Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species
Abstract
:1. Introduction and Methods
2. Metabolism of Bisphenol Analogs
3. Liver Toxicity of Bisphenol Analogs in Different Species
3.1. Liver Toxicity of Bisphenol Analogs in Humans
Compounds | Data Source/Diseases | #Participants | Age | Years/Period | Liver Effects | Reference |
---|---|---|---|---|---|---|
BPA | The Korean National Environmental Health Survey III | 3476 adults: 1474 men and 2002 women | ~53 years old | 2015–2017 | Urinary BPA levels are positively associated with the risk of NAFLD. The rate of abnormal ALT was in accordance with the increases in BPA levels. | [62] |
BPA | The Korean Elderly Environmental Panel | 560 elderly people | Aged 60 or over | 2008–2010 | Higher urinary BPA concentrations were associated with increased abnormal liver function: significant relationships between urinary BPA and levels of AST, ALT and GGT. | [63] |
BPA | Workers in two semiautomatic epoxy resin factories, China | 28 participants | 38.9 ± 11.3 years old | Not available | Higher BPA correlated with clinically abnormal levels of glutamic-oxaloacetic transaminase and GGT. | [64] |
BPA | Northern district of Guizhou Province, China | 1006 children | 5 to 14 years old | July to August 2018 | The correlation between BPA and AST was significant in Bozhou district; the correlation between BPA and direct bilirubin was significant in Huichuan district. | [65] |
BPA | Punjab, Pakistan | 400 participants | 43.9 ± 13.6 years old | Not available | Higher levels of ALT and AST were observed among BPA-positive participants than that of BPA-negative ones. | [66] |
BPA | NHANES | 1455 US adults | 18 to 74 years old | 2003–2004 | Higher urinary BPA correlated with clinically abnormal levels of the liver enzymes, including lactate dehydrogenase, GTT and alkaline phosphatase. | [67] |
BPA | NHANES | 2948 US adults | 18 to 74 years old | 2003–2006 | Higher urinary BPA correlated with clinically abnormal levels of the liver enzymes, including alkaline phosphatase and lactate dehydrogenase. | [68] |
BPA | NHANES | 11,750 adults | Mean age 43.9 years old | 2003 to 2016 | The increment of BPA positively associated with alkaline phosphatase and total bilirubin, while inversely with albumin. | [69] |
BPA | NHANES | 2179 adults | Not available | 2011 to 2016 | A negative association between urinary BPA and serum total protein and albumin. | [70] |
BPA | NHANES | 2104 US adults | ≥18 years old | 2003–2008 | Levels of urinary BPA were positively associated with metabolic syndrome. | [71] |
BPA | NAFLD with or without T2DM in Naples | 60 patients and 60 controls | 54–57 years old | 2016 | BPA levels were higher in NAFLD subjects than controls. BPA levels appeared to be higher in non-alcoholic steatohepatitis patients than simple steatosis subjects. | [72] |
BPA | NAFLD and HCC in Regione Campania (Southern Italy) | 30 NAFLD and 11 HCC | 23–80 years old | Not available | The subjects with liver diseases had higher BPA levels in both urine and plasma samples, suggesting an association between BPA exposure and liver health. | [73] |
BPA | NHANES | 7605 participants (48.4% male) | Mean age 47 years old | 2005–2014 | The rate of NAFLD and abnormally elevated ALT levels were positively associated with urinary BPA. | [74] |
BPA | NHANES | 944 adolescents | 12–19 years old | 2003–2010 | Higher levels of BPA were associated with increased risks of suspected NAFLD, but not with elevation of ALT. | [75] |
BPA | Obesity and metabolic syndrome (Naples) | 76 adult male Caucasian subjects | 53.5 ± 5.7 years old | Not available | Plasma BPA levels positively associated with visceral obesity and low-grade inflammation, which are important risk factors of NAFLD. | [76] |
BPA | Polycystic ovary syndrome (Naples) | 40 with PCOS and 20 healthy age-matched women | 27.7 ± 6.8 years old | 2009–2011 | Increased BPA levels correlated with hepatic steatosis and abnormal liver tests, as well as with chronic inflammation. | [79] |
BPA | NAFLD in Naples | 32 male patients and 30 controls | 44.5 ± 18.3 years old | Between January and October 2017 | Plasma BPA, and both urine free and total BPA levels are higher in NAFLD patients. There was a proportionality relationship between TBARS and serum BPA levels. | [80] |
BPA | The Korean Elderly Environmental Panel | 560 elderly people | Aged 60 or over | 2008–2010 | The genetic polymorphisms of COX2, EPHX1, CAT and SOD2 modified the association between BPA levels and liver functions. | [81] |
BPA | The Korean Elderly Environmental Panel | 560 elderly people | Aged 60 or over | 2008–2010 | There was an association between BPA levels and liver abnormality in elders with the polymorphisms of repair genes. | [82] |
BPA | The NIH-funded UW Birth Defects Research Laboratory Fetal Biobank | 50 human fetal liver samples | Gestational days 70 to 120 | Not available | BPA levels positively correlated with methylation in CpG islands and negatively with that in CpG shores, shelves, and repetitive regions. Further, BPA levels correlated with complex linear and non-monotonic as well as sequence-dependent changes in DNA methylation. | [83] |
BPA | The Ewha Birth and Growth Cohort Study | 164 children | At 3–5, 7–9 and 10–13 years of age | Between 2001 and 2015 | Urinary BPA concentrations at 7–9 years, but not that at 3–5 years, correlated with the serum liver enzymes at 10–13 years of age. | [85] |
BPA, BPB, BPF, BPG, BPS, BPZ, BPAF, BPAP, BPBP, BPPH | HCC patients | 197 HCC patients and 100 non-HCC patients | Mean age of HCC patients (54 years old), non-HCC (47 years old) | Between 2021 and 2023 | There was a positive correlation between GGT and BPAP in the blood of HCC patients. In non-HCC patients, there was a positive correlation between GGT and BPG in sera, between GGT and BPF in blood, and between GGT and BPG and BPAP in urine. | [86] |
BPA, BPS, BPZ, BPAF, BPAP, BPBP, BPPH | HCC patients | 149 patients with HCC | ≥60 (50) 40–60 (78) ≤40 (21) | Between 2021 and 2023 | Bisphenol analogs have some significant positive correlations with levels of GGT and ALT, especially BPBP levels in bile. | [87] |
Various EDCs | The Korean National Environmental Health Survey Cycle 4 | 2942 adults | 54 years old | 2018–2020 | BPS was among the investigated EDCs that had the most effects on metabolic syndrome. BPF was among the investigated EDCs that had the greatest effects on NAFLD. | [88] |
BPA, BPS, BPF | NHANES | 960 participants | ≥20 years old | 2013–2016 | Elevated levels of BPA and BPS, but not BPF, correlated with NAFLD. | [89] |
BPS | The Korean National Environmental Health Survey IV | 2961 adults | ≥19 years old | 2018 to 2020 | BPS showed a negative association with ALT. | [91] |
BPF | NAFLD patients | 117 controls; 145 patients | 21–76 years old | 2018 | There were increased serum BPF levels in the NAFLD patients. | [94] |
3.2. Liver Toxicity of Bisphenol Analogs in Rodents
3.2.1. Adult Exposure in Mice
3.2.2. Developmental Exposure in Mice
Compounds | Model/Diseases | Exposure Starting Age | Exposure Window/Time | Dose/Concentration | Routes of Administration | Diet | Liver Effects | Reference |
---|---|---|---|---|---|---|---|---|
BPF | Male C57BL/6 mice | 8 weeks old | 30 days | 50 μg/kg bw/day | Subcutaneous injection | Phytoestrogen-free diet | BPF-induced alterations were consistent with NAFLD in mice, such as lipid droplet accumulation and increased levels of triglycerides and fatty acids. | [94] |
BPA | Male and female C57BL/6 mice | 8–12 weeks old | 4 weeks (28 days) | 5 and 50 μg/kg bw/day | Oral (in gelatin pellets) | Regular chow (soy protein free diets) | BPA increased relative liver weight in males at the 50 μg/kg dose and the expression of SREBF1 at the 5 μg/kg dose; in females, BPA decreased expression of FASN, ACC, CYP2b10, and UGT1a1 at the 50 μg/kg dose, while HMGCR and CYP1a1 were up- and downregulated, respectively, at the 5 μg/kg dose. | [103] |
BPA | Male C57BL/6 mice | 7 weeks old | 16 weeks | 50 μg/kg/day | Oral (Diet: 0.5 mg/kg BPA) | MD12062 diet and BPA diet | BPA increased hepatic cholesterol content and the expression of HMGCR and SREBP-2. BPA decreased the DNA methylation levels of SREBP-2 and increased the expression levels of SREBP-1c and stearoyl-CoA desaturase 1 in the liver. | [104] |
BPA | Male C57BL/6 mice | 3 weeks old | 90 days | 50 μg/kg bw/day | Gavage | Likely standard chow (not mentioned) | BPA increased liver weight and triglyceride. BPA-induced hepatic steatosis and lipid accumulation were associated with increased expressions of genes in de novo lipogenesis. A diffuse vacuolization phenotype was observed in the liver, due to the accumulation of lipid droplets. | [105] |
BPA | Male CD-1 mice | 6 weeks old | 4 weeks (28 days) | 5 and 50 μg/kg bw/day | Oral (Diet) | Standard diet as the control | BPA had a strong impact on liver transcriptome, particularly on genes in lipid synthesis, including genes involved in de novo fatty acid synthesis (ACLY, ACACA, ACACB, FASN) and elongation (ELOVL6), in triglyceride synthesis (GPAT) and cholesterol synthesis (MVD, LSS). BPA also upregulated LXR mRNA levels and affected liver lipid metabolism. | [106] |
BPA, BPS | Female C57BL/6 mice | 5 weeks old | 10 weeks | 50 μg/kg bw/day | Drinking water (0.25 mg/L) | Likely standard chow (not mentioned) | Induction of LXRα by BPA and BPS was observed, which highly correlated with the aberrant metabolism profiles in liver tissues. | [111] |
BPA | Male CD-1 mice | 6 weeks old | 24 weeks (6 months) | ~50 μg/kg bw/day | Oral (Diet: 0.5 mg/kg BPA) | MD12062 normal diet and BPA diet | BPA increased liver weight, lipid contents and fat accumulation and the expression of inflammatory cytokines. The diversity of gut microbiota was reduced. | [113] |
BPA | Male CD-1 mice | 6 weeks old | 24 weeks (6 months) | ~50 μg/kg bw/day | Oral (Diet: 0.5 mg/kg BPA) | Normal diet and BPA diet | BPA increased liver weight, the relative abundance of Proteobacteria and Firmicutes/Bacteroidetes ratio while Akkermansia was reduced. | [114] |
BPA | Male CD-1 mice | 6 weeks old | 24 weeks (6 months) | 50 μg/kg bw/day | Oral (Diet: 0.5 mg/kg BPA) | A standard diet (AIN93-G) and BPA diet | BPA induced hepatic steatosis and reduced the relative abundance of Bacteroides, Parabacteroides and Akkermansia. | [115] |
BPS | Female C57BL/6J mice | 3 weeks old | 22 weeks (154 days) | 50–100 μg/kg bw/day | Oral (Diet: 0.5 mg/kg BPS) | Normal chow diet and BPS diet | BPS increased liver weight and caused dyslipidemia, obesity, hepatic lipid accumulation, intestinal lesions and dysbiosis. | [116] |
BPS | Male C57BL/6 mice | 5 weeks old | 16 weeks | 50 μg/kg bw/day | Drinking water | High-fat diet | BPS promoted the progression of NAFLD, which was reflected by the increased liver/body weight ratio, elevated serum ALT and AST levels, and more and larger lipid droplets in liver tissues. | [117] |
BPS | Male Swiss mice | NA | 10 weeks | 25 and 50 μg/kg bw/day | Drinking water | Standard diet | BPS induced hypertriglyceridemia, increased liver injury markers, and initiated histopathological changes. | [118] |
BPS | Male mice | NA | 10 weeks | 25 and 50 μg/kg | Drinking water | Standard diet | BPS exposure increased the expression of G6Pase and PEPCK in the liver. BPS also stimulated glycogenolysis and/or gluconeogenesis. | [119] |
BPA, BPF, BPAF | Male C57BL/6 mice | Starting at eight-weeks old | 8 weeks | 50 μg/kg bw/day | Drinking water | High-fat diet (HFD) | BPF and BPAF reduced lipid accumulation in HFD mouse liver by lowering glyceride and cholesterol levels. An increase in both absolute and relative liver weights was observed in all treated groups except for BPA. BPF also elevated plasma AST levels. | [120] |
BPA | Swiss albino mice (Male and female) | 4.5 weeks old | 6 weeks | 50 μg/kg bw/day (twice a week) | Intraperitoneally | Likely standard chow (not mentioned) | In both sexes, BPA produced increases in the liver weights and the levels of ALT, ALP and GGT. It also induced liver histopathological changes. More effects were observed in males. | [121] |
BPA | Male C57BL/6 mice | 4 weeks old | Once/day for 5 days | 50 μg/kg bw/day | Intraperitoneally | Likely standard chow (not mentioned) | BPA treatment impaired the structure of the hepatic mitochondria. The hepatic levels of malondialdehyde were increased, while the expression of glutathione peroxidase 3 was decreased. | [122] |
