Impact of Acute Exercise Load on Clock Gene Expression: A Scoping Review of Human Studies with Implications for Female Physiology
Abstract
:1. Introduction
2. Results
2.1. Clock Genes
2.2. Participant Characteristics
2.3. Exercise Intensity
2.4. Sampling Points and Time
2.5. Sample Type
3. Discussion
3.1. Sample Size and Selection
3.2. Tissue-Specific Differences
3.3. Type of Exercise and Timing of Measurements
3.4. Inflammation and Methodology
3.5. Comparison with Animal Models
3.6. Relationship Between Estrogen and Clock Gene Expression
3.7. The Examination of Other Relevant Factors in the Effect of Exercise on the Expression of Clock Genes
4. Materials and Methods
4.1. Inclusion and Exclusion Criteria
4.2. Study Selection
4.3. Quality Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCN | suprachiasmatic nucleus |
REDD1 | Regulated in Development and DNA Damage 1 |
HPG | hypothalamic-pituitary-gonadal |
References
- Meijer, J.H.; Schwartz, W.J. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythm. 2003, 18, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Kavcic, P.; Rojc, B.; Dolenc-Groselj, L.; Claustrat, B.; Fujs, K.; Poljak, M. The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat. Med. J. 2011, 52, 594–603. [Google Scholar] [CrossRef]
- Tognini, P.; Murakami, M.; Liu, Y.; Eckel-Mahan, K.L.; Newman, J.C.; Verdin, E.; Baldi, P.; Sassone-Corsi, P. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 2017, 26, 523–538.e5. [Google Scholar] [CrossRef] [PubMed]
- Wolff, G.; Esser, K.A. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med. Sci. Sports Exerc. 2012, 44, 1663–1670. [Google Scholar] [CrossRef]
- Sasaki, H.; Hattori, Y.; Ikeda, Y.; Kamagata, M.; Iwami, S.; Yasuda, S.; Tahara, Y.; Shibata, S. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in per2::LUC mice. Sci. Rep. 2016, 6, 27607. [Google Scholar] [CrossRef]
- Imamura, K.; Yoshitane, H.; Hattori, K.; Yamaguchi, M.; Yoshida, K.; Okubo, T.; Naguro, I.; Ichijo, H.; Fukada, Y. ASK family kinases mediate cellular stress and redox signaling to circadian clock. Proc. Natl Acad. Sci. USA 2018, 115, 3646–3651. [Google Scholar] [CrossRef]
- Tranel, H.R.; Schroder, E.A.; England, J.; Black, W.S.; Bush, H.; Hughes, M.E.; Esser, K.A.; Clasey, J.L. Physical activity, and not fat mass is a primary predictor of circadian parameters in young men. Chronobiol. Int. 2015, 32, 832–841. [Google Scholar] [CrossRef]
- Saracino, P.G.; Rossetti, M.L.; Steiner, J.L.; Gordon, B.S. Hormonal regulation of core clock gene expression in skeletal muscle following acute aerobic exercise. Biochem. Biophys. Res. Commun. 2019, 508, 871–876. [Google Scholar] [CrossRef]
- Lateef, O.M.; Akintubosun, M.O. Sleep and reproductive Health. J. Circadian Rhythm. 2020, 18, 1. [Google Scholar] [CrossRef]
- Schmalenberger, K.M.; Tauseef, H.A.; Barone, J.C.; Owens, S.A.; Lieberman, L.; Jarczok, M.N.; Girdler, S.S.; Kiesner, J.; Ditzen, B.; Eisenlohr-Moul, T.A. How to study the menstrual cycle: Practical tools and recommendations. Psychoneuroendocrinology 2021, 123, 104895. [Google Scholar] [CrossRef]
- Kruijver, F.P.M.; Swaab, D.F. Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology 2002, 75, 296–305. [Google Scholar] [CrossRef]
- Moradpour, R. The effects of regular aerobic exercise on primary dysmenorrhea in young girls. J. Phys. Act. Horm. 2019, 3, 67–82. [Google Scholar]
- Elbandrawy, A.M.; Elhakk, S.M. Comparison between the effects of aerobic and isometric exercises on primary dysmenorrhea. Acta Gymnica. 2021, 51, e2021.014. [Google Scholar] [CrossRef]
- Stenvers, D.J.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019, 15, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.C.; Schjerling, P.; Heinemeier, K.M.; Boesen, A.P.; Dideriksen, K.; Kjær, M. Investigating circadian clock gene expression in human tendon biopsies from acute exercise and immobilization studies. Eur. J. Appl. Physiol. 2019, 119, 1387–1394. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogata, H.; Kayaba, M.; Ando, A.; Park, I.; Yajima, K.; Araki, A.; Suzuki, C.; Osumi, H.; Zhang, S.; et al. Effect of a single bout of exercise on clock gene expression in human leukocyte. J. Appl. Physiol. (1985) 2020, 128, 847–854. [Google Scholar] [CrossRef]
