitative Study. BMC Public Health 2009, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodwan, G. Bottled Water 2017: Staying Strong: U.S. and International Developments & Statistics; Flanders Environment Agency: Aalst, Belgium, 2017.
- Arnold, E.; Larsen, J. Bottled Water: Pouring Resources down the Drain. Earth Policy Inst. 2006, 2, 500. [Google Scholar]
- Pant, N.D.; Poudyal, N.; Bhattacharya, S.K. Bacteriological Quality of Bottled Drinking Water versus Municipal Tap Water in Dharan Municipality, Nepal. J. Health Popul. Nutr. 2016, 35, 17. [Google Scholar] [CrossRef] [Green Version]
- Foroni, F.; Vignando, M.; Aiello, M.; Parma, V.; Paoletti, M.G.; Squartini, A.; Rumiati, R.I. The Smell of Terroir! Olfactory Discrimination between Wines of Different Grape Variety and Different Terroir. Food Qual. Prefer. 2017, 58, 18–23. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The Concept of Terroir in Viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Frost, R.; Quiñones, I.; Veldhuizen, M.; Alava, J.-I.; Small, D.; Carreiras, M. What Can the Brain Teach Us about Winemaking? An FMRI Study of Alcohol Level Preferences. PLoS ONE 2015, 10, e0119220. [Google Scholar] [CrossRef]
- Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An Overview of the Recent Approaches to Terroir Functional Modelling, Footprinting and Zoning. SOIL 2015, 1, 287–312. [Google Scholar] [CrossRef] [Green Version]
- de França Doria, M. Factors Influencing Public Perception of Drinking Water Quality. Water Policy 2009, 12, 1–19. [Google Scholar] [CrossRef]
- Lucini, L.; Rocchetti, G.; Trevisan, M. Extending the Concept of Terroir from Grapes to Other Agricultural Commodities: An Overview. Curr. Opin. Food Sci. 2020, 31, 88–95. [Google Scholar] [CrossRef]
- Koseki, M.; Tanaka, Y.; Noguchi, H.; Nishikawa, T. Effect of PH on the Taste of Alkaline Electrolyzed Water. J. Food Sci. 2007, 72, S298–S302. [Google Scholar] [CrossRef] [PubMed]
- Karavoltsos, S.; Sakellari, A.; Mihopoulos, N.; Dassenakis, M.; Scoullos, M.J. Evaluation of the Quality of Drinking Water in Regions of Greece. Desalination 2008, 224, 317–329. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A.; Akratos, C.S.; Haralambidis, G. Water Quality Trends in Polyphytos Reservoir, Aliakmon River, Greece. Environ. Monit. Assess. 2009, 149, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.R.; Ndung’u, K.; Flegal, A.R. Natural Occurrence of Hexavalent Chromium in the Aromas Red Sands Aquifer, California. Environ. Sci. Technol. 2005, 39, 5505–5511. [Google Scholar] [CrossRef]
- Lawless, H.T.; Rapacki, F.; Horne, J.; Hayes, A. The Taste of Calcium and Magnesium Salts and Anionic Modifications. Food Qual. Prefer. 2003, 14, 319–325. [Google Scholar] [CrossRef]
- Watson, S. Aquatic Taste and Odor: A Primary Signal of Drinking-Water Integrity. J. Toxicol. Environ. Health A 2004, 67, 1779–1795. [Google Scholar] [CrossRef] [PubMed]
- Bae, B.U.; Shin, H.S.; Choi, J.J. Taste and Odour Issues in South Korea’s Drinking Water Industry. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2007, 55, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Webber, M.A.; Atherton, P.; Newcombe, G. Taste and Odour and Public Perceptions: What Do Our Customers Really Think about Their Drinking Water? J. Water Supply Res. Technol. Aqua 2015, 64, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- ISO 10304-1:2007/Cor 1:2010; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate—Technical Corrigendum 1. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 14911:1998; Water Quality—Determination of Dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ Using Ion Chromatography—Method for Water and Waste Water. International Organization for Standardization: Geneva, Switzerland, 1998.