BPA | Male C57BL/6 mice | 6 weeks old | 5 weeks (35 days) | 1.0, 10 and 50 μg/ kg bw/day | Gavage | Likely standard chow (not mentioned) | No significant differences were found for IL-1 beta, phospholipase A2, AST, and ALT; however, there were significant differences for pyruvate dehydrogenase (decrease), LDH (decrease), fatty acyl-CoA synthetase (increase), and carnitine transferase-1 (decrease). | [123] |
BPA | Male CD-1 mice | 6 weeks old | 8 weeks | 5 and 50 μg/kg bw/day | Oral (Diet: 0.05 and 0.5 mg/kg) | Standard diet as the control | BPA increased liver fat contents, accompanied by more pro-inflammatory M1 Kupffer cells and enhanced secretion of inflammatory cytokines. | [124] |
BPA | Male CD-1 mice | 6 weeks old | 8 months | 5 and 50 μg/kg bw/day | Drinking water | A standard diet (A04, from SAFE Diet, Augy, France) | Consistent with the hypercholesterolemia, BPA induced hepatic overexpression of key genes involved in cholesterol biosynthesis, namely, HMGCR. | [125] |
BPA | Male CD-1 mice | 3-week-old | 10 weeks | 50 μg/kg bw/day | Drinking water | Standard rodent chow | BPA decreased the body weights as well as the liver weights. The levels of oxidative stress indicators and pro-inflammatory cytokines were increased. Antioxidant indicators were reduced. | [126] |
BPA | Male C57BL/6 mice | 6 weeks old | 3 weeks | 50 μg/kg bw/day | Oral | High-fat diet (HFD) | BPA augmented HFD-induced alteration of lipid metabolism, liver triglyceride accumulation and mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. | [127] |
BPA | Male C57BL/6 mice | 6 months | 2 weeks | 50 μg/kg bw/day | Drinking water (1.75 mM BPA) | Likely standard chow (not mentioned) | BPA suppressed hepatic glucokinase activity. | [129] |
BPA | Male CD-1 mice | 6 weeks old | 8 weeks | 5 and 50 μg/kg bw/day | Oral (Diet) | Standard diet | BPA increased hepatic lipid accumulation and dysregulated the process of autophagy in livers. | [130] |
BPF | Male C57BL/6J mice | 6 weeks old | 30 consecutive days | 40 μg/kg b.w./day | Gavage | Likely standard chow (not mentioned) | BPF increased kynurenine level in the liver and the expression of 2,3-dioxygenase and kynurenine 3-monooxygenase. | [131] |
BPF | Male C57BL/6J mice | 5–6 weeks | 30 days | 50 μg/kg/day | Gavage | Diet did not contain alfalfa or soybean meal | BPF increased body weight gain but had no effects on liver weights; however, it elicited some ballooning degeneration in liver. | [132] |
3.2.3. Adult Exposure in Rats
Compounds | Model/Diseases | Age | Exposure Window/Time | Dose/Concentration | Routes of Administration | Diet | Liver Effects | Reference |
---|---|---|---|---|---|---|---|---|
BPA | Pregnant CD-1 mice | Two-generation studies | Whole life | 3 and 30 μg/kg bw/day | Oral/diet | Purina certified ground rodent diet | BPA increased kidney and liver weights. | [134] |
BPA | C57BL/6JxFVB hybrid mice | 23 weeks | During mating, gestation, and lactation | 3, 10 and 30 μg/kg bw/day | Oral/diet | NIH-07 diet | Adult male offspring showed dose-dependent increases in body and liver weights. The liver of males did not reveal any effects histopathologically. Female offspring showed a dose-dependent decrease in liver weight. | [135] |
BPA | Pregnant ICR mice | E14.5 or E18.5 | E6.5–13.5 or E6.5–17.5 | 0.02 and 2 μg/kg bw/day | Oral | Standard diet | No significant changes in cytochrome P450 1A1and the glutathione S-transferase Ya subunit in the livers of late-stage embryos. | [136] |
BPA | Pregnant C57BL/6J mice | Adult (male and female pups) | For 19–21 consecutive days during gestation | 5 μg/kg bw/day | Oral | Select rodent diet 50 IF/6F 5V5R | BPA affected the expression of genes related to liver oxidative phosphorylation, PPAR signaling and fatty acid metabolism, as well as the gut microbipta in an age- and sex-dependent manner. | [137] |
BPA | C57BL/6 mice | 14 weeks old | Gestational exposure (E7.5–16.5) | 1 μg/kg bw/day | Gavage | Standard rodent chow then high-fat diet at 6 weeks old | BPA affected the expression of genes related to lipid metabolism, leading to a sex-dependent lipid accumulation in the liver of male offspring and fatty liver in both sexes. | [138] |
BPA | Male ICR (CD1) mice | 10 months | Lactational and postnatal exposure after weaning | 0.5 μg/kg/day | Drinking water (2.5 μg/L BPA) | Standard diet | BPA increased triglycerides and cholesterol levels in the liver. Hepatocytes showed increased expression of genes related to lipid synthesis and SREBF1 and SREBF2, and decreased DNA methylation in SREBF1 and SREBF2. | [139] |
BPA | F0 pregnant C57BL/6J mice | E18.5 male fetuses | From mating until GD 18.5 | 10 µg/kg bw/day | Oral | Modified AIN 93G diet containing BPA or control diet | Thirteen metabolites differed between control and BPA groups. BPA fetal liver had significantly reduced Shp expression in comparison to the controls. | [140] |
BPA | Pregnant mice | PND 22 | Two weeks prior to mating | 5–10 μg/kg bw/day | Oral/diet (50 μg BPA/Kg) | AIN-93G diets as the control | Offspring maternally exposed to BPA during gestation and lactation had alterations of liver methylome. | [142] |
BPA | Pregnant CD-1 mice | Male pups at PND 2 or PND 21 | From GD 8 through day 16 of lactation | 0.025, 0.25, or 25 µg BPA/kg bw/day | Alzet osmotic pumps (sc) | Standard food (Harlan Teklad) | BPA disrupted energy metabolism and brain function in perinatally exposed CD-1 mouse pups. | [146] |
BPA | Male C57BL/6J mice | 2 months old | A single injection at PND 10 | 25 μg/kg bw/day | Subcutaneous | Standard food (Panlab, Barcelona, Spain) | BPA induced liver damage evidenced by oxidative stress. | [147] |
BPA | Pregnant OF-1 mice | Male pups at PND 30 | Gestational day 9–16 | 10 μg/kg bw/day | Subcutaneous | 2014 Teklad Global 14% protein rodent maintenance diet | BPA increased the level of all-trans-retinoic acids and the expression of Adh1, Fgf21, Aox1 and Cyp1a2 (biosynthesis of retinoic acid). | [149] |
BPA | Pregnant OF-1 mice | Male pups at 17 or 28 weeks of age | Gestational day 9–16 | 10 μg/kg bw/day | Subcutaneous | At age of one month, mice were on a chow diet or HFD for 13 or 24 weeks | BPA increased PPARγ and Prkaa1 genes in the liver, while decreased the expression of Cd36; Hepatic triglyceride levels were increased. | [150] |
BPA | Pregnant CD-1 mice | At week 5 and week 39 (pups) | From GD 8 through PND 16 and PND 21–35 | 25 μg/kg bw/day | Osmotic minipumps in utero and drinking water postnatally | Harlan Teklad Rodents Diets® 2018 chow | BPA increased hepatic lipid content along with increased Nrf2 and pro-lipogenic enzymes in females; BPA exposure induced hypomethylation of the Nrf2 and Srebp-1c promoters in liver. | [151] |
BPA | Swiss mice | PND 56 (male and female pups) | During gestation and lactation | 20 μg/kg bw/day | Intraperitoneal | Standard normal diet | No structural modification and hepatic microvesicular steatosis in the liver, no differences in lipid composition. | [152] |
BPS | F0 pregnant C57BL/6J mice | Multi-generation studies (F0–F3) | From GD 0 until weaning of offspring | 1.5 μg/kg bw/day | Drinking water | Standard diet based on the 4RF21 diet (estrogen-free) | BPS produced no significant changes in liver weight regardless of generations. | [153] |
BPS | Pregnant C57BL/6J mice | 22-week-old male pups | From embryo day 0 until 22 weeks old | 1.5 μg/kg bw/day | Drinking water | At 8 weeks old, all male pups were fed with a high-fat diet | BPS increased hepatic triglyceride content and changed gene expression (1366 genes modified more than 1.5-fold). | [154] |
BPS | Pregnant C57BL/6J mice | 23-week-old male pups | From embryo day 0 until 22 weeks old | 1.5 μg/kg bw/day | Drinking water | Standard diet (4RF21) | BPS dysregulated 374 genes in the liver; BPS also induced hypomethylation in the differentially methylated regions (58.5%). | [155] |
BPS | C57BL/6 mice | Postnatal week 12 | From GD 0 until weaning | 50 μg/kg bw/day | Subcutaneous | At postnatal week 4, offspring were shifted to a high-fat diet | Male offspring showed greater metabolic and microbial disturbances. In the liver, BPS induced cytoplasmic loosening and hypochromasia, with hepatocytes exhibiting vacuolation. There were granular degeneration, steatosis and hepatocyte necrosis. | [156] |
BPS | Pregnant C57BL/6J mice | Up to 23-week-old | From gestational day 0 | 0.2, 1.5, and 50 μg/kg bw/day | Drinking water | Fed with a standard or HFD | BPS increased body weight in male offspring fed with a HFD at 1.5 and 50 μg/kg doses. | [157] |
BPS | Pregnant ICR mice | PND 70 | From GD 1 until the pups were weaned (40 days) | 5 µg/kg bw/day | Drinking water | The growth and reproduction compound feed | BPS did not change liver weight and liver organ index, and liver histopathology in male offspring, but liver weight was increased in females. In addition, the expression of USP2 was lower following BPS exposure. | [158] |
3.2.4. Developmental Exposure in Rats
Compounds | Model/Diseases | Exposure Starting Age | Exposure Window/Time | Dose/Concentration | Routes of Administration | Diet | Liver Effects | Reference |
---|---|---|---|---|---|---|---|---|
BPA | Male Wistar rats | 9 weeks old | 35 weeks | 50 μg/kg bw/day | Oral (diet) | Standard chow or high-fat diet | BPA did not affect lipid metabolism. | [160] |
BPA | Male Wistar rats | Older than 2 months | 35 days | 5 and 25 μg/kg bw/day | Gavage | Likely standard chow (not mentioned) | The levels of alkaline phosphatase and AST were decreased by BPA, while the level of ALT was not changed. | [161] |
BPA | Male Sprague Dawley rats | 6–8 weeks | 8 weeks | 0.5 μg/kg bw/day | Gavage | Likely standard chow (not mentioned) | BPA increased biotin and riboflavin excretion; higher levels of Mat1a and Mat2a, and SAMe were also observed in rat liver. | [162] |
BPA | Male Wistar albino rats | 8 weeks old | 8 weeks | 5 and 50 μg/ kg bw/day | Oral | Likely standard chow (not mentioned) | BPA caused oxidative stress, but liver tissues appeared normal. No significant difference among the groups in lipid droplets. | [163] |
BPA | Male Wistar rats | NA | 45 days | 1–2 μg/ kg bw/day | Drinking water (4.5 and 8 µg/L BPA) | Likely standard chow | BPA altered MDA, SOD, NO tissue levels in the liver, disturbed gene expression, and induced apoptosis. | [164] |
BPA | Albino male rats of Wistar strain | 45 days old | 30 days | 0.2, 2 and 20 μg/kg bw per day | Orally in olive oil | Standard commercial laboratory chow | No significant changes in ALT activity in mitochondrial and microsome-rich fractions, but BPA induced reactive oxygen species generation in the liver. | [165] |
BPA | Male Wistar rats | 9–10 weeks old | 4 weeks | 50 μg/kg bw/day | Gavage | Standard rodent chow | BPA group exhibited higher DNA damage in liver with increased formation of micronuclei. | [166] |
BPA | Male Wistar rats | 10 to 12 weeks old | 35 days | 5 and 25 μg/ kg bw/day | Gavage | Likely standard chow (not mentioned) | There were increased expressions in HO-1 (25 μg/kg) and GADD45B (5 and 25 μg/kg) genes, indicating increases in oxidative stress. | [167] |
BPA | Female Fischer 344 rats | 5 weeks old | From 5 to 15 weeks old | 2.5–50 μg/kg/day | Drinking water (0.025 and 0.25 mg/L) | Likely standard rodent chow (not specified) | BPA-exposed rats had more liver fat content than the fructose controls. | [168] |
BPA | Hypertensive male albino Wistar rats | 8–10 weeks old | 30 days | 50 μg/kg bw/day | Oral | Likely standard chow (not mentioned) | BPA elevated the TBARS content in plasma and liver. | [169] |
BPA | Hypertensive male albino Wistar rats | 8–10 weeks old | 30 days | 50 μg/kg bw/day | Oral | Likely standard chow (not mentioned) | BPA potentiated hypertension-induced hepatic fibrosis, oxidative stress, ACE activity, dysfunctional antioxidant system, dyslipidemia and expression of inflammatory factor. | [170] |
BPA, BPS | Male Wistar rats | 3 weeks old | 38 weeks | 50 μg/kg bw/day | Drinking water | Standard diet | Long-term BPA or BPS exposure promoted glucose intolerance and changed hepatic mitochondrial metabolism. | [171] |
BPA, BPS | Male Wistar rats | 4 weeks-old | 20 weeks | 50 μg/kg bw/day | Drinking water | Standard diet | BPA increased serum levels of total cholesterol and HDL-cholesterol, while BPS induced hypertriglyceridemia. BPS increased the expression of a liver lipogenic enzyme and had a greater obesogenic effect than BPA. | [172] |