- Small, L.; Altıntaş, A.; Laker, R.C.; Ehrlich, A.; Pattamaprapanont, P.; Villarroel, J.; Pillon, N.J.; Zierath, J.R.; Barrès, R. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J. Physiol. 2020, 598, 5739–5752. [Google Scholar] [CrossRef]
- Zambon, A.C.; McDearmon, E.L.; Salomonis, N.; Vranizan, K.M.; Johansen, K.L.; Adey, D.; Takahashi, J.S.; Schambelan, M.; Conklin, B.R. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003, 4, R61. [Google Scholar] [CrossRef]
- Okamoto, A.; Yamamoto, T.; Matsumura, R.; Node, K.; Akashi, M. An out-of-lab trial: A case example for the effect of intensive exercise on rhythms of human clock gene expression. J. Circadian Rhythm. 2013, 11, 10. [Google Scholar] [CrossRef]
- de Souza Teixeira, A.A.; Minuzzi, L.G.; Lira, F.S.; Gonçalves, A.S.V.P.; Martinho, A.; Rosa Neto, J.C.; Teixeira, A.M. Improvement in the anti-inflammatory profile with lifelong physical exercise is related to clock genes expression in effector-memory CD4+ T cells in master athletes. Exerc. Immunol. Rev. 2021, 27, 67–83. [Google Scholar]
- Yeung, C.Y.C.; Gossan, N.; Lu, Y.; Hughes, A.; Hensman, J.J.; Bayer, M.L.; Kjær, M.; Kadler, K.E.; Meng, Q.J. Gremlin-2 is a BMP antagonist that is regulated by the circadian clock. Sci. Rep. 2014, 4, 5183. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.H.; McDearmon, E.L.; Panda, S.; Hayes, K.R.; Zhang, J.; Andrews, J.L.; Antoch, M.P.; Walker, J.R.; Esser, K.A.; Hogenesch, J.B.; et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl Acad. Sci. USA 2007, 104, 3342–3347. [Google Scholar] [CrossRef]
- Basti, A.; Yalçin, M.; Herms, D.; Hesse, J.; Aboumanify, O.; Li, Y.; Aretz, Z.; Garmshausen, J.; El-Athman, R.; Hastermann, M.; et al. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc. Med. 2021, 7, e000876. [Google Scholar] [CrossRef]
- Pickel, L.; Sung, H.K. Feeding rhythms and the circadian regulation of metabolism. Front. Nutr. 2020, 7, 39. [Google Scholar] [CrossRef]
- Schurhoff, N.; Toborek, M. Circadian rhythms in the blood–brain barrier: Impact on neurological disorders and stress responses. Mol. Brain 2023, 16, 5. [Google Scholar] [CrossRef]
- Tahara, Y.; Shibata, S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radic. Biol. Med. 2018, 119, 129–138. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, S.; Shibata, S. The role of circadian rhythms in muscular and osseous physiology and their regulation by nutrition and exercise. Front. Neurosci. 2017, 11, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Klerman, E.B.; Rimmer, D.W.; Dijk, D.J.; Kronauer, R.E.; Rizzo, J.F., 3rd; Czeisler, C.A. Nonphotic entrainment of the human circadian pacemaker. Am. J. Physiol. 1998, 274 Pt 2, R991–R996. [Google Scholar] [CrossRef]
- Miyazaki, T.; Hashimoto, S.; Masubuchi, S.; Honma, S.; Honma, K.I. Phase-advance shifts of human circadian pacemaker are accelerated by daytime physical exercise. Am. J. Physiol. 2001, 281, R197–R205. [Google Scholar] [CrossRef]
- Castanon-Cervantes, O.; Wu, M.; Ehlen, J.C.; Paul, K.; Gamble, K.L.; Johnson, R.L.; Besing, R.C.; Menaker, M.; Gewirtz, A.T.; Davidson, A.J. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 2010, 185, 5796–5805. [Google Scholar] [CrossRef] [PubMed]
- Puttonen, S.; Viitasalo, K.; Härmä, M. Effect of shiftwork on systemic markers of inflammation. Chronobiol. Int. 2011, 28, 528–535. [Google Scholar] [CrossRef]
- Chabot, K.; Lavoie, M.E.; Bastard, J.P.; Rabasa-Lhoret, R. Intravenous catheters induce a local inflammatory response. Cytokine 2018, 111, 470–474. [Google Scholar] [CrossRef]
