Horchata Processing Waste: A New Source for Starch Film Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Film Preparation
2.2.1. Casting Process
2.2.2. Melt Blending and Compression Moulding
2.3. Film Characterisation
2.3.1. Microstructural Analysis
2.3.2. Optical Properties
2.3.3. Mechanical Properties
2.3.4. Barrier Properties
2.3.5. Solubility and Swelling Power
2.3.6. Thermal Analysis
2.3.7. Antioxidant Capacity and Total Phenolic Content (TPC)
2.3.8. Residual α-Amylase Activity
2.4. Statistical Analysis
3. Results
3.1. Microstructure Observations
3.2. Optical Properties
3.3. Tensile Properties
3.4. Water-Related Properties: Water Content, Solubility, and Swelling Power
3.5. Barrier Properties
3.6. Thermal Stability
3.7. Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Menzel, C. Improvement of Starch Films for Food Packaging through a Three-Principle Approach: Antioxidants, Cross-Linking and Reinforcement. Carbohydr. Polym. 2020, 250, 116828. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polymers 2022, 14, 1126. [Google Scholar] [CrossRef] [PubMed]
- European Bioplastics Bioplastics Market Development Update 2023. Available online: https://docs.european-bioplastics.org/publications/market_data/2023/EUBP_Market_Data_Report_2023.pdf (accessed on 23 September 2024).
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Rusu, A.V. Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Palanisamy, C.P.; Srinivasan, G.P.; Panagal, M.; Kumar, S.S.D.; Mironescu, M. A Comprehensive Review on Starch-Based Sustainable Edible Films Loaded with Bioactive Components for Food Packaging. Int. J. Biol. Macromol. 2024, 274, 133332. [Google Scholar] [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Guo, B.; Zhu, C.; Huang, Z.; Yang, R.; Liu, C. Microcapsules with Slow-Release Characteristics Prepared by Soluble Small Molecular Starch Fractions through the Spray Drying Method. Int. J. Biol. Macromol. 2022, 200, 34–41. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q. V Starch-Based Films: Major Factors Affecting Their Properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango Kernel Starch as a Novel Edible Coating for Enhancing Shelf-Life of Tomato (Solanum Lycopersicum) Fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Soares, C.T.; Cavasini, R.; Fakhouri, F.M.; de Oliveira, R.A. Bioactive Films of Arrowroot Starch and Blackberry Pulp: Physical, Mechanical and Barrier Properties and Stability to PH and Sterilization. Food Chem. 2019, 275, 417–425. [Google Scholar] [CrossRef]
- Al-Hassan, A.A.; Norziah, M.H. Starch–Gelatin Edible Films: Water Vapor Permeability and Mechanical Properties as Affected by Plasticizers. Food Hydrocoll. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Wagh, M.S.; Sowjanya, S.; Nath, P.C.; Chakraborty, A.; Amrit, R.; Mishra, B.; Mishra, A.K.; Mohanta, Y.K. Valorisation of Agro-Industrial Wastes: Circular Bioeconomy and Biorefinery Process–a Sustainable Symphony. Process Saf. Environ. Prot. 2024, 183, 708–725. [Google Scholar] [CrossRef]
- Phiri, R.; Rangappa, S.M.; Siengchin, S. Agro-Waste for Renewable and Sustainable Green Production: A Review. J. Clean. Prod. 2024, 434, 139989. [Google Scholar] [CrossRef]
- Wu, Y.; Mao, Q.; Zhao, G.; Ye, F. Tiger Nut (Cyperus esculentus) Starch: Extraction, Composition, Structure, Properties, Modification and Uses. Sustain. Food Technol. 2024, 2, 635–651. [Google Scholar] [CrossRef]
- Abu, L.M. Tiger Nut (Cyperus esculentus) Tuber: A Sustainable Resource for Industrial Starch: A Review. Commun. Phys. Sci. 2024, 11. [Google Scholar]
- Sánchez-Zapata, E.; Fernández-López, J.; Angel Pérez-Alvarez, J. Tiger Nut (Cyperus esculentus) Commercialization: Health Aspects, Composition, Properties, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2012, 11, 366–377. [Google Scholar] [CrossRef]
- Patrón, A.; Martin-Esparza, M.E.; González-Martínez, C.; Chiralt, A. Starch Recovery Process from the Tiger Nut Horchata Processing Waste. Food Bioprocess Technol. 2025, 18, 1042. [Google Scholar] [CrossRef]