3.3. Liver Toxicity of Bisphenol Analogs in Other Species (Chickens, Pigs, Sheep, Etc.)
Compounds | Model/Diseases | Age | Exposure Window/Time | Dose/Concentration | Routes of Administration | Diet | Liver Effects | Reference |
---|---|---|---|---|---|---|---|---|
BPA | Sprague Dawley rats | PND 21, 50, 90, 140 and 200 | From day 9 of gestation to PND 28 | 0.25; 2.5 and 25 μg/kg BW/day | Alzet osmotic pumps (subcutaneously) | Standard rodent chow | BPA modified the metabolism of glucose, lactate and fatty acids with time. | [173] |
BPA | F0 female SD rats | F2 offspring at 9 and 20 weeks old | GD0 to PND 21 | 40 μg/kg bw/day | Gavage | Standard rat food | F0 maternal BPA exposure downregulated the expression of glucokinase gene in F2 liver by inducing DNA methylation change. | [174] |
BPA | Wistar rats | Male offspring at 3 and 21 weeks old | GD 0 until weaning at 3 weeks | 50 μg/kg bw/day | Gavage | Standard rodent chow | Hepatic global DNA methylation was decreased by BPA, along with overexpression of DNA methyltransferase 3B at week 3. However, there was promoter hypermethylation, and thus reduced expression of hepatic glucokinase. | [175] |
BPA | Pregnant Wistar rats | Newborn (PND 1) and weaning (PND21) | From embryonic day 3 to 18 | 50 μg/kg/day | Gavage | Standard solid diet | Prenatal BPA exposure caused masculinization of the hepatic transcriptome in females. The relative liver weight was increased in females at PND 1 while it was decreased in males at PND 21. | [176] |
BPA | SD rats (Three-generation study) | up to ∼ 17 weeks | Whole life | Approximately 1 and 20 µg/kg/day | Oral/diet | Purina Certified Rodent Chow | BPA decreased male liver weight and increased female liver weight in F2 at 20 μg/kg/day. | [177] |
BPA | Pregnant Fischer 344 rat | 5 and 52 weeks old | GD3.5 until PND 22 | 0.5 and 50 µg/kg bw/day | Drinking water | Standard chows | BPA at 0.5 µg/kg altered the fatty acid composition and decreased liver triglycerides in male offspring. | [178] |
BPA | Pregnant Sprague Dawley rats | Male offspring at PND 21 and 56 | From day 5 to day 19 of gestation | 50 μg/kg/day | Gavage | Likely standard rodent chow (not specified) | BPA increased the relative liver weight at PND 56, the levels of triglycerides and total cholesterol in serum and liver. | [179] |
BPA | Pregnant F344 rats | PND 22 | GD3.5 until PND 22 | 0.5 and 50 µg/kg bw/day | Drinking water | Standard chows | BPA induced sex-specific gene expressions in adipose tissue and increased plasma triglyceride levels in males and adipocyte cell density in females. | [180] |
BPA | Wistar rats | 27 weeks old | GD 0 to the end of lactation at PND 21 | 50 μg/kg/day | Gavage | Standard rodent chow or high-fat diet after weaning | On the standard diet, BPA offspring had moderate hepatic steatosis, but with normal liver function. On HFD, BPA offspring showed a nonalcoholic steatohepatitis-like phenotype. | [181] |
BPA | Genitor Wistar male rat pups | At 3, 15 and 21 weeks old | GD 0 to PND 21 | 50 μg/kg/day | Gavage | Standard rodent chow | BPA increased ALT level and enhanced cell apoptosis in the liver of rat offspring at 15 and 21 weeks. | [182] |
BPA | Pregnant Wistar rats | Male offspring at postnatal 3, 15 and 26 weeks | During gestation and lactation | 40 μg/kg bw/day | Oral (Likely gavage) | Standard chows | Perinatal BPA exposure in rat offspring resulted in mitochondrial dysfunction in early life and contributed to hepatic steatosis. | [183] |
BPA | Sprague Dawley rats | Fetus on GD20 | 30 days before coitus and continued until GD20 | 2.5 µg/kg/day | Drinking water | Standard rodent chow | BPA modulated the expression of proteins involved in cholesterol and fatty acid biosynthesis and trafficking in the liver. | [184] |
BPA | Long-Evans rats | Female PND 6 offspring | All the time starting at premating | 36 μg/kg bw/day | Oral/diet | A diet of natural ingredients low in phytoestrogens | BPA increased oxidative stress and triggered inflammatory responses and apoptosis pathways in the liver. | [185] |
BPA | Pregnant Wistar rats | PND 17 and 60 | During gestation and lactation and postnatal | 10–20 μg/kg/day | Drinking water (100 μg/L) | Likely standard rodent chow (not specified) | BPA affected the expression of inflammatory cytokine Sirt1, its natural antisense long non-coding RNA and histone deacetylase 1. | [186] |
BPA, BPS | Male Long-Evans rats | 21-day-old | 14 days | 1 and 4 μg/kg bw/day | Drinking water (5 and 20 μg/L) | Likely standard rodent chow (not specified) | BPA induced hepatoxicity by depleting glutathione; BPS did not affect apoptosis, inflammation and mitochondrial function but reduced the reactive oxygen species and nitrite content. | [188] |
BPA, BPS | Pregnant Wistar rats | PND 90 | GD 4 to 21 | 0.4 and 4.0 μg/kg bw/day | Gavage | Standard rodent chow | BPS produced a more obesogenic effect and altered liver lobes more than l BPA; BPS exposure increased absolute liver weight and caused liver discoloration. | [189] |
BPF | Long-Evans rats | Male and female (PND 6 offspring | All the time starting at premating | 36 μg/kg bw/day | Oral/diet | A diet of natural ingredients low in phytoestrogens | Dams treated with BPF had increases in iNOS and HO-1d, activation of NLRP3 components and the release of pro-inflammatory cytokines. Similar effects were found in female and male PND 6 offspring. | [192] |
Compounds | Model/Diseases | Age | Exposure Window/Time | Dose/Concentration | Routes of Administration | Diet/Medium | Liver Effects | Reference |
---|---|---|---|---|---|---|---|---|
BPA | Chicks | 8-day old | 28 days | 10 μg/kg | Drinking water | Typical laboratory conditions | BPA activates G protein-coupled estrogen receptor, disrupts lipid metabolism and induces ferroptosis in the liver. | [195] |
BPA, BPS | Laying hens | Adult | 3 months | 50 μg/kg bw/day | Gavage | Typical laboratory conditions | No significant effects on either the absolute weights or the relative weights of livers. | [196] |
BPA | Hy-Line Brown laying hens | 450 days old | 90 days | 50 μg/kg | Not known | High-energy and low-protein diet | No significant effects on liver weight, NAFLD activity score, AST, ALT, TG, TC, HDL and LDL. | [197] |
BPA | Juvenile porcine model | 8 weeks | 28 days | 50 μg/kg bw/day | Oral (BPA capsules) | Typical laboratory conditions (not specified) | BPA liver had central vein and hepatic sinusoid dilatation and vascular congestion, and increases in ALT and AST and the number of galanin+/vesicular acetylcholine transporter+ nerves. | [198] |
BPA | Juvenile porcine model | 8 weeks | 28 days | 50 μg/kg bw/day | Oral (BPA capsules) | Typical laboratory conditions (not specified) | Oral BPA increased the number of liver sympathetic nerve fibers that co-localized with cocaine and amphetamine regulated transcripts and galanin. | [203,204] |
BPA | Juvenile porcine model | 8 weeks | 28 days | 50 μg/kg bw/day | Oral (BPA capsules) | Typical laboratory conditions (not specified) | BPA increased nerve fibers that colocalized with PACAP in the liver sympathetic nervous system. | [205] |
BPA | Pregnant Suffolk sheep | GD90 | From days 30 through 90 of gestation | 50 and 500 μg/kg bw/day | Subcutaneous injection | A pelleted diet | Liver weight was reduced in prenatal BPA (500 μg/kg)-treated female fetuses. | [206] |
BPA | Pregnant sheep | 2–5 years old | Between days 30 and 90 of gestation | 50 μg/kg | Subcutaneous injection | Typical laboratory conditions (not specified) | In liver, there were reduced expressions of pro-inflammatory markers IL-1, IL-6 and CCL2, and increases in TNF-α and the macrophage marker CD68 and oxidized tyrosine moieties. | [207] |
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mielke, H.; Partosch, F.; Gundert-Remy, U. The contribution of dermal exposure to the internal exposure of bisphenol A in man. Toxicol. Lett. 2011, 204, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.A.; Vom Saal, F.S.; Welshons, W.V.; Drury, B.; Rottinghaus, G.; Hunt, P.A.; Toutain, P.L.; Laffont, C.M.; VandeVoort, C.A. Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: Relevance for human exposure. Environ. Health Perspect. 2011, 119, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- McDonough, C.M.; Xu, H.S.; Guo, T.L. Toxicity of bisphenol analogues on the reproductive, nervous, and immune systems, and their relationships to gut microbiome and metabolism: Insights from a multi-species comparison. Crit. Rev. Toxicol. 2021, 51, 283–300. [Google Scholar] [CrossRef]
- Chelcea, I.; Örn, S.; Hamers, T.; Koekkoek, J.; Legradi, J.; Vogs, C.; Andersson, P.L. Physiologically Based Toxicokinetic Modeling of Bisphenols in Zebrafish (Danio rerio) Accounting for Variations in Metabolic Rates, Brain Distribution, and Liver Accumulation. Environ. Sci. Technol. 2022, 56, 10216–10228. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, L.; Gai, Y.; Hong, Y.; Li, L.; Weng, L. Subchronic bisphenol S exposure affects liver function in mice involving oxidative damage. Regul. Toxicol. Pharmacol. 2018, 92, 138–144. [Google Scholar] [CrossRef]
- Geens, T.; Neels, H.; Covaci, A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 2012, 87, 796–802. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef]
- Kojima, H.; Takeuchi, S.; Sanoh, S.; Okuda, K.; Kitamura, S.; Uramaru, N.; Sugihara, K.; Yoshinari, K. Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors. Toxicology 2019, 413, 48–55. [Google Scholar] [CrossRef]
- Owczarek, K.; Kudłak, B.; Simeonov, V.; Mazerska, Z.; Namieśnik, J. Binary Mixtures of Selected Bisphenols in the Environment: Their Toxicity in Relationship to Individual Constituents. Molecules 2018, 23, 3226. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.R.; Lim, V.; Bahari, H.; Khoo, B.Y.; Abdullah, M.N.H.; Tan, J.J.; Yong, Y.K. Adverse Effects of Bisphenol A on the Liver and Its Underlying Mechanisms: Evidence from In Vivo and In Vitro Studies. Biomed. Res. Int. 2022, 2022, 8227314. [Google Scholar] [CrossRef] [PubMed]
- Nahar, M.S.; Liao, C.; Kannan, K.; Dolinoy, D.C. Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans. J. Biochem. Mol. Toxicol. 2013, 27, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cooke, G.M.; Curran, I.H.; Goodyer, C.G.; Cao, X.L. GC-MS analysis of bisphenol A in human placental and fetal liver samples. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2011, 879, 209–214. [Google Scholar] [CrossRef]