- Hegler, F.; Lösekann-Behrens, T.; Hanselmann, K.; Behrens, S.; Kappler, A. Influence of Seasonal and Geochemical Changes on the Geomicrobiology of an Iron Carbonate Mineral Water Spring. Appl. Environ. Microbiol. 2012, 78, 7185–7196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P.; Manjusree, T.M.; Arunkumar, K.S. Seasonal Variation in Major Ion Chemistry of a Tropical Mountain River, the Southern Western Ghats, Kerala, India. Environ. Earth Sci. 2014, 71, 2333–2351. [Google Scholar] [CrossRef]
- Latest Conditions in Grevena. Available online: https://penteli.meteo.gr/stations/grevena/ (accessed on 11 May 2023).
- GeoPortal—River Basin Management Plans. Available online: http://wfdver.ypeka.gr/en/geoportal-en/ (accessed on 7 June 2023).
- Mountrakis, D. Geology of Greece; University Studio Press: Thessaloniki, Greece, 1985. (In Greek) [Google Scholar]
- Ntokos Synthesis of Literature and Field Work Data Leading to the Compilation of a New Geological Map—A Review of Geology of Northwestern Greece. Int. J. Geosci. 2017, 08, 205–236. [CrossRef] [Green Version]
- Anastasiadou-Anastasiou, S.I. Characteristics and Classification of the Natural Mineral Waters of Greece Using Hydrochemical Criteria; Postgraduate Theses at the Theofrastos Library of the Department of Geology of the Aristotle University of Thessaloniki: Thessaloniki, Greece, 2020. [Google Scholar]
- European Parliament, Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance); European Union Commission: Brussels, Belgium, 2020.
- Deocampo, D.M. Chapter 1 The Geochemistry of Continental Carbonates. In Developments in Sedimentology; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 1–59. [Google Scholar]
- Schroeder, E.D. Water Resources. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 721–751. ISBN 978-0-12-227410-7. [Google Scholar]
- Whelton, A.J.; Dietrich, A.M.; Burlingame, G.A.; Schechs, M.; Duncan, S.E. Minerals in Drinking Water: Impacts on Taste and Importance to Consumer Health. Water Sci. Technol. 2007, 55, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Kouras, A.; Katsoyiannis, I.; Voutsa, D. Distribution of Arsenic in Groundwater in the Area of Chalkidiki, Northern Greece. J. Hazard. Mater. 2007, 147, 890–899. [Google Scholar] [CrossRef]
- Mitrakas, M.; Tzoupanos, N.D.; Kazakis, N.; Kaprara, E.; Samaras, P.; Zouboulis, A.I. Hexavalent Chromium [Cr(VI)] in Drinking Water of Greece—Estimation of the Origin. In Proceedings of the 3rd International Conference on Industrial and Hazardous Waste Management, Chania, Greece, 12–14 September 2012. [Google Scholar]
- Ignatov, I. Physicochemical Research of Mineral and Mountain Spring Waters in Bulgaria. Asian J. Appl. Chem. Res. 2020, 7, 40–46. [Google Scholar] [CrossRef]
- McCleskey, R.B.; Kirk Nordstrom, D.; Ryan, J.N. Electrical Conductivity Method for Natural Waters. Appl. Geochem. 2011, 26, S227–S229. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.G. Turbidity Suspended Sediment, and Water Clarity: A Review. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1085–1101. [Google Scholar] [CrossRef]
- Ma, W.; Huang, T.; Li, X.; Zhou, Z.; Li, Y.; Zeng, K. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China. Int. J. Environ. Res. Public Health 2015, 12, 7839–7855. [Google Scholar] [CrossRef] [Green Version]
- Mann, A.G.; Tam, C.C.; Higgins, C.D.; Rodrigues, L.C. The Association between Drinking Water Turbidity and Gastrointestinal Illness: A Systematic Review. BMC Public Health 2007, 7, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011.
- Henley, W.F.; Patterson, M.A.; Neves, R.J.; Lemly, A.D. Effects of Sedimentation and Turbidity on Lotic Food Webs: A Concise Review for Natural Resource Managers. Rev. Fish. Sci. 2000, 8, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Huey, G.M.; Meyer, M.L. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin. Water 2010, 2, 273–284. [Google Scholar] [CrossRef]
- Fraser, R.N. Hyperspectral Remote Sensing of Turbidity and Chlorophyll a among Nebraska Sand Hills Lakes. Int. J. Remote Sens. 1998, 19, 1579–1589. [Google Scholar] [CrossRef]
- Albertini, M.C.; Dacha, M.; Teodori, L.; Conti, M.E. Drinking Mineral Waters: Biochemical Effects and Health Implications the State-of-the-Art. Int. J. Environ. Health 2007, 1, 153. [Google Scholar] [CrossRef]
- Dippong, T.; Hoaghia, M.-A.; Mihali, C.; Cical, E.; Calugaru, M. Human Health Risk Assessment of Some Bottled Waters from Romania. Environ. Pollut. 2020, 267, 115409. [Google Scholar] [CrossRef]
- Fytianos, K.; Christophoridis, C. Nitrate, Arsenic and Chloride Pollution of Drinking Water in Northern Greece. Elaboration by Applying GIS. Environ. Monit. Assess. 2004, 93, 55–67. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Chromium, Nickel and Welding; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1990; ISBN 978-92-832-1249-2.