- Yamazaki, S.; Numano, R.; Abe, M.; Hida, A.; Takahashi, R.; Ueda, M.; Block, G.D.; Sakaki, Y.; Menaker, M.; Tei, H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000, 288, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, Y.; Honma, S.; Honma, K. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Genes Cells 2008, 13, 497–507. [Google Scholar] [CrossRef]
- Pastore, S.; Hood, D.A. Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice. J. Appl. Physiol. (1985) 2013, 114, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Kriegsfeld, L.J.; Silver, R. The regulation of neuroendocrine function: Timing is everything. Horm. Behav. 2006, 49, 557–574. [Google Scholar] [CrossRef]
- Williams, W.P., 3rd; Kriegsfeld, L.J. Circadian control of neuroendocrine circuits regulating female reproductive function. Front. Endocrinol. 2012, 3, 60. [Google Scholar] [CrossRef]
- Miller, B.H.; Takahashi, J.S. Central circadian control of female reproductive function. Front. Endocrinol. 2013, 4, 195. [Google Scholar] [CrossRef]
- Klinge, C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001, 29, 2905–2919. [Google Scholar] [CrossRef]
- Rossetti, S.; Corlazzoli, F.; Gregorski, A.; Azmi, N.H.A.; Sacchi, N. Identification of an estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis. Cell Cycle 2012, 11, 3691–3700. [Google Scholar] [CrossRef]
- Xiao, L.; Chang, A.K.; Zang, M.X.; Bi, H.; Li, S.; Wang, M.; Xing, X.; Wu, H. Induction of the CLOCK gene by E2-ERalpha signaling promotes the proliferation of breast cancer cells. PLoS ONE 2014, 9, e95878. [Google Scholar] [CrossRef]
- Gery, S.; Virk, R.K.; Chumakov, K.; Yu, A.; Koeffler, H.P. The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 2007, 26, 7916–7920. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, M.; Ao, X.; Chang, A.K.; Yang, C.; Zhao, F.; Bi, H.; Liu, Y.; Xiao, L.; Wu, H. CLOCK is a substrate of SUMO and SUMOylation of CLOCK upregulates the transcriptional activity of estrogen receptor-α. Oncogene 2013, 32, 4883–4891. [Google Scholar] [CrossRef] [PubMed]
- Buxton, O.M.; Lee, C.W.; L’Hermite-Baleriaux, M.; Turek, F.W.; Van Cauter, E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R714–R724. [Google Scholar] [CrossRef]
- Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F. Human circadian phase-response curves for exercise. J. Physiol. 2019, 597, 2253–2268. [Google Scholar] [CrossRef]
- Lok, R.; Qian, J.; Chellappa, S.L. Sex differences in sleep, circadian rhythms, and metabolism: Implications for precision medicine. Sleep Med. Rev. 2024, 75, 101926. [Google Scholar] [CrossRef]
- Cain, S.W.; Dennison, C.F.; Zeitzer, J.M.; Guzik, A.M.; Khalsa, S.B.S.; Santhi, N.; Schoen, M.W.; Czeisler, C.A.; Duffy, J.F. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J. Biol. Rhythm. 2010, 25, 288–296. [Google Scholar] [CrossRef]
- Vidafar, P.; McGlashan, E.M.; Burns, A.C.; Anderson, C.; Shechter, A.; Lockley, S.W.; Phillips, A.J.K.; Cain, S.W. Greater sensitivity of the circadian system of women to bright light, but not dim to-moderate light. J. Pineal Res. 2024, 76, e12936. [Google Scholar] [CrossRef]
- Hackney, A.C.; Willett, H.N. Testosterone responses to intensive, prolonged endurance Exercise in Women. Endocrines 2020, 1, 119–124. [Google Scholar] [CrossRef]
- Clark, R.V.; Wald, J.A.; Swerdloff, R.S.; Wang, C.; Wu, F.C.W.; Bowers, L.D.; Matsumoto, A.M. Large divergence in testosterone concentrations between men and women: Frame of reference for elite athletes in sex-specific competition in sports, a narrative review. Clin. Endocrinol. 2019, 90, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shahid, W.; Rabiya, N.; Muhammad, S.B. Effects of exercise on sex steroid hormones (estrogen, progesterone, testosterone) in eumenorrheic females: A systematic to review and meta-analysis. BMC Womens Health 2024, 24, 354. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; Tasaki, H.; Misawa, I.; Chu, G.; Yamauchi, N.; Hattori, M.A. Contribution of testosterone to the clock system in rat prostate mesenchyme cells. Andrology 2014, 2, 225–233. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zhu, K.; Hong, Y.; Sun, Y.; Zhao, X.; Du, Y.; Chen, Z.J. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: An implicative role of BMAL1 in PCOS. Endocrine 2016, 53, 574–584. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