- Rusyn, I.; Arzuaga, X.; Cattley, R.C.; Corton, J.C.; Ferguson, S.S.; Godoy, P.; Guyton, K.Z.; Kaplowitz, N.; Khetani, S.R.; Roberts, R.A.; et al. Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology 2021, 74, 3486–3496. [Google Scholar] [CrossRef]
- Shmarakov, I.O.; Borschovetska, V.L.; Blaner, W.S. Hepatic detoxification of bisphenol A is retinoid-dependent. Toxicol. Sci. 2017, 157, 141–155. [Google Scholar] [CrossRef]
- Shimizu, M.; Ohta, K.; Matsumoto, Y.; Fukuoka, M.; Ohno, Y.; Ozawa, S. Sulfation of bisphenol A abolished its estrogenicity based on proliferation and gene expression in human breast cancer MCF-7 cells. Toxicol. In Vitro 2002, 16, 549–556. [Google Scholar] [CrossRef]
- Corbel, T.; Perdu, E.; Gayrard, V.; Puel, S.; Lacroix, M.Z.; Viguié, C.; Toutain, P.L.; Zalko, D.; Picard-Hagen, N. Conjugation and deconjugation reactions within the fetoplacental compartment in a sheep model: A key factor determining bisphenol A fetal exposure. Drug Metab. Dispos. 2015, 43, 467–476. [Google Scholar] [CrossRef]
- Hermano Sampaio Dias, A.; Yadav, R.; Mokkawes, T.; Kumar, A.; Skaf, M.S.; Sastri, C.V.; Kumar, D.; de Visser, S.P. Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorg. Chem. 2023, 62, 2244–2256. [Google Scholar] [CrossRef]
- Schmidt, J.; Kotnik, P.; Trontelj, J.; Knez, Ž.; Mašič, L.P. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicol. In Vitro 2013, 27, 1267–1276. [Google Scholar] [CrossRef]
- Hanioka, N.; Jinno, H.; Nishimura, T.; Ando, M. Suppression of male-specific cytochrome P450 isoforms by bisphenol A in rat liver. Arch. Toxicol. 1998, 72, 387–394. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Metzler, M. Effect of bisphenol A on drug metabolising enzymes in rat hepatic microsomes and precision-cut rat liver slices. Arch. Toxicol. 2004, 78, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Nahar, M.S.; Kim, J.H.; Sartor, M.A.; Dolinoy, D.C. Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ. Mol. Mutagen. 2014, 55, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.; Roy, D. In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s). Biochem. Biophys. Res. Commun. 1995, 210, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Bursztyka, J.; Perdu, E.; Pettersson, K.; Pongratz, I.; Fernández-Cabrera, M.; Olea, N.; Debrauwer, L.; Zalko, D.; Cravedi, J.P. Biotransformation of genistein and bisphenol A in cell lines used for screening endocrine disruptors. Toxicol. In Vitro 2008, 22, 1595–1604. [Google Scholar] [CrossRef]
- Jaeg, J.P.; Perdu, E.; Dolo, L.; Debrauwer, L.; Cravedi, J.P.; Zalko, D. Characterization of new bisphenol a metabolites produced by CD1 mice liver microsomes and S9 fractions. J. Agric. Food Chem. 2004, 52, 4935–4942. [Google Scholar] [CrossRef]
- Inoue, H.; Kemanai, S.; Sano, C.; Kato, S.; Yokota, H.; Iwano, H. Bisphenol A glucuronide/sulfate diconjugate in perfused liver of rats. J. Vet. Med. Sci. 2016, 78, 733–737. [Google Scholar] [CrossRef]
- Nakamura, S.; Tezuka, Y.; Ushiyama, A.; Kawashima, C.; Kitagawara, Y.; Takahashi, K.; Ohta, S.; Mashino, T. Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol. Lett. 2011, 203, 92–95. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, X.; Needham, L.L.; Calafat, A.M. In-vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A? Anal. Bioanal. Chem. 2011, 399, 1071–1079. [Google Scholar] [CrossRef]
- Yoshihara, S.; Mizutare, T.; Makishima, M.; Suzuki, N.; Fujimoto, N.; Igarashi, K.; Ohta, S. Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: Their structures and estrogenic potency. Toxicol. Sci. 2004, 78, 50–59. [Google Scholar] [CrossRef]
- Zalko, D.; Soto, A.M.; Dolo, L.; Dorio, C.; Rathahao, E.; Debrauwer, L.; Faure, R.; Cravedi, J.P. Biotransformations of bisphenol A in a mammalian model: Answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ. Health Perspect. 2003, 111, 309–319. [Google Scholar] [CrossRef]
- Skledar, D.G.; Schmidt, J.; Fic, A.; Klopčič, I.; Trontelj, J.; Dolenc, M.S.; Finel, M.; Mašič, L.P. Influence of metabolism on endocrine activities of bisphenol S. Chemosphere 2016, 157, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Gys, C.; Kovačič, A.; Huber, C.; Lai, F.Y.; Heath, E.; Covaci, A. Suspect and untargeted screening of bisphenol S metabolites produced by in vitro human liver metabolism. Toxicol. Lett. 2018, 295, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Waidyanatha, S.; Black, S.R.; Snyder, R.W.; Yueh, Y.L.; Sutherland, V.; Patel, P.R.; Watson, S.L.; Fennell, T.R. Disposition and metabolism of the bisphenol analogue, bisphenol S, in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Toxicol. Appl. Pharmacol. 2018, 351, 32–45. [Google Scholar] [CrossRef]
- Le Fol, V.; Brion, F.; Hillenweck, A.; Perdu, E.; Bruel, S.; Aït-Aïssa, S.; Cravedi, J.P.; Zalko, D. Comparison of the In Vivo Biotransformation of Two Emerging Estrogenic Contaminants, BP2 and BPS, in Zebrafish Embryos and Adults. Int. J. Mol. Sci. 2017, 18, 704. [Google Scholar] [CrossRef]
- Cabaton, N.; Zalko, D.; Rathahao, E.; Canlet, C.; Delous, G.; Chagnon, M.C.; Cravedi, J.P.; Perdu, E. Biotransformation of bisphenol F by human and rat liver subcellular fractions. Toxicol. In Vitro 2008, 22, 1697–1704. [Google Scholar] [CrossRef]
- Cabaton, N.; Dumont, C.; Severin, I.; Perdu, E.; Zalko, D.; Cherkaoui-Malki, M.; Chagnon, M.C. Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line. Toxicology 2009, 255, 15–24. [Google Scholar] [CrossRef]
- Dumont, C.; Perdu, E.; de Sousa, G.; Debrauwer, L.; Rahmani, R.; Cravedi, J.P.; Chagnon, M.C. Bis(hydroxyphenyl)methane-bisphenol F-metabolism by the HepG2 human hepatoma cell line and cryopreserved human hepatocytes. Drug Chem. Toxicol. 2011, 34, 445–453. [Google Scholar] [CrossRef]
- Karrer, C.; Roiss, T.; von Goetz, N.; Gramec Skledar, D.; Peterlin Mašič, L.; Hungerbühler, K. Physiologically Based Pharmacokinetic (PBPK) Modeling of the Bisphenols BPA, BPS, BPF, and BPAF with New Experimental Metabolic Parameters: Comparing the Pharmacokinetic Behavior of BPA with Its Substitutes. Environ. Health Perspect. 2018, 126, 077002. [Google Scholar] [CrossRef]
- Yoshihara, S.; Makishima, M.; Suzuki, N.; Ohta, S. Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol. Sci. 2001, 62, 221–227. [Google Scholar] [CrossRef]
- Hanioka, N.; Isobe, T.; Tanaka-Kagawa, T.; Jinno, H.; Ohkawara, S. In vitro glucuronidation of bisphenol A in liver and intestinal microsomes: Interspecies differences in humans and laboratory animals. Drug Chem. Toxicol. 2022, 45, 1565–1569. [Google Scholar] [CrossRef]
- Gayrard, V.; Lacroix, M.Z.; Grandin, F.C.; Collet, S.H.; Mila, H.; Viguié, C.; Gély, C.A.; Rabozzi, B.; Bouchard, M.; Léandri, R.; et al. Oral Systemic Bioavailability of Bisphenol A and Bisphenol S in Pigs. Environ. Health Perspect. 2019, 127, 77005. [Google Scholar] [CrossRef] [PubMed]
- Völkel, W.; Colnot, T.; Csanády, G.A.; Filser, J.G.; Dekant, W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem. Res. Toxicol. 2002, 15, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Zhang, J.; Goodyer, C.G.; Hayward, S.; Cooke, G.M.; Curran, I.H. Bisphenol A in human placental and fetal liver tissues collected from Greater Montreal area (Quebec) during 1998-2008. Chemosphere 2012, 89, 505–511. [Google Scholar] [CrossRef]
- Gingrich, J.; Pu, Y.; Ehrhardt, R.; Karthikraj, R.; Kannan, K.; Veiga-Lopez, A. Toxicokinetics of bisphenol A, bisphenol S, and bisphenol F in a pregnancy sheep model. Chemosphere 2019, 220, 185–194. [Google Scholar] [CrossRef]
- Yabusaki, R.; Iwano, H.; Tsushima, S.; Koike, N.; Ohtani, N.; Tanemura, K.; Inoue, H.; Yokota, H. Weak activity of UDP-glucuronosyltransferase toward Bisphenol analogs in mouse perinatal development. J. Vet. Med. Sci. 2015, 77, 1479–1484. [Google Scholar] [CrossRef]
- Cabaton, N.; Chagnon, M.C.; Lhuguenot, J.C.; Cravedi, J.P.; Zalko, D. Disposition and metabolic profiling of bisphenol F in pregnant and nonpregnant rats. J. Agric. Food Chem. 2006, 54, 10307–10314. [Google Scholar] [CrossRef]
- Gramec Skledar, D.; Troberg, J.; Lavdas, J.; Peterlin Mašič, L.; Finel, M. Differences in the glucuronidation of bisphenols F and S between two homologous human UGT enzymes, 1A9 and 1A10. Xenobiotica 2015, 45, 511–519. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O.; Nakamura, N.; Ikezuki, Y.; Takai, Y.; Yano, T.; Taketani, Y. Gender difference in serum bisphenol A levels may be caused by liver UDP-glucuronosyltransferase activity in rats. Biochem. Biophys. Res. Commun. 2004, 325, 549–554. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O.; Ikezuki, Y.; Kamei, Y.; Osuga, Y.; Fujiwara, T.; Takai, Y.; Momoeda, M.; Yano, T.; Taketani, Y. Elevated serum bisphenol A levels under hyperandrogenic conditions may be caused by decreased UDP-glucuronosyltransferase activity. Endocr. J. 2006, 53, 485–491. [Google Scholar] [CrossRef]
- Yalcin, E.B.; Kulkarni, S.R.; Slitt, A.L.; King, R. Bisphenol A sulfonation is impaired in metabolic and liver disease. Toxicol. Appl. Pharmacol. 2016, 292, 75–84. [Google Scholar] [CrossRef]
- Doerge, D.R.; Twaddle, N.C.; Vanlandingham, M.; Fisher, J.W. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 2010, 247, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Mita, L.; Baldi, A.; Diano, N.; Viggiano, E.; Portaccio, M.; Nicolucci, C.; Grumiro, L.; Menale, C.; Mita, D.G.; Spugnini, E.P.; et al. Differential accumulation of BPA in some tissues of offspring of Balb-C mice exposed to different BPA doses. Environ. Toxicol. Pharmacol. 2012, 33, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Zühlke, M.K.; Schlüter, R.; Mikolasch, A.; Henning, A.K.; Giersberg, M.; Lalk, M.; Kunze, G.; Schweder, T.; Urich, T.; Schauer, F. Biotransformation of bisphenol A analogues by the biphenyl-degrading bacterium Cupriavidusbasilensis—A structure-biotransformation relationship. Appl. Microbiol. Biotechnol. 2020, 104, 3569–3583. [Google Scholar] [CrossRef] [PubMed]
- de Morais Farias, J.; Krepsky, N. Bacterial degradation of bisphenol analogues: An overview. Environ. Sci. Pollut. Res. Int. 2022, 29, 76543–76564. [Google Scholar] [CrossRef]