- Rakhunde, R.; Deshpande, L.; Juneja, H.D. Chemical Speciation of Chromium in Water: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776–810. [Google Scholar] [CrossRef]
- World Health Organization. Chromium in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2020.
- Rai, D.; Sass, B.M.; Moore, D.A. Chromium(III) Hydrolysis Constants and Solubility of Chromium(III) Hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Karamanis, D.; Stamoulis, K.; Ioannides, K.G. Natural Radionuclides and Heavy Metals in Bottled Water in Greece. Desalination 2007, 213, 90–97. [Google Scholar] [CrossRef]
- Amanatidou, E.; Adamidou, K.; Trikoilidou, E.; Katsiouli, F.; Patrikaki, O.; Tsikritzis, L. Physicochemical and Microbiological Characteristics of the Potable Water Supply Sources in the Area of Kozani, Western Macedonia. Desalination 2007, 213, 1–8. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Loukas, A. Surface Water Quantity and Quality Assessment in Pinios River, Thessaly, Greece. Desalination 2010, 250, 266–273. [Google Scholar] [CrossRef]
- Bisutti, I.; Hilke, I.; Raessler, M. Determination of Total Organic Carbon—An Overview of Current Methods. TrAC Trends Anal. Chem. 2004, 23, 716–726. [Google Scholar] [CrossRef]
- Kaloudis, T.; Triantis, T.M.; Hiskia, A. Determination of Geosmin and 2-Methylisoborneol in Water by HS-SPME-GC/MS. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 469–474. ISBN 978-1-119-06876-1. [Google Scholar]
- Young, W.F.; Horth, H.; Crane, R.; Ogden, T.; Arnott, M. Taste and Odour Threshold Concentrations of Potential Potable Water Contaminants. Water Res. 1996, 30, 331–340. [Google Scholar] [CrossRef]
- Piriou, P.; Devesa, R.; De Lalande, M.; Glucina, K. European Reassessment of MIB and Geosmin Perception in Drinking Water. J. Water Supply Res. Technol. Aqua 2009, 58, 532–538. [Google Scholar] [CrossRef]
- Tsao, H.-W.; Michinaka, A.; Yen, H.-K.; Giglio, S.; Hobson, P.; Monis, P.; Lin, T.-F. Monitoring of Geosmin Producing Anabaena Circinalis Using Quantitative PCR. Water Res. 2014, 49, 416–425. [Google Scholar] [CrossRef]
- Ma, J.; Lu, W.; Li, J.; Song, Z.; Liu, D.; Chen, L. Determination of Geosmin and 2-Methylisoborneol in Water by Headspace Liquid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Anal. Lett. 2011, 44, 1544–1557. [Google Scholar] [CrossRef]
- Matsuo, R. Role of Saliva in the Maintenance of Taste Sensitivity. Crit. Rev. Oral Biol. Med. 2000, 11, 216–229. [Google Scholar] [CrossRef] [Green Version]
LOD | LOQ | |
---|---|---|
Metals (μg/L) | ||
Boron (B) | 0.045 | 0.15 |
Cadmium (Cd) | 0.15 | 0.50 |
Lead (Pb) | 0.88 | 2.90 |
Chromium (Cr) | 0.91 | 3.00 |
Manganese (Mn) | 1.52 | 5.00 |
Copper (Cu) | 4.55 | 15.00 |
Arsenic (As) | 0.52 | 1.72 |
Nickel (Ni) | 1.52 | 5.00 |
Iron (Fe) | 4.55 | 15.00 |
Aluminum (Al) | 2.42 | 8.00 |
Selenium (Se) | 0.89 | 2.98 |
