Investigating Sustainability Index, 99Mo Output and 239Pu Levels in UO2 Targets by Substituting 238U with Ce
Abstract
:1. Introduction
- (1)
- Increased amounts of 238U waste compared to low-enriched uranium targets [1];
- (2)
2. Materials and Methods
2.1. Varying amounts of 140Ce and 238U in the Target
2.2. Sustainability Index
2.3. Errors in Graphs
2.4. Target Radius
3. Results
Changes in Radius
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, M.u.; Ryu, H.J. Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU). J. Nucl. Fuel Cycle Waste Technol. 2015, 13, 155–161. Available online: http://www.jnfcwt.or.kr/journal/article.php?code=31995 (accessed on 2 June 2022). [CrossRef]
- Lyman, E.S. Excess Plutonium Disposition: The Failure of MOX and the Promise of Its Alternatives. 2014. Available online: www.ucsusa.org/our-work/nuclear- (accessed on 2 June 2022).
- Glaser, A. About the Enrichment Limit for Research Reactor Conversion: Why 20%? In Proceedings of the 27th International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Boston, MA, USA, 6–10 November 2005. [Google Scholar]
- Albright, D.; Kelleher-Vergantini, S. Plutonium and Highly Enriched Uranium 2015 Military Highly Enriched Uranium and Plutonium Stocks in Acknowledged Nuclear Weapon States a End of 2014; Institute for Science and International Security: Washington, DC, USA, 16 November 2015. [Google Scholar]
- Betti, M. Civil use of depleted uranium. J. Environ. Radioact. 2003, 64, 113–119. Available online: www.elsevier.com/locate/jenvrad (accessed on 9 June 2022). [CrossRef]
- Foral, Š.; Salamon, D.; Katovský, K.; Varmuža, J.; Roleček, J. Influence of Silicone Carbide on the Reactivity of Nuclear Fuels Using Cerium Dioxide as a Surrogate Material. In Innovative Nuclear Power Plant Design and New Technology Application; Student Paper Competition; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 5. [Google Scholar]
- Roleček, J. A feasibility study of using CeO2 as a surrogate material during the investigation of UO2 thermal conductivity enhancement. Adv. Appl. Ceram. 2017, 116, 123. [Google Scholar] [CrossRef]
- Valderrama, B.; Henderson, H.; He, L.; Yablinsky, C.; Gan, J.; Hassan, A.-R.; El-Azab, A.; Allen, T.; Manuel, M. Fission Products in Nuclear Fuel: Comparison of Simulated Distribution with Correlative Characterization Techniques. Microsc. Microanal. 2013, 19, 968–969. [Google Scholar] [CrossRef]
- Lee, Y.W.; Lee, S.C.; Joung, C.Y.; Kim, H.S.; Lee, H.L. Analysis of resistance to thermal stress in ceramic oxide nuclear materials. Adv. Eng. Mater. 2002, 4, 584–589. [Google Scholar] [CrossRef]
- Lantz, P.M.; Baldock, C.R.; Idom, L.E. Thermal-Neutron Capture Cross Section and Resonance Capture Integral of Ce 140 and Effective Capture Cross Section of Ce141. Nucl. Sci. Eng. 1964, 20, 302–306. [Google Scholar] [CrossRef]
- Torrel, S.; Krane, K.S. Neutron capture cross sections of 136,138,140,142Ce and the decays of 137Ce. Phys. Rev. C-Nucl. Phys. 2012, 86, 034340. [Google Scholar] [CrossRef] [Green Version]
- Nelson, A.T.; Rittman, D.R.; White, J.T.; Dunwoody, J.T.; Kato, M.; McClellan, K.J. An Evaluation of the Thermophysical Properties of Stoichiometric CeO2 in Comparison to UO2 and PuO2. J. Am. Ceram. Soc. 2014, 97, 3652–3659. [Google Scholar] [CrossRef]
- Lu, P.; Qiao, B.; Lu, N.; Hyun, D.C.; Wang, J.; Kim, M.J.; Liu, J.; Xia, Y. Photochemical Deposition of Highly Dispersed Pt Nanoparticles on Porous CeO2 Nanofibers for the Water-Gas Shift Reaction. Adv. Funct. Mater. 2015, 25, 4153–4162. [Google Scholar] [CrossRef]
- Magneli, A.; Kihlborg, L. acta_vol_05_p0578-0580. Acta Chem. Scand. 1951, 5, 578–580. [Google Scholar]
- Lee, D.W.; Lee, J.; Kim, J.Y.; Lim, S.H. Influence of Ce (Ⅲ) Cation on Structural Property of Uranium Dioxide. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 22 May 2019. [Google Scholar]