- Peng, B.; Zhao, H.; Keerthisinghe, T.P.; Yu, Y.; Chen, D.; Huang, Y.; Fang, M. Gut microbial metabolite p-cresol alters biotransformation of bisphenol A: Enzyme competition or gene induction? J. Hazard. Mater. 2022, 426, 128093. [Google Scholar] [CrossRef]
- Arriazu, E.; Ruiz de Galarreta, M.; Cubero, F.J.; Varela-Rey, M.; Pérez de Obanos, M.P.; Leung, T.M.; Lopategi, A.; Benedicto, A.; Abraham-Enachescu, I.; Nieto, N. Extracellular matrix and liver disease. Antioxid. Redox Signal. 2014, 21, 1078–1097. [Google Scholar] [CrossRef]
- Caussy, C.; Aubin, A.; Loomba, R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr. Diab Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Cui, Z.; Liu, W.; Liu, B.; Zeng, Q.; Zhao, X.; Dou, J.; Cao, J. Endocrine disrupting chemicals: A promoter of non-alcoholic fatty liver disease. Front. Public Health 2023, 11, 1154837. [Google Scholar] [CrossRef]
- Yang, R.; Lu, Y.; Yin, N.; Faiola, F. Transcriptomic Integration Analyses Uncover Common Bisphenol A Effects Across Species and Tissues Primarily Mediated by Disruption of JUN/FOS, EGFR, ER, PPARG, and P53 Pathways. Environ. Sci. Technol. 2023, 57, 19156–19168. [Google Scholar] [CrossRef]
- Zamora, Z.; Wang, S.; Chen, Y.W.; Diamante, G.; Yang, X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. Environ. Int. 2024, 183, 108339. [Google Scholar] [CrossRef]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [PubMed]
- An, S.J.; Yang, E.J.; Oh, S.; Park, K.J.; Kim, T.; Hong, Y.P.; Yang, Y.J. The association between urinary bisphenol A levels and nonalcoholic fatty liver disease in Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Environ. Health Prev. Med. 2021, 26, 91. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Park, H.; Bae, S.; Lim, Y.H.; Kim, J.H.; Cho, S.H.; Hong, Y.C. Urinary bisphenol A concentrations are associated with abnormal liver function in the elderly: A repeated panel study. J. Epidemiol. Community Health 2014, 68, 312–317. [Google Scholar] [CrossRef]
- Wang, F.; Hua, J.; Chen, M.; Xia, Y.; Zhang, Q.; Zhao, R.; Zhou, W.; Zhang, Z.; Wang, B. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup. Environ. Med. 2012, 69, 679–684. [Google Scholar] [CrossRef]
- Fu, X.; He, J.; Zheng, D.; Yang, X.; Wang, P.; Tuo, F.; Wang, L.; Li, S.; Xu, J.; Yu, J. Association of endocrine disrupting chemicals levels in serum, environmental risk factors, and hepatic function among 5- to 14-year-old children. Toxicology 2022, 465, 153011. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.E.U.; Akash, M.S.H.; Sabir, S.; Mahmood, M.H.; Rehman, K. Human exposure to bisphenol A through dietary sources and development of diabetes mellitus: A cross-sectional study in Pakistani population. Environ. Sci. Pollut. Res. Int. 2020, 27, 26262–26275. [Google Scholar] [CrossRef]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef]
- Melzer, D.; Rice, N.E.; Lewis, C.; Henley, W.E.; Galloway, T.S. Association of urinary bisphenol a concentration with heart disease: Evidence from NHANES 2003/06. PLoS ONE 2010, 5, e8673. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, G.; Wang, T.; Chen, J.; Zhou, X.; Shi, W. Urinary bisphenol A exposure in relation to liver function abnormalities among US adults: Results from the National Health and Nutrition Examination Survey, 2003–2016. medRxiv 2023. [Google Scholar] [CrossRef]
- Luo, R.; Chen, M.; Hao, S.; Hun, M.; Luo, S.; Huang, F.; Lei, Z.; Zhao, M. Associations of exposure to bisphenol-A or parabens with markers of liver injury/function among US adults in NHANES 2011–2016. J. Expo. Sci. Environ. Epidemiol. 2024; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Teppala, S.; Madhavan, S.; Shankar, A. BisphenolA and metabolic syndrome: Results from NHANES. Int. Endocrinol. 2012, 2012, 598180. [Google Scholar]
- Dallio, M.; Masarone, M.; Errico, S.; Gravina, A.G.; Nicolucci, C.; Di Sarno, R.; Gionti, L.; Tuccillo, C.; Persico, M.; Stiuso, P.; et al. Role of bisphenol A as environmental factor in the promotion of non-alcoholic fatty liver disease: In vitro and clinical study. Aliment. Pharmacol. Ther. 2018, 47, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, C.; Errico, S.; Federico, A.; Dallio, M.; Loguercio, C.; Diano, N. Human exposure to Bisphenol A and liver health status: Quantification of urinary and circulating levels by LC-MS/MS. J. Pharm. Biomed. Anal. 2017, 140, 105–112. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, E.R.; Li, A.A.; Cholankeril, G.; Tighe, S.P.; Kim, W.; Harrison, S.A.; Ahmed, A. Elevated urinary bisphenol A levels are associated with non-alcoholic fatty liver disease among adults in the United States. Liver Int. 2019, 39, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, S.G.; Wojcicki, J.M.; Perito, E.R.; Rosenthal, P. Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003–2010. Environ. Health 2018, 17, 12. [Google Scholar] [CrossRef]
- Savastano, S.; Tarantino, G.; D’Esposito, V.; Passaretti, F.; Cabaro, S.; Liotti, A.; Liguoro, D.; Perruolo, G.; Ariemma, F.; Finelli, C.; et al. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: A cross-sectional study on adult male population. J. Transl. Med. 2015, 13, 169. [Google Scholar] [CrossRef]
- Wu, W.; Li, M.; Liu, A.; Wu, C.; Li, D.; Deng, Q.; Zhang, B.; Du, J.; Gao, X.; Hong, Y. Bisphenol A and the Risk of Obesity a Systematic Review with Meta-Analysis of the Epidemiological Evidence. Dose Response 2020, 18, 1559325820916949. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, R.; Ye, Y.; Li, J. Exploring the interplay between bisphenol A exposure, the immune microenvironment and hepatocellular carcinoma progression. J. Gene Med. 2024, 26, e3723. [Google Scholar] [CrossRef]
- Tarantino, G.; Valentino, R.; Di Somma, C.; D’Esposito, V.; Passaretti, F.; Pizza, G.; Brancato, V.; Orio, F.; Formisano, P.; Colao, A.; et al. Bisphenol A in polycystic ovary syndrome and its association with liver-spleen axis. Clin. Endocrinol. 2013, 78, 447–453. [Google Scholar] [CrossRef]
- Federico, A.; Dallio, M.; Gravina, A.G.; Diano, N.; Errico, S.; Masarone, M.; Romeo, M.; Tuccillo, C.; Stiuso, P.; Morisco, F.; et al. The Bisphenol A Induced Oxidative Stress in Non-Alcoholic Fatty Liver Disease Male Patients: A Clinical Strategy to Antagonize the Progression of the Disease. Int. J. Environ. Res. Public Health 2020, 17, 3369. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, M.R.; Hong, Y.C. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes. Environ. Res. 2016, 147, 324–330. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, Y.C. Modification of PARP4, XRCC3, and RAD51 Gene Polymorphisms on the Relation between Bisphenol A Exposure and Liver Abnormality. Int. J. Environ. Res. Public Health 2020, 17, 2794. [Google Scholar] [CrossRef] [PubMed]
- Faulk, C.; Kim, J.H.; Jones, T.R.; McEachin, R.C.; Nahar, M.S.; Dolinoy, D.C.; Sartor, M.A. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ. Epigenet. 2015, 1, dvv006. [Google Scholar] [CrossRef] [PubMed]
- Faulk, C.; Kim, J.H.; Anderson, O.S.; Nahar, M.S.; Jones, T.R.; Sartor, M.A.; Dolinoy, D.C. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A. Epigenetics 2016, 11, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, H.A.; Park, B.; Han, H.; Park, B.H.; Oh, S.Y.; Hong, Y.S.; Ha, E.H.; Park, H. A prospective cohort study of the association between bisphenol A exposure and the serum levels of liver enzymes in children. Environ. Res. 2018, 161, 195–201. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Deng, Y.; Wang, F.; Chen, D.; Lu, B.; Lin, N. Exposure of Bisphenols (BPs) to hepatocellular carcinoma (HCC) patients and non-HCC patients: Association with liver function biomarkers. Emerg. Contam. 2024, 10, 100351. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Y.; Li, Y.; Huang, Y.; Li, S.; Wang, F.; Chen, D.; Lu, B.; Lin, N. Insights into the accumulation and hepatobiliary transport of bisphenols (BPs) in liver and bile. Environ. Res. 2024, 263, 120251. [Google Scholar] [CrossRef]
- Park, B.; Kim, B.; Kim, C.H.; Oh, H.J.; Park, B. Association between endocrine-disrupting chemical mixtures and non-alcoholic fatty liver disease with metabolic syndrome as a mediator among adults: A population-based study in Korea. Ecotoxicol. Environ. Saf. 2024, 276, 116310. [Google Scholar] [CrossRef]
- Peng, J.; Du, L.L.; Ma, Q.L. Serum glycolipids mediate the relationship of urinary bisphenols with NAFLD: Analysis of a population-based, cross-sectional study. Environ. Health 2023, 21, 124. [Google Scholar] [CrossRef]
- Liang, J.; Xu, C.; Xu, J.; Yang, C.; Kong, W.; Xiao, Z.; Chen, X.; Liu, Q.; Weng, Z.; Wang, J.; et al. PPARα Senses Bisphenol S to Trigger EP300-Mediated Autophagy Blockage and Hepatic Steatosis. Environ. Sci. Technol. 2023, 57, 21581–21592. [Google Scholar] [CrossRef]
- Chi, Y.; Park, J.T.; Na, S.; Kwak, K. Environment-wide association study of elevated liver enzymes: Results from the Korean National Environmental Health Survey 2018–2022. Ann. Occup. Environ. Med. 2023, 35, e27. [Google Scholar] [CrossRef]
- Abd-Elkader, M.S.; Elmaghraby, S.M.; Abdel-Mohsen, M.A.; Khalil, M.M. Estimation of liver standardized uptake value in F18-FDG PET/CT scanning: Impact of different malignancies, blood glucose level, body weight normalization, and imaging systems. Ann. Nucl. Med. 2025, 39, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wen, X.; Li, L.; Li, Y. Correlation of bisphenol A and bisphenol S exposure with the metabolic parameters on FDG PET/CT image. Front. Public Health 2024, 12, 1433122. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, P.; Xie, X.; Wu, L.; Zhou, M.; Huan, F.; Jiang, L.; Gao, R. Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition. Environ. Pollut. 2021, 271, 116304. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Tao, J.; Ye, H.; Wang, J.; Gao, R.; Liu, W. A lipidomic approach to bisphenol F-induced non-alcoholic fatty liver disease-like changes: Altered lipid components in a murine model. Environ. Sci. Pollut. Res. Int. 2023, 30, 112644–112659. [Google Scholar] [CrossRef]
- Gálvez-Ontiveros, Y.; Moscoso-Ruiz, I.; Almazán Fernández de Bobadilla, V.; Monteagudo, C.; Giménez-Martínez, R.; Rodrigo, L.; Zafra-Gómez, A.; Rivas, A. Levels of Bisphenol A and its analogs in nails, saliva, and urine of children: A case control study. Front. Nutr. 2023, 10, 1226820. [Google Scholar] [CrossRef]