Antimony (Sb) | 0.26 | 0.86 |
Mercury (Hg) | 0.061 | 0.20 |
Anions (mg/L) | ||
Fluorides (F−) | 0.008 | 0.027 |
Chlorides (Cl−) | 0.55 | 1.80 |
Nitrites (NO2−) | 0.028 | 0.094 |
Bromides (Br−) | 0.028 | 0.094 |
Nitrates (NO3−) | 0.10 | 0.33 |
Phosphates (PO43−) | 0.46 | 1.5 |
Sulfates (SO42−) | 0.88 | 2.9 |
Cations (mg/L) | ||
Lithium (Li+) | 0.003 | 0.011 |
Sodium (Na+) | 0.18 | 0.60 |
Ammonium (NH4+) | 0.005 | 0.017 |
Potassium (K+) | 0.061 | 0.20 |
Magnesium (Mg2+) | 0.18 | 0.60 |
Calcium (Ca2+) | 1.60 | 5.30 |
Volatile Compound | m/z 1 |
---|---|
2-Methylisoborneol (2-MIB) | 95, 107, 108, 135 |
Geosmin | 94, 111, 112, 125, 149 |
2-Isopropyl-3-methoxypyrazine (ISTD) | 94, 124, 137, 152 |
Water Sample | pH | Conductivity (μS/cm) | Turbidity (NTU) | Total Hardness (mg CaCO3/L) |
---|---|---|---|---|
1/2021 | 8.6 ± 0.5 a | 199 ± 13 a | 0.35 ± 0.02 a | 106 ± 4 a |
4/2021 | 8.8 ± 0.3 a | 172 ± 9 a,b | 0.19 ± 0.01 b | 100 ± 2 a,b |
7/2021 | 7.9 ± 0.2 a | 168 ± 12 b | 0.06 ± 0.01 d,e | 93 ± 4 b |
10/2021 | 8.7 ± 0.6 a | 171 ± 7 b | 0.08 ± 0.01 d | 100 ± 1 a,b |
1/2022 | 7.7 ± 0.5 a | 164 ± 5 b | 0.08 ± 0.01 d | 103 ± 5 a |
4/2022 | 8.3 ± 0.5 a | 162 ± 12 b | 0.11 ± 0.01 c | 105 ± 5 a |
7/2022 | 8.4 ± 0.3 a | 179 ± 6 a,b | 0.05 ± 0.01 e | 98 ± 3 a,b |
10/2022 | 8.7 ± 0.6 a | 171 ± 12 b | 0.06 ± 0.01 d,e | 92 ± 2 b |
Parametric Value 1 | 1/2021 | 4/2021 | 7/2021 | 10/2021 | 1/2022 | 4/2022 | 7/2022 | 10/2022 | |
---|---|---|---|---|---|---|---|---|---|
Metal concentration (μg/L) | |||||||||
Boron (B) | 1000 | <LOQ | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Cadmium (Cd) | 5 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Lead (Pb) | 10 | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOQ | <LOQ | <LOQ |
Chromium (Cr) | 50 | 8.5 ± 0.4 a,b | 9.7 ± 0.4 a | 7.6 ± 0.6 b,c | 6.6 ± 0.2 c | 7.7 ± 0.3 b,c | 7.9 ± 0.5 b | 8.4 ± 0.4 b | 7.7 ± 0.6 b,c |
Manganese (Mn) | 50 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Copper (Cu) | 2000 | <LOQ | <LOD | <LOQ | <LOD | <LOD | <LOD | <LOD | <LOD |
Arsenic (As) | 10 | <LOQ | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Nickel (Ni) | 20 | <LOQ | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Iron (Fe) | 200 | 17 ± 1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Aluminum (Al) | 200 | 46 ± 2 a | <LOQ | 16 ± 1 c | 37 ± 1 b | <LOD | <LOD | <LOD | <LOD |
Selenium (Se) | 20 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Antimony (Sb) | 10 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mercury (Hg) | 1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Anion concentration (mg/L) | |||||||||
Fluorides (F−) | 1.5 | <LOD | <LOD | <LOD | <LOQ | <LOD | <LOD | <LOD | <LOD |
Chlorides (Cl−) | 250 | <LOQ | <LOQ | <LOQ | <LOQ | 1.84 ± 0.07 | <LOQ | <LOQ | <LOQ |
Nitrites (NO2−) | 0.50 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Bromides (Br−) | - | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ |
Nitrates (NO3−) | 50 | 1.12 ± 0.05 b | 1.42 ± 0.06 a | 1.33 ± 0.04 a | 1.41 ± 0.05 a | 1.43 ± 0.04 a | 1.37 ± 0.07 a | 1.34 ± 0.06 a | 1.38 ± 0.03 a |
Phosphates (PO43−) | - | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Bicarbonates (HCO3−) | - | 96 ± 5.7 a | 104 ± 5.4 a | 109 ± 6.3 a | 107 ± 6.1 a | 97 ± 5.1 a | 102 ± 5.0 a | 108 ± 6.2 a | 105 ± 5.7 a |
Carbonates (CO32−) | - | 1.87 ± 0.13 c,d | 2.80 ± 0.20 a | <LOD | 2.21 ± 0.16 b,c | <LOD | 1.30 ± 0.09 e | 1.56 ± 0.11 d,e | 2.39 ± 0.18 b |
Sulfates (SO42−) | 250 | <LOQ | <LOQ | <LOQ | <LOQ | 3.2 ± 0.1 | <LOQ | <LOQ | <LOQ |
Cation concentration (mg/L) | |||||||||
Lithium (Li+) | - | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Sodium (Na+) | 200 | 2.9 ± 0.2 a | 0.52 ± 0.03 d | 0.75 ± 0.05 b,c | 0.72 ± 0.03 b,c,d | 0.62 ± 0.04 c,d | 0.88 ± 0.05 b | 0.82 ± 0.06 b,c | 0.8 ± 0.1 b,c |
Ammonium (NH4+) | 0.50 | 0.04 ± 0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Potassium (Κ+) | - | 0.94 ± 0.03 a | 0.21 ± 0.01 e | 0.22 ± 0.01 e | 0.37 ± 0.02 c | 0.21 ± 0.01 e | 0.29 ± 0.01 d | 0.47 ± 0.02 b | 0.3 ± 0.0 d |
Magnesium (Mg2+) | - | 24 ± 1 a | 23 ± 1 a | 21 ± 2 a | 23 ± 1 a | 23 ± 2 a | 23 ± 2 a | 21 ± 2 a | 23 ± 1 a |
Calcium (Ca2+) | - | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Water Sample | 2-MIB (ng/L) | Geosmin (ng/L) |
---|---|---|
1/2021 | 8.7 ± 0.3 c | 2.5 ± 0.1 b,c |
4/2021 | 7.0 ± 0.3 c,d | 2.3 ± 0.1 c |
7/2021 | 9.2 ± 0.2 b,c | 2.6 ± 0.2 b,c |
10/2021 | 10.7 ± 0.7 a | 2.3 ± 0.1 c |
1/2022 | 10.8 ± 0.7 a | 2.8 ± 0.1 b |
4/2022 | 8.0 ± 0.3 d | 4.0 ± 0.3 a |
7/2022 | 10.1 ± 0.5 a,b | 2.7 ± 0.1 b,c |
10/2022 | 10.7 ± 0.3 a | 2.4 ± 0.1 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Physicochemical Parameters and Terroir Assessment of Mineral Water from Mount Smolikas in Greece: A Two-Year Study. Analytica 2023, 4, 280-299. https://doi.org/10.3390/analytica4030022
Athanasiadis V, Chatzimitakos T, Kalompatsios D, Bozinou E, Makris DP, Lalas SI. Physicochemical Parameters and Terroir Assessment of Mineral Water from Mount Smolikas in Greece: A Two-Year Study. Analytica. 2023; 4(3):280-299. https://doi.org/10.3390/analytica4030022
Chicago/Turabian StyleAthanasiadis, Vassilis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Eleni Bozinou, Dimitris P. Makris, and Stavros I. Lalas. 2023. "Physicochemical Parameters and Terroir Assessment of Mineral Water from Mount Smolikas in Greece: A Two-Year Study" Analytica 4, no. 3: 280-299. https://doi.org/10.3390/analytica4030022
APA StyleAthanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Bozinou, E., Makris, D. P., & Lalas, S. I. (2023). Physicochemical Parameters and Terroir Assessment of Mineral Water from Mount Smolikas in Greece: A Two-Year Study. Analytica, 4(3), 280-299. https://doi.org/10.3390/analytica4030022