- Guo, X.; Navrotsky, A.; Shvareva, T.; Rock, P.A. Thermodynamics of Uranium Minerals and Related Materials Chapter 4: Thermodynamics of Uranium Minerals and Related Materials; Mineralogical Association of Canada: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Brillant, G.; Gupta, F.; Pasturel, A. Fission products stability in uranium dioxide. J. Nucl. Mater. 2011, 412, 170–176. [Google Scholar] [CrossRef]
- Iwasawa, M.; Ohnuma, T.; Chen, Y.; Kaneta, Y.; Geng, H.-Y.; Iwase, A.; Kinoshita, M. First-principles study on cerium ion behavior in irradiated cerium dioxide. J. Nucl. Mater. 2009, 393, 321–327. [Google Scholar] [CrossRef]
- Mihara, T.; Abe, H.; Iwai, T.; Sonoda, T.; Wakai, E. Microstructural Evolution in Cerium Dioxide Irradiated with Heavy Ions at High Temperature. In Proceedings of the Joint International Workshop: Nuclear Technology and Society—Needs for Next Generation, Berkeley, CA, USA, 6–8 January 2008. [Google Scholar]
- Stennett, M.C.; Corkhill, C.L.; Marshall, L.A.; Hyatt, N.C. Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel. J. Nucl. Mater. 2013, 432, 182–188. [Google Scholar] [CrossRef]
- Aidhy, D.S.; Wolf, D.; El-Azab, A. Comparison of point-defect clustering in irradiated CeO2 and UO2: A unified view from molecular dynamics simulations and experiments. Scr. Mater. 2011, 65, 867–870. [Google Scholar] [CrossRef]
- Ye, B.; Oaks, A.; Kirk, M.; Yun, D.; Chen, W.-Y.; Holtzman, B.; Stubbins, J.F. Irradiation effects in UO2 and CeO2. J. Nucl. Mater. 2013, 441, 525–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Hansen, E.D.; Harbison, T.; Masengale, S.; French, J.; Aagesen, L. A molecular dynamics survey of grain boundary energy in uranium dioxide and cerium dioxide. J. Am. Ceram. Soc. 2022, 105, 4471–4486. [Google Scholar] [CrossRef]
- Devanathan, R. Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material. MRS Adv. 2017, 2, 1225–1230. [Google Scholar] [CrossRef]
- Frazer, D.; Maiorov, B.; Carvajal-Nuñez, U.; Evans, J.; Kardoulaki, E.; Dunwoody, J.; Saleh, T.; White, J. High temperature mechanical properties of fluorite crystal structured materials (CeO2, ThO2, and UO2) and advanced accident tolerant fuels (U3Si2, UN, and UB2). J. Nucl. Mater. 2021, 554, 153035. [Google Scholar] [CrossRef]
- Patnaik, S. Comparative analysis of temperature dependent properties of commercial nuclear fuel pellet and surrogates undergoing cracking: A review. Ceram. Int. 2020, 46, 24765–24778. [Google Scholar] [CrossRef]
- Weber, M.H.; McCloy, J.S.; Halverson, C.R.; Karcher, S.E.; Mohun, R.; Corkhill, C.L. Characterization of vacancy type defects in irradiated UO2 and CeO2. MRS Adv. 2022, 7, 123–127. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, H.R.; Joung, C.Y.; Lee, Y.W. Effect of microstructure on the fracture properties of UO2-5wt%CeO2 Pellets. J. Nucl. Sci. Technol. 2002, 39, 819–822. [Google Scholar] [CrossRef]
- Shanghai Metals Market. 2022. Available online: https://www.metal.com/price/Rare%20Earth/Rare-Earth-Oxides (accessed on 1 August 2022).
- Wulandari, F. Capital.com. 2022. Available online: https://capital.com/uranium-price-forecast#:~:text=In%20his%20uranium%20price%20projections%2C%20David%20Talbot%20of,not%20provide%20a%20uranium%20price%20forecast%20for%202030 (accessed on 1 August 2022).
- Werner, C.J.; Bull, J.S.; Solomon, C.J.; Brown, F.B.; Mckinney, G.W.; Rising, M.E.; Dixon, D.A.; Martz, R.L.; Hughes, H.G.; Cox, L.J.; et al. MCNP Version 6.2 Release Notes; Los Alamos National Laboratory: Los Alamos, NM, USA, 2018. [Google Scholar]
- Raposio, R.; Braoudakis, G.; Rosenfeld, A.; Thorogood, G.J.; Bedwell-Wilson, J. Investigating an alternative sustainable low enriched uranium target for the manufacture of 99Mo using MCNP6.2 modelling with CINDER90. Front. Nucl. Eng. (In press).