- Pan, K.; Xu, J.; Xu, Y.; Wang, C.; Yu, J. The association between endocrine disrupting chemicals and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Pharmacol. Res. 2024, 205, 107251. [Google Scholar] [CrossRef]
- Sangwan, S.; Bhattacharyya, R.; Banerjee, D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int. 2024, 44, 1093–1105. [Google Scholar] [CrossRef]
- Prueitt, R.L.; Goodman, J.E. Evidence evaluated by European Food Safety Authority does not support lowering the temporary tolerable daily intake for bisphenol A. Toxicol. Sci. 2024, 198, 185–190. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Doerge, D.R.; Twaddle, N.C.; Woodling, K.A.; Fisher, J.W. Pharmacokinetics of bisphenol A in neonatal and adult rhesus monkeys. Toxicol. Appl. Pharmacol. 2010, 248, 1–11. [Google Scholar] [CrossRef]
- Doerge, D.R.; Twaddle, N.C.; Vanlandingham, M.; Fisher, J.W. Pharmacokinetics of bisphenol A in neonatal and adult CD-1 mice: Inter-species comparisons with Sprague-Dawley rats and rhesus monkeys. Toxicol. Lett. 2011, 207, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Attema, B.; Kummu, O.; Pitkänen, S.; Weisell, J.; Vuorio, T.; Pennanen, E.; Vorimo, M.; Rysä, J.; Kersten, S.; Levonen, A.L.; et al. Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals. Arch. Toxicol. 2024, 98, 911–928. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, H.; Zou, J.; Mai, H.; Su, D.; Feng, X.; Feng, D. Bisphenol A exposure induces cholesterol synthesis and hepatic steatosis in C57BL/6 mice by down-regulating the DNA methylation levels of SREBP-2. Food Chem. Toxicol. 2019, 133, 110786. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ding, D.; Huang, Q.; Liu, Q.; Lu, H.; Lu, Y.; Chi, Y.; Sun, X.; Ye, G.; Zhu, H.; et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017, 1862, 869–882. [Google Scholar] [CrossRef]
- Marmugi, A.; Ducheix, S.; Lasserre, F.; Polizzi, A.; Paris, A.; Priymenko, N.; Bertrand-Michel, J.; Pineau, T.; Guillou, H.; Martin, P.G.; et al. Low doses of bisphenol A induce gene expression related to lipid synthesis and trigger triglyceride accumulation in adult mouse liver. Hepatology 2012, 55, 395–407. [Google Scholar] [CrossRef]
- Rotman, Y.; Koh, C.; Zmuda, J.M.; Kleiner, D.E.; Liang, T.J. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010, 52, 894–903. [Google Scholar] [CrossRef]
- Moreau, A.; Teruel, C.; Beylot, M.; Albalea, V.; Tamasi, V.; Umbdenstock, T.; Parmentier, Y.; Sa-Cunha, A.; Suc, B.; Fabre, J.-M.; et al. A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology 2009, 49, 2068–2079. [Google Scholar] [CrossRef]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef]
- Peet, D.J.; Turley, S.D.; Ma, W.; Janowski, B.A.; Lobaccaro, J.M.; Hammer, R.E.; Mangelsdorf, D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998, 93, 693–704. [Google Scholar] [CrossRef]
- Gao, P.; Wang, L.; Yang, N.; Wen, J.; Zhao, M.; Su, G.; Zhang, J.; Weng, D. Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. Environ. Int. 2020, 134, 105328. [Google Scholar] [CrossRef]
- Jiang, D.Q.Y.; Guo, T.L. Interaction between Per- and Polyfluorinated Substances (PFAS) and Acetaminophen in Disease Exacerbation-Focusing on Autism and the Gut-Liver-Brain Axis. Toxics 2024, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zhang, H.; Jiang, X.; Zou, J.; Li, Q.; Mai, H.; Su, D.; Ling, W.; Feng, X. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ. Pollut. 2020, 265, 114880. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Jiang, X.; Zou, J.; Yang, J.; Zhang, H.; Mai, H.; Ling, W.; Feng, D. Hepatoprotective effect of curcumin against bisphenol A-induced hepatic steatosis via modulating gut microbiota dysbiosis and related gut-liver axis activation in CD-1 mice. J. Nutr. Biochem. 2022, 109, 109103. [Google Scholar] [CrossRef]
- Hong, T.; Zou, J.; He, Y.; Zhang, H.; Liu, H.; Mai, H.; Yang, J.; Cao, Z.; Chen, X.; Yao, J.; et al. Bisphenol A induced hepatic steatosis by disturbing bile acid metabolism and FXR/TGR5 signaling pathways via remodeling the gut microbiota in CD-1 mice. Sci. Total Environ. 2023, 889, 164307. [Google Scholar] [CrossRef]
- Chi, Y.; Zhu, L.; Wang, Y.; Peng, C.; Lin, Y.; Ji, S.; Wei, J. Long-term Bisphenol S exposure induced gut microbiota dysbiosis, obesity, hepatic lipid accumulation, intestinal lesions and dyslipidemia in mice. Toxicology 2024, 504, 153798. [Google Scholar] [CrossRef]
- Xie, C.; Jiang, X.; Yin, J.; Jiang, R.; Zhu, J.; Zou, S. Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2. J. Hazard Mater. 2025, 487, 137166. [Google Scholar] [CrossRef]
- Mornagui, B.; Rezg, R.; Neffati, F.; Najjar, M.F.; Rejeb, A. Postnatal exposure to Bisphenol S induces liver injury in mice: Possible implication of PPARγ receptor. Toxicol. Ind. Health 2023, 39, 237–247. [Google Scholar] [CrossRef]
- Rezg, R.; Abot, A.; Mornagui, B.; Knauf, C. Bisphenol S exposure affects gene expression related to intestinal glucose absorption and glucose metabolism in mice. Environ. Sci. Pollut. Res. Int. 2019, 26, 3636–3642. [Google Scholar] [CrossRef]
- Sun, F.; Huang, Y.; Chen, H.; Huang, J.; Zhang, L.; Wei, S.; Liu, F.; Chen, D.; Huang, W. BPA and its alternatives BPF and BPAF exaggerate hepatic lipid metabolism disorders in male mice fed a high fat diet. Sci. Total Environ. 2023, 867, 161521. [Google Scholar] [CrossRef]
- Al-Griw, M.A.; Zaed, S.M.; Hdud, I.M.; Shaibi, T. Vitamin D ameliorates liver pathology in mice caused by exposure to endocrine disruptor bisphenol A. Open Vet. J. 2023, 13, 90–98. [Google Scholar] [CrossRef]
- Moon, M.K.; Kim, M.J.; Jung, I.K.; Koo, Y.D.; Ann, H.Y.; Lee, K.J.; Kim, S.H.; Yoon, Y.C.; Cho, B.J.; Park, K.S.; et al. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level. J. Korean Med. Sci. 2012, 27, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Song, N.; Ren, J.; Li, W.; Xu, B.; Li, H.; Shen, G. Metabonomics reveals bisphenol A affects fatty acid and glucose metabolism through activation of LXR in the liver of male mice. Sci. Total Environ. 2020, 703, 134681. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Gao, R.; Peng, C.; Yi, J.; Liu, L.; Yang, S.; Li, D.; Hu, J.; Luo, T.; Mei, M.; et al. Bisphenol A promotes hepatic lipid deposition involving Kupffer cells M1 polarization in male mice. J. Endocrinol. 2017, 234, 143–154. [Google Scholar] [CrossRef]
- Marmugi, A.; Lasserre, F.; Beuzelin, D.; Ducheix, S.; Huc, L.; Polizzi, A.; Chetivaux, M.; Pineau, T.; Martin, P.; Guillou, H.; et al. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology 2014, 325, 133–143. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Z.; Ji, W. Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed. Pharmacother. 2019, 117, 109182. [Google Scholar] [CrossRef]
- Pirozzi, C.; Lama, A.; Annunziata, C.; Cavaliere, G.; Ruiz-Fernandez, C.; Monnolo, A.; Comella, F.; Gualillo, O.; Stornaiuolo, M.; Mollica, M.P.; et al. Oral Bisphenol A Worsens Liver Immune-Metabolic and Mitochondrial Dysfunction Induced by High-Fat Diet in Adult Mice: Cross-Talk between Oxidative Stress and Inflammasome Pathway. Antioxidants 2020, 9, 1201. [Google Scholar] [CrossRef]
- Ma, L.; Hu, J.; Li, J.; Yang, Y.; Zhang, L.; Zou, L.; Gao, R.; Peng, C.; Wang, Y.; Luo, T.; et al. Bisphenol A promotes hyperuricemia via activating xanthine oxidase. FASEB J. 2018, 32, 1007–1016. [Google Scholar] [CrossRef]
- Perreault, L.; McCurdy, C.; Kerege, A.A.; Houck, J.; Færch, K.; Bergman, B.C. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice. PLoS ONE 2013, 8, e69991. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, A.; Li, T.; Gao, R.; Peng, C.; Liu, L.; Cheng, Q.; Mei, M.; Song, Y.; Xiang, X.; et al. Dysregulated Autophagy in Hepatocytes Promotes Bisphenol A-Induced Hepatic Lipid Accumulation in Male Mice. Endocrinology 2017, 158, 2799–2812. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Y.; Wu, L.; Wang, L.; Fan, Y.; Xu, L.; Zhang, L.; Wu, W.; Tao, J.; Huan, F.; et al. Bisphenol F exposure induces depression-like changes: Roles of the kynurenine metabolic pathway along the “liver-brain” axis. Environ. Pollut. 2024, 346, 123356. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, X.; Tao, J.; Wang, S.; Hu, M.; Wang, X.; Yu, Z.; Xu, L.; Lin, Y.; Wu, W.; et al. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition. Sci. Total Environ. 2023, 904, 166831. [Google Scholar] [CrossRef] [PubMed]
- Weinhouse, C.; Anderson, O.S.; Bergin, I.L.; Vandenbergh, D.J.; Gyekis, J.P.; Dingman, M.A.; Yang, J.; Dolinoy, D.C. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ. Health Perspect. 2014, 122, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Tyl, R.W.; Myers, C.B.; Marr, M.C.; Sloan, C.S.; Castillo, N.P.; Veselica, M.M.; Seely, J.C.; Dimond, S.S.; Van Miller, J.P.; Shiotsuka, R.N.; et al. Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice. Toxicol. Sci. 2008, 104, 362–384. [Google Scholar] [CrossRef]
- van Esterik, J.C.; Dollé, M.E.; Lamoree, M.H.; van Leeuwen, S.P.; Hamers, T.; Legler, J.; van der Ven, L.T.M. Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology 2014, 321, 40–52. [Google Scholar] [CrossRef]
- Nishizawa, H.; Imanishi, S.; Manabe, N. Effects of exposure in utero to bisphenol a on the expression of aryl hydrocarbon receptor, related factors, and xenobiotic metabolizing enzymes in murine embryos. J. Reprod. Dev. 2005, 51, 593–605. [Google Scholar] [CrossRef]
- Diamante, G.; Cely, I.; Zamora, Z.; Ding, J.; Blencowe, M.; Lang, J.; Bline, A.; Singh, M.; Lusis, A.J.; Yang, X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ. Int. 2021, 146, 106260. [Google Scholar] [CrossRef]
- Long, Z.; Fan, J.; Wu, G.; Liu, X.; Wu, H.; Liu, J.; Chen, Y.; Su, S.; Cheng, X.; Xu, Z.; et al. Gestational bisphenol A exposure induces fatty liver development in male offspring mice through the inhibition of HNF1b and upregulation of PPARγ. Cell Biol. Toxicol. 2021, 37, 65–84. [Google Scholar] [CrossRef]
- Ke, Z.H.; Pan, J.X.; Jin, L.Y.; Xu, H.Y.; Yu, T.T.; Ullah, K.; Rahman, T.U.; Ren, J.; Cheng, Y.; Dong, X.Y.; et al. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism. Sci. Rep. 2016, 6, 31331. [Google Scholar] [CrossRef]