- Pelegrín, C.J.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Chemical Composition and Bioactive Antioxidants Obtained by Microwave-Assisted Extraction of Cyperus esculentus L. by-Products: A Valorization Approach. Front. Nutr. 2022, 9, 944830. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Lorenzo, J.M.; Cantavella-Ferrero, Y. Enhancing Bioactive Antioxidants’ Extraction from “Horchata de Chufa” by-Products. Foods 2018, 7, 161. [Google Scholar] [CrossRef]
- Manek, R.V.; Builders, P.F.; Kolling, W.M.; Emeje, M.; Kunle, O.O. Physicochemical and Binder Properties of Starch Obtained from Cyperus esculentus. AAPS PharmSciTech 2012, 13, 379–388. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q. Impact of Molecular Structure of Amylopectin and Amylose on Amylose Chain Association during Cooling. Carbohydr. Polym. 2009, 77, 807–815. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Chen, P.-X.; Liu, A.-B.; Zhu, W.-X.; Jiang, M.-M.; Wang, X.-D.; Liu, H.-M. Effects of Different Isolation Methods on the Structure and Functional Properties of Starch from Tiger Nut (Cyperus esculentus L.) Meal. LWT 2024, 196, 115853. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Ma, C.; Zhang, Y. Thermal Behavior of Sweet Potato Starch by Non-Isothermal Thermogravimetric Analysis. Materials 2019, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, S.; Zhen, S.; Shi, Y.; Liu, B. Physicochemical Properties of Tigernut (Cyperus esculentus) Tuber Starch and Its Application in Steamed Bread. J. Food Process Preserv. 2022, 46, e16792. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Li, F.; Mao, S.; Zhou, X.; Li, S.; Lu, C.; Zhang, T. The Cyperus esculentus Starch-Based Bioactive Films: Characterisation, UV-Shielding and Antioxidant Capacity. Int. J. Food Sci. Technol. 2023, 58, 4446–4454. [Google Scholar] [CrossRef]
- Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370. [Google Scholar] [CrossRef]
- Niranjana Prabhu, T.; Prashantha, K. A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications. Polym. Compos. 2018, 39, 2499–2522. [Google Scholar] [CrossRef]
- Cui, C.; Ji, N.; Wang, Y.; Xiong, L.; Sun, Q. Bioactive and Intelligent Starch-Based Films: A Review. Trends Food Sci. Technol. 2021, 116, 854–869. [Google Scholar] [CrossRef]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.A.; Nwaiwu, O.; Tamasiga, P. Preventing Chemical Contaminants in Food: Challenges and Prospects for Safe and Sustainable Food Production. Food Control 2024, 155, 110040. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Xie, F.; Chen, L. Gelatinization of Cornstarch with Different Amylose/Amylopectin Content. Carbohydr. Polym. 2006, 65, 357–363. [Google Scholar] [CrossRef]
- Altayan, M.M.; Al Darouich, T.; Karabet, F. Thermoplastic Starch from Corn and Wheat: A Comparative Study Based on Amylose Content. Polym. Bull. 2021, 78, 3131–3147. [Google Scholar] [CrossRef]
- Hutchings, J.B. Food and Colour Appearance (Chapman & Hall Food Science Book), 2nd ed.; Aspen Publications, Springer: Gaithersburg, MD, USA, 1999. [Google Scholar]
- ASTM D-882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2001; pp. 162–170.
- ASTM 96-95; Standard Test Method for Water Vapor Transmission of Materials. Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 1995.
- ASTM D-3985; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM: West Conshohocken, PA, USA, 1995.
- Moreno, O.; Cárdenas, J.; Atarés, L.; Chiralt, A. Influence of Starch Oxidation on the Functionality of Starch-Gelatin Based Active Films. Carbohydr. Polym. 2017, 178, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Menzel, C.; González-Martínez, C.; Chiralt, A.; Vilaplana, F. Antioxidant Starch Films Containing Sunflower Hull Extracts. Carbohydr. Polym. 2019, 214, 142–151. [Google Scholar] [CrossRef]
- McCleary, B.V.; Sheehan, H. Measurement of Cereal α-Amylase: A New Assay Procedure. J. Cereal Sci. 1987, 6, 237–251. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M.J.; Khaksar, R. Physical, Mechanical and Barrier Properties of Corn Starch Films Incorporated with