- Raposio, R.; Braoudakis, G.; Rosenfeld, A.; Thorogood, G. Investigating 99Mo output changes in high sustainability uranium targets by modifying target volume and geometry. Front. Nucl. Eng. (In press).
- Raposio, R.; Braoudakis, G.; Rosenfeld, A.; Thorogood, G.J. Modelling of reusable target materials for the production of fission produced 99Mo using MCNP6.2 and CINDER90. Appl. Radiat. Isot. 2021, 176, 109827. [Google Scholar] [CrossRef]
- National Research Council. Medical Isotope Production without Highly Enriched Uranium; National Academies Press: Washington, DC, USA, 2009; pp. 1–220. [Google Scholar]
- Katcoff, S.; Leary, J.A.; Walsh, K.A.; Elmer, R.A.; Goldsmith, S.S.; Hall, L.D.; Newbury, E.G.; Povelites, J.J.; Waddell, J.S. Neutron absorption cross sections of radioactive La140 and two stable cerium isotopes. J. Chem. Phys. 1948, 17, 421–424. [Google Scholar] [CrossRef]
- X-5 Monte Carlo Team. MCNP—A general Monte Carlo N-Particle Transport Code, Version 5; LA-UR-0-1987; Los Alamos National Laboratory: Los Alamos, NM, USA, 2008; pp. 1–416. [Google Scholar]
- García-Herranz, N.; Cabellos, O.; Sanz, J. Assessment of the MCNP-ACAB code system for burnup credit analyses. In Proceedings of the International Workshop in Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition, Cordoba, Spain, 27–30 October 2009. [Google Scholar]
- Cho, D.-K.; Kim, M.-H. Performance Uncertainties of LEU Mo-99 targets for HANARO. In Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Bariloche, Argentina, 3–8 November 2002. [Google Scholar]
- Verner, K.M.; Kim, S.J. Molybdenum-99 production via fissile solution reactor and electron beam accelerator. In Proceedings of the ANS Winter Conference Meeting, Washington, DC, USA, 9–13 June 2019. [Google Scholar]
Ce in Target (%) | 235U in Target (%) | 238U in Target (%) |
---|---|---|
0 | 1 | 99 |
10 | 1 | 89 |
20 | 1 | 79 |
30 | 1 | 69 |
40 | 1 | 59 |
50 | 1 | 49 |
60 | 1 | 39 |
70 | 1 | 29 |
80 | 1 | 19 |
90 | 1 | 9 |
99 | 1 | 0 |
Target Number | Irradiation Time (Days) | Shape | Height (cm) | Radius (cm) | Volume (cm3) | 235U (grams) |
---|---|---|---|---|---|---|
1 | 4 | cylinder | 10.4 | 1.13 | 41.72 | 0.7593 |
2 | 5 | 9 | 1.13 | 36.10 | 0.6570 | |
3 | 6 | 8.2 | 1.13 | 32.89 | 0.5986 | |
4 | 7 | 7.8 | 1.13 | 31.29 | 0.5695 |
Target Type | Average Heat (MeV/g) | Average Relative Error |
---|---|---|
1 | 3.13 × 10−4 | 3.60 × 10−3 |
2 | 3.12 × 10−4 | 3.80 × 10−3 |
3 | 3.09 × 10−4 | 3.83 × 10−3 |
4 | 3.07 × 10−4 | 4.00 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposio, R.; Rosenfeld, A.; Bedwell-Wilson, J.; Thorogood, G. Investigating Sustainability Index, 99Mo Output and 239Pu Levels in UO2 Targets by Substituting 238U with Ce. J. Nucl. Eng. 2022, 3, 295-305. https://doi.org/10.3390/jne3040017
Raposio R, Rosenfeld A, Bedwell-Wilson J, Thorogood G. Investigating Sustainability Index, 99Mo Output and 239Pu Levels in UO2 Targets by Substituting 238U with Ce. Journal of Nuclear Engineering. 2022; 3(4):295-305. https://doi.org/10.3390/jne3040017
Chicago/Turabian StyleRaposio, Robert, Anatoly Rosenfeld, Juniper Bedwell-Wilson, and Gordon Thorogood. 2022. "Investigating Sustainability Index, 99Mo Output and 239Pu Levels in UO2 Targets by Substituting 238U with Ce" Journal of Nuclear Engineering 3, no. 4: 295-305. https://doi.org/10.3390/jne3040017
APA StyleRaposio, R., Rosenfeld, A., Bedwell-Wilson, J., & Thorogood, G. (2022). Investigating Sustainability Index, 99Mo Output and 239Pu Levels in UO2 Targets by Substituting 238U with Ce. Journal of Nuclear Engineering, 3(4), 295-305. https://doi.org/10.3390/jne3040017