- Susiarjo, M.; Xin, F.; Stefaniak, M.; Mesaros, C.; Simmons, R.A.; Bartolomei, M.S. Bile Acids and Tryptophan Metabolism Are Novel Pathways Involved in Metabolic Abnormalities in BPA-Exposed Pregnant Mice and Male Offspring. Endocrinology 2017, 158, 2533–2542. [Google Scholar] [CrossRef]
- Anderson, O.S.; Kim, J.H.; Peterson, K.E.; Sanchez, B.N.; Sant, K.E.; Sartor, M.A.; Weinhouse, C.; Dolinoy, D.C. Novel Epigenetic Biomarkers Mediating Bisphenol A Exposure and Metabolic Phenotypes in Female Mice. Endocrinology 2017, 158, 31–40. [Google Scholar] [CrossRef]
- Kim, J.H.; Sartor, M.A.; Rozek, L.S.; Faulk, C.; Anderson, O.S.; Jones, T.R.; Nahar, M.S.; Dolinoy, D.C. Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome. BMC Genom. 2014, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Sanchez, J.I.; Saldarriaga, O.A.; Solis, L.M.; Tweardy, D.J.; Maru, D.M.; Stevenson, H.L.; Beretta, L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep. 2022, 5, 100628. [Google Scholar] [CrossRef] [PubMed]
- Weinhouse, C.; Bergin, I.L.; Harris, C.; Dolinoy, D.C. Stat3 is a candidate epigenetic biomarker of perinatal Bisphenol A exposure associated with murine hepatic tumors with implications for human health. Epigenetics 2015, 10, 1099–1110. [Google Scholar] [CrossRef]
- Weinhouse, C.; Sartor, M.A.; Faulk, C.; Anderson, O.S.; Sant, K.E.; Harris, C.; Dolinoy, D.C. Epigenome-wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A. Environ. Mol. Mutagen. 2016, 57, 435–446. [Google Scholar] [CrossRef]
- Cabaton, N.J.; Canlet, C.; Wadia, P.R.; Tremblay-Franco, M.; Gautier, R.; Molina, J.; Sonnenschein, C.; Cravedi, J.P.; Rubin, B.S.; Soto, A.M.; et al. Effects of low doses of bisphenol A on the metabolome of perinatally exposed CD-1 mice. Environ. Health Perspect. 2013, 121, 586–593. [Google Scholar] [CrossRef]
- Esplugas, R.; LLovet, M.I.; Bellés, M.; Serra, N.; Vallvé, J.C.; Domingo, J.L.; Linares, V. Renal and hepatic effects following neonatal exposure to low doses of Bisphenol-A and 137Cs. Food Chem. Toxicol. 2018, 114, 270–277. [Google Scholar] [CrossRef]
- Melis, M.; Tang, X.H.; Trasino, S.E.; Gudas, L.J. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022, 14, 1456. [Google Scholar] [CrossRef]
- Esteban, J.; Serrano-Maciá, M.; Sánchez-Pérez, I.; Alonso-Magdalena, P.; Pellín, M.C.; García-Arévalo, M.; Nadal, Á.; Barril, J. In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring. Food Chem. Toxicol. 2019, 126, 142–151. [Google Scholar] [CrossRef]
- García-Arevalo, M.; Alonso-Magdalena, P.; Rebelo Dos Santos, J.; Quesada, I.; Carneiro, E.M.; Nadal, A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS ONE 2014, 9, e100214. [Google Scholar] [CrossRef]
- Shimpi, P.C.; More, V.R.; Paranjpe, M.; Donepudi, A.C.; Goodrich, J.M.; Dolinoy, D.C.; Rubin, B.; Slitt, A.L. Hepatic Lipid Accumulation and Nrf2 Expression following Perinatal and Peripubertal Exposure to Bisphenol A in a Mouse Model of Nonalcoholic Liver Disease. Environ. Health Perspect. 2017, 125, 087005. [Google Scholar] [CrossRef]
- El Hamrani, D.; Chepied, A.; Même, W.; Mesnil, M.; Defamie, N.; Même, S. Gestational and lactational exposure to dichlorinated bisphenol A induces early alterations of hepatic lipid composition in mice. Magn. Reson. Mater. Phys. Biol. Med. 2018, 31, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Brulport, A.; Lencina, C.; Chagnon, M.C.; Le Corre, L.; Guzylack-Piriou, L. Transgenerational effects on intestinal inflammation status in mice perinatally exposed to bisphenol S. Chemosphere 2021, 262, 128009. [Google Scholar] [CrossRef] [PubMed]
- Brulport, A.; Vaiman, D.; Chagnon, M.C.; Le Corre, L. Obesogen effect of bisphenol S alters mRNA expression and DNA methylation profiling in male mouse liver. Chemosphere 2020, 241, 125092. [Google Scholar] [CrossRef]
- Brulport, A.; Vaiman, D.; Bou-Maroun, E.; Chagnon, M.C.; Corre, L.L. Hepatic transcriptome and DNA methylation patterns following perinatal and chronic BPS exposure in male mice. BMC Genom. 2020, 21, 881. [Google Scholar] [CrossRef]
- Li, S.; Gao, L.; Song, H.; Lin, J.; Zhang, S.; Schmitt-Kopplin, P.; Zeng, J. A comprehensive atlas of multi-tissue metabolome and microbiome shifts: Exploring obesity and insulin resistance induced by perinatal bisphenol S exposure in high-fat diet-fed offspring. J. Hazard. Mater. 2024, 485, 136895. [Google Scholar] [CrossRef]
- Ivry Del Moral, L.; Le Corre, L.; Poirier, H.; Niot, I.; Truntzer, T.; Merlin, J.F.; Rouimi, P.; Besnard, P.; Rahmani, R.; Chagnon, M.C. Obesogen effects after perinatal exposure of 4,4′-sulfonyldiphenol (Bisphenol S) in C57BL/6 mice. Toxicology 2016, 357–358, 11–20. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Chen, B.; Zhao, J.; Li, W.; Wu, L. Evaluating the Effects of Perinatal Exposures to BPSIP on Hepatic Cholesterol Metabolism in Female and Male Offspring ICR Mice. Environ. Health Perspect. 2024, 132, 97011. [Google Scholar] [CrossRef]
- Marchlewicz, E.; McCabe, C.; Djuric, Z.; Hoenerhoff, M.; Barks, J.; Tang, L.; Song, P.X.; Peterson, K.; Padmanabhan, V.; Dolinoy, D.C. Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. Chemosphere 2022, 286, 131645. [Google Scholar] [CrossRef]
- Ding, S.; Zuo, X.; Fan, Y.; Li, H.; Zhao, N.; Yang, H.; Ye, X.; He, D.; Yang, H.; Jin, X.; et al. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein’s Beneficial Roles on Lipid Metabolism. PLoS ONE 2016, 11, e0155352. [Google Scholar] [CrossRef]
- Kazemi, S.; Mousavi Kani, S.N.; Rezazadeh, L.; Pouramir, M.; Ghasemi-Kasman, M.; Moghadamnia, A.A. Low dose administration of Bisphenol A induces liver toxicity in adult rats. Biochem. Biophys. Res. Commun. 2017, 494, 107–112. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, K.; Chen, X.; Qiao, S.; Hu, Y.; Xu, B.; Xu, B.; Han, X.; Tang, R.; Mao, Z.; et al. Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats. Toxicol. Sci. 2014, 138, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Ozaydın, T.; Oznurlu, Y.; Sur, E.; Celik, I.; Uluısık, D.; Dayan, M.O. Effects of bisphenol A on antioxidant system and lipid profile in rats. Biotech. Histochem. 2018, 93, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Morsi, A.A.; Mersal, E.A.; Alsabih, A.O.; Alakabawy, S.; Elfawal, R.G.; Sakr, E.M.; Faruk, E.M.; Abu-Rashed, M.; Alhaddad, F.; Alkhawajah, Z.; et al. Bisphenol-A exposure alters liver, kidney, and pancreatic Klotho expression by HSP60-activated mTOR/autophagy pathway in male albino rats. Cell. Mol. Biol. 2023, 69, 109–117. [Google Scholar] [CrossRef]
- Bindhumol, V.; Chitra, K.C.; Mathur, P.P. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 2003, 188, 117–124. [Google Scholar] [CrossRef]
- Panpatil, V.V.; Kumari, D.; Chatterjee, A.; Kumar, S.; Bhaskar, V.; Polasa, K.; Ghosh, S. Protective Effect of Turmeric against Bisphenol-A Induced Genotoxicity in Rats. J. Nutr. Sci. Vitaminol. 2020, 66, S336–S342. [Google Scholar] [CrossRef]
- Kazemi, S.; Mousavi, S.N.; Aghapour, F.; Rezaee, B.; Sadeghi, F.; Moghadamnia, A.A. Induction Effect of Bisphenol A on Gene Expression Involving Hepatic Oxidative Stress in Rat. Oxid. Med. Cell. Longev. 2016, 2016, 6298515. [Google Scholar] [CrossRef]
- Rönn, M.; Kullberg, J.; Karlsson, H.; Berglund, J.; Malmberg, F.; Orberg, J.; Lind, L.; Ahlström, H.; Lind, P.M. Bisphenol A exposure increases liver fat in juvenile fructose-fed Fischer 344 rats. Toxicology 2013, 303, 125–132. [Google Scholar] [CrossRef]
- Nagarajan, M.; Raja, B.; Manivannan, J. Exposure to a “safe” dose of environmental pollutant bisphenol A elevates oxidative stress and modulates vasoactive system in hypertensive rats. Hum. Exp. Toxicol. 2021, 40, S654–S665. [Google Scholar] [CrossRef]
- Nagarajan, M.; Maadurshni, G.B.; Manivannan, J. Bisphenol A (BPA) exposure aggravates hepatic oxidative stress and inflammatory response under hypertensive milieu—Impact of low dose on hepatocytes and influence of MAPK and ER stress pathways. Food Chem. Toxicol. 2024, 183, 114197. [Google Scholar] [CrossRef]
- Azevedo, L.F.; Porto Dechandt, C.R.; Cristina de Souza Rocha, C.; Hornos Carneiro, M.F.; Alberici, L.C.; Barbosa, F., Jr. Long-term exposure to bisphenol A or S promotes glucose intolerance and changes hepatic mitochondrial metabolism in male Wistar rats. Food Chem. Toxicol. 2019, 132, 110694. [Google Scholar] [CrossRef]
- Azevedo, L.F.; Hornos Carneiro, M.F.; Dechandt, C.R.P.; Cassoli, J.S.; Alberici, L.C.; Barbosa, F., Jr. Global liver proteomic analysis of Wistar rats chronically exposed to low-levels of bisphenol A and S. Environ. Res. 2020, 182, 109080. [Google Scholar] [CrossRef] [PubMed]
- Tremblay-Franco, M.; Cabaton, N.J.; Canlet, C.; Gautier, R.; Schaeberle, C.M.; Jourdan, F.; Sonnenschein, C.; Vinson, F.; Soto, A.M.; Zalko, D. Dynamic Metabolic Disruption in Rats Perinatally Exposed to Low Doses of Bisphenol-A. PLoS ONE 2015, 10, e0141698. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chang, H.; Xia, W.; Mao, Z.; Li, Y.; Xu, S. F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol. Lett. 2014, 228, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xia, W.; Wang, D.Q.; Wan, Y.J.; Xu, B.; Chen, X.; Li, Y.Y.; Xu, S.Q. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 2013, 56, 2059–2067. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yamamoto, K.; Iida, M.; Agusa, T.; Ochiai, M.; Guo, J.; Karthikraj, R.; Kannan, K.; Kim, E.Y.; Iwata, H. Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring. Sci. Total Environ. 2020, 720, 137568. [Google Scholar] [CrossRef]
- Tyl, R.W.; Myers, C.B.; Marr, M.C.; Thomas, B.F.; Keimowitz, A.R.; Brine, D.R.; Veselica, M.M.; Fail, P.A.; Chang, T.Y.; Seely, J.C.; et al. Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol. Sci. 2002, 68, 121–146. [Google Scholar] [CrossRef]
- Dunder, L.; Halin Lejonklou, M.; Lind, L.; Risérus, U.; Lind, P.M. Low-dose developmental bisphenol A exposure alters fatty acid metabolism in Fischer 344 rat offspring. Environ. Res. 2018, 166, 117–129. [Google Scholar] [CrossRef]
- Yang, Q.; Mao, Y.; Wang, J.; Yu, H.; Zhang, X.; Pei, X.; Duan, Z.; Xiao, C.; Ma, M. Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum. Exp. Toxicol. 2022, 41, 9603271221129852. [Google Scholar] [CrossRef]