First Author/Year | Sex, Population (n) | Exercise | Sample for Quantification of Clock Gene Expression | Clock Genes | Outcome Measured |
---|---|---|---|---|---|
Yeung et al. (2019) [15] | Young Male (n = 31) | 1 h leg kicks at 67% Wmax, 35 kicks/min of one randomized leg (2100 total kicks) | Patellar tendon (biopsies) | BMAL1, PER2, CRY1, NR1D1(REV-ERBα) | No obvious trend could be observed in the expression of any of the circadian clock genes, BMAL1, PER2, CRY1, or NR1D1(REV-ERBα), in patellar tendons at 2, 6, or 26 h after exercise or rest. |
Tanaka et al. (2020) [16] | Young Male (n = 11) | 1 h cycling at 60%VO2 max | Leukocyte | BMAL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2 | Only BMAL1 expression level was increased by exercise performed in the morning and afternoon. |
Small et al. (2020) [17] | Male (n = 16) | 15 min cycling exercise at 80%VO2 max | Vastus lateralis muscle (biopsies) | PER1, PER2, CRY1, NR1D1(REV-ERBα), ARNTL | PER1 and PER2 expression acutely increased after 60 min following acute aerobic exercise, while NR1D1(REV-ERBα) expression decreased. |
Zambon et al. (2003) [18] | Male (n = 4) | 10 sets of 8 repetitions of isotonic knee extension at 80% of the predetermined one-repetition maximum, with 3 min rest periods between sets | Lateral portion of vastus lateralis muscle (biopsies) | BMAL1, CRY1, PER1, PER2, Nfil3, C/EBPb | CRY1, PER2, and BMAL1 were upregulated 6 h after resistance exercise in the exercised leg. |
Okamoto et al. (2013) [19] | Male (n = 1) | 2 h intense training as a professional fighter | Hair follicle cells from the top of the chin | BMAL1, NPAS2, PER2, PER3, DBP, NR1D1(REV-ERBα), NR1D2(REV-ERBβ) | PER3, NR1D1(REV-ERBα), and NR1D2(REV-ERBβ) expression in exercise period were phase-delayed by 2 to 4 h compared with that during non-exercise period. |
de Souza Teixeira et al. (2021) [20] | Unspecified (n = 26) | Maximal protocol by cycling ergometer | CD4 + T cell, CD8 + T cell | CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα (NR1D1), REV-ERBβ (NR1D2), RORa, RORb, RORc | CRY1 and REV-ERBα(NR1D1) expression in purified effector-memory CD4 + T-cells in master athletes increased 1 h after the exercise compared to pre and immediately post. |
Databases | Search Strategies (December 2024) |
---|---|
PubMed | (exercise OR physical activity) AND clock genes AND human |
Ichushi | (“exercise (physics)”/TH) OR exercise/AL) OR (“exertion”/TH or exercise/AL) OR (“muscle contraction”/TH OR exercise/AL) OR (“motor activity”/TH OR “physical activity”/AL) AND “clock genes”/AL AND (“human”/TH OR human/AL) (“運動(物理学)”/TH) OR 運動/AL) OR (労作/TH OR 運動/AL) OR (筋収縮/TH OR 運動/AL) OR (運動活性/TH OR 身体活動/AL) AND 時計遺伝子/AL AND (ヒト/TH OR ヒト/AL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawai, A.; Shida, T. Impact of Acute Exercise Load on Clock Gene Expression: A Scoping Review of Human Studies with Implications for Female Physiology. Women 2025, 5, 15. https://doi.org/10.3390/women5020015
Sawai A, Shida T. Impact of Acute Exercise Load on Clock Gene Expression: A Scoping Review of Human Studies with Implications for Female Physiology. Women. 2025; 5(2):15. https://doi.org/10.3390/women5020015
Chicago/Turabian StyleSawai, Akemi, and Takashi Shida. 2025. "Impact of Acute Exercise Load on Clock Gene Expression: A Scoping Review of Human Studies with Implications for Female Physiology" Women 5, no. 2: 15. https://doi.org/10.3390/women5020015
APA StyleSawai, A., & Shida, T. (2025). Impact of Acute Exercise Load on Clock Gene Expression: A Scoping Review of Human Studies with Implications for Female Physiology. Women, 5(2), 15. https://doi.org/10.3390/women5020015