- Lejonklou, M.H.; Dunder, L.; Bladin, E.; Pettersson, V.; Rönn, M.; Lind, L.; Waldén, T.B.; Lind, P.M. Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring. Environ. Health Perspect. 2017, 125, 067018. [Google Scholar] [CrossRef]
- Wei, J.; Sun, X.; Chen, Y.; Li, Y.; Song, L.; Zhou, Z.; Xu, B.; Lin, Y.; Xu, S. Perinatal exposure to bisphenol A exacerbates nonalcoholic steatohepatitis-like phenotype in male rat offspring fed on a high-fat diet. J. Endocrinol. 2014, 222, 313–325. [Google Scholar] [CrossRef]
- Xia, W.; Jiang, Y.; Li, Y.; Wan, Y.; Liu, J.; Ma, Y.; Mao, Z.; Chang, H.; Li, G.; Xu, B.; et al. Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondria-mediated apoptosis. PLoS ONE 2014, 9, e90443. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xia, W.; Zhu, Y.; Li, X.; Wang, D.; Liu, J.; Chang, H.; Li, G.; Xu, B.; Chen, X.; et al. Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicol. Lett. 2014, 228, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Tonini, C.; Segatto, M.; Bertoli, S.; Leone, A.; Mazzoli, A.; Cigliano, L.; Barberio, L.; Mandalà, M.; Pallottini, V. Prenatal Exposure to BPA: The Effects on Hepatic Lipid Metabolism in Male and Female Rat Fetuses. Nutrients 2021, 13, 1970. [Google Scholar] [CrossRef]
- Linillos-Pradillo, B.; Rancan, L.; Paredes, S.D.; Schlumpf, M.; Lichtensteiger, W.; Vara, E.; Tresguerres, J.Á.F. Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int. J. Mol. Sci. 2023, 24, 4585. [Google Scholar] [CrossRef]
- Santoro, A.; Scafuro, M.; Troisi, J.; Piegari, G.; Di Pietro, P.; Mele, E.; Cappetta, D.; Marino, M.; De Angelis, A.; Vecchione, C.; et al. Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD+-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int. J. Mol. Sci. 2021, 22, 9666. [Google Scholar] [CrossRef]
- Liao, J.X.; Chen, Y.W.; Shih, M.K.; Tain, Y.L.; Yeh, Y.T.; Chiu, M.H.; Chang, S.K.C.; Hou, C.Y. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int. J. Mol. Sci. 2021, 22, 5273. [Google Scholar] [CrossRef]
- Liu, K.; Kadannagari, S.; Deruiter, J.; Pathak, S.; Abbott, K.L.; Salamat, J.M.; Pondugula, S.R.; Akingbemi, B.T.; Dhanasekaran, M. Effects of developmental exposures to Bisphenol-A and Bisphenol-S on hepatocellular function in male Long-Evans rats. Life Sci. 2023, 326, 121752. [Google Scholar] [CrossRef]
- Molangiri, A.; Varma, S.; Hridayanka, K.S.N.; Srinivas, M.; Kona, S.R.; Ibrahim, A.; Duttaroy, A.K.; Basak, S. Gestational exposure to bisphenol S induces microvesicular steatosis in male rat offspring by modulating metaflammation. Sci. Total Environ. 2023, 904, 166775. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, J.; Wang, Y.; Sun, R.; Dong, G.; Wang, X.; Du, G. Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p. J. Hazard Mater. 2023, 453, 131410. [Google Scholar] [CrossRef]
- Linillos-Pradillo, B.; Rancan, L.; Murias, J.G.; Schlumpf, M.; Lichtensteiger, W.; Tresguerres, J.A.F.; Vara, E.; Paredes, S.D. Oxidative stress increases in liver of lactating rats after BPF-low-dose exposure: Perinatal effects in the offspring. Sci. Rep. 2023, 13, 11229. [Google Scholar] [CrossRef]
- Linillos-Pradillo, B.; Paredes, S.D.; Ortiz-Cabello, M.; Schlumpf, M.; Lichtensteiger, W.; Vara, E.; Tresguerres, J.A.F.; Rancan, L. Activation of NLRP3 Inflammasome in Liver of Long Evans Lactating Rats and Its Perinatal Effects in the Offspring after Bisphenol F Exposure. Int. J. Mol. Sci. 2023, 24, 14129. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Zhang, J.Y.; Li, W.X.; Liu, C.; Li, M.L.; Zhao, L.H.; Ji, C.; Ma, Q.G. Interactions between the cecal microbiota and non-alcoholic steatohepatitis using laying hens as the model. Poult. Sci. 2019, 98, 2509–2521. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, F.; Tang, H. Based on network pharmacology method to discover the targets and therapeutic mechanism of Paederia scandens against nonalcoholic fatty liver disease in chicken. Poult. Sci. 2021, 100, 55–63. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Gao, Z.; Liu, S.; Tan, L.; Wu, Y.; Liu, J.; Zheng, Z.; Fan, W.; Luo, Y.; Chen, Z.; et al. G protein-coupled estrogen receptor activation by bisphenol-A disrupts lipid metabolism and induces ferroptosis in the liver. Environ. Pollut. 2023, 334, 122211. [Google Scholar] [CrossRef]
- Eldefrawy, F.; Xu, H.S.; Pusch, E.; Karkoura, A.; Alsafy, M.; Elgendy, S.; Williams, S.M.; Navara, K.; Guo, T.L. Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S: Perspectives on ovarian morphology and gene expression. Reprod. Toxicol. 2021, 103, 181–190. [Google Scholar] [CrossRef]
- Gao, X.; Liu, S.; Ding, C.; Miao, Y.; Gao, Z.; Li, M.; Fan, W.; Tang, Z.; Mhlambi, N.H.; Yan, L.; et al. Comparative effects of genistein and bisphenol A on non-alcoholic fatty liver disease in laying hens. Environ. Pollut. 2021, 288, 117795. [Google Scholar] [CrossRef]
- Hanafy, A.M.; Sasanami, T.; Mori, M. Sensitivity of expression of perivitelline membrane glycoprotein ZP1 mRNA in the liver of Japanese quail (Coturnix japonica) to estrogenic compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 144, 356–362. [Google Scholar] [CrossRef]
- Thoene, M.; Rytel, L.; Dzika, E.; Włodarczyk, A.; Kruminis-Kaszkiel, E.; Konrad, P.; Wojtkiewicz, J. Bisphenol A Causes Liver Damage and Selectively Alters the Neurochemical Coding of Intrahepatic Parasympathetic Nerves in Juvenile Porcine Models under Physiological Conditions. Int. J. Mol. Sci. 2017, 18, 2726. [Google Scholar] [CrossRef]
- Taborsky, G.J.; Dunning, B.E.; Havel, P.J.; Ahren, B.; Kowalyk, S.; Boyle, M.R.; Verchere, C.B.; Baskin, D.G.; Mundinger, T.O. The canine sympathetic neuropeptide galanin: A neurotransmitter in pancreas, a neuromodulator in liver. Horm. Metab. Res. 1999, 31, 351–354. [Google Scholar] [CrossRef]
- Celi, F.; Bini, V.; Papi, F.; Santilli, E.; Ferretti, A.; Mencacci, M.; Berioli, M.G.; De Giorgi, G.; Falorni, A. Circulating acylated and total ghrelin and galanin in children with insulin-treated type 1 diabetes: Relationship to insulin therapy, metabolic control and pubertal development. Clin. Endocrinol. 2005, 63, 139–145. [Google Scholar] [CrossRef]
- Sandoval-Alzate, H.F.; Agudelo-Zapata, Y.; González-Clavijo, A.M.; Poveda, N.E.; Espinel-Pachón, C.F.; Escamilla-Castro, J.A.; Márquez-Julio, H.L.; Alvarado-Quintero, H.; Rojas-Rodríguez, F.G.; Arteaga-Díaz, J.M.; et al. Serum Galanin levels in young healthy lean and obese non-diabetic men during an oral glucose tolerance test. Sci. Rep. 2016, 6, 31661. [Google Scholar] [CrossRef] [PubMed]
- Thoene, M.; Godlewski, J.; Rytel, L.; Dzika, E.; Bejer-Olenska, E.; Wojtkiewicz, J. Alterations in porcine intrahepatic sympathetic nerves after bisphenol A administration. Folia Histochem. Cytobiol. 2018, 1, 113–121. [Google Scholar] [CrossRef]
- Thoene, M.; Rytel, L.; Dzika, E.; Gonkowski, I.; Włodarczyk, A.; Wojtkiewicz, J. Immunohistochemical characteristics of porcine intrahepatic nerves under physiological conditions and after bisphenol A administration. Folia. Morphol. 2018, 77, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Thoene, M.; Rytel, L.; Dzika, E.; Wojtkiewicz, J. Increased PACAP- and DβH-Positive Hepatic Nerve Fibers after Bisphenol A Exposure. Toxics 2021, 9, 110. [Google Scholar] [CrossRef]
- Vyas, A.K.; Veiga-Lopez, A.; Ye, W.; Abi Salloum, B.; Abbott, D.H.; Yang, S.; Liao, C.; Kannan, K.; Padmanabhan, V. Developmental programming: Sex-specific programming of growth upon prenatal bisphenol A exposure. J. Appl. Toxicol. 2019, 39, 1516–1531. [Google Scholar] [CrossRef]
- Puttabyatappa, M.; Martin, J.D.; Andriessen, V.; Stevenson, M.; Zeng, L.; Pennathur, S.; Padmanabhan, V. Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod. Toxicol. 2019, 85, 110–122. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227–256. [Google Scholar]
- Moreno-Gómez-Toledano, R.; Delgado-Marín, M.; Sánchez-Esteban, S.; Cook-Calvete, A.; Ortiz, S.; Bosch, R.J.; Saura, M. Combination of Bisphenol A and Its Emergent Substitute Molecules Is Related to Heart Disease and Exerts a Differential Effect on Vascular Endothelium. Int. J. Mol. Sci. 2023, 24, 12188. [Google Scholar] [CrossRef]
- Peng, B.; Liu, M.; Han, Y.; Wanjaya, E.R.; Fang, M. Competitive Biotransformation Among Phenolic Xenobiotic Mixtures: Underestimated Risks for Toxicity Assessment. Environ. Sci. Technol. 2019, 53, 12081–12090. [Google Scholar] [CrossRef]
- Julien, B.; Pinteur, C.; Vega, N.; Labaronne, E.; Vidal, H.; Naville, D.; Le Magueresse-Battistoni, B. Evidence for estrogeno-mimetic effects of a mixture of low-dose pollutants in a model of ovariectomized mice. Environ. Toxicol. Pharmacol. 2018, 57, 34–40. [Google Scholar] [CrossRef]
- Rashid, H.; Ahmad, F.; Rahman, S.; Ansari, R.A.; Bhatia, K.; Kaur, M.; Islam, F.; Raisuddin, S. Iron deficiency augments bisphenol A-induced oxidative stress in rats. Toxicology 2009, 256, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Naville, D.; Pinteur, C.; Vega, N.; Menade, Y.; Vigier, M.; Le Bourdais, A.; Labaronne, E.; Debard, C.; Luquain-Costaz, C.; Bégeot, M.; et al. Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J. 2013, 27, 3860–3870. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, A.; Troisi, J.; Savanelli, M.C.; Vitale, C.; Barone, P.; Amboni, M. Bisphenol A glucuronidation in patients with Parkinson’s disease. Neurotoxicology 2017, 63, 90–96. [Google Scholar] [CrossRef]
- Manivannan, B.; Yegambaram, M.; Supowit, S.; Beach, T.G.; Halden, R.U. Assessment of Persistent, Bioaccumulative and Toxic Organic Environmental Pollutants in Liver and Adipose Tissue of Alzheimer’s Disease Patients and Age-matched Controls. Curr. Alzheimer Res. 2019, 16, 1039–1049. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.L.; Eldefrawy, F.; Guo, K.M. Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species. Livers 2025, 5, 24. https://doi.org/10.3390/livers5020024
Guo TL, Eldefrawy F, Guo KM. Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species. Livers. 2025; 5(2):24. https://doi.org/10.3390/livers5020024
Chicago/Turabian StyleGuo, Tai L., Fatma Eldefrawy, and Kevin M. Guo. 2025. "Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species" Livers 5, no. 2: 24. https://doi.org/10.3390/livers5020024
APA StyleGuo, T. L., Eldefrawy, F., & Guo, K. M. (2025). Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species. Livers, 5(2), 24. https://doi.org/10.3390/livers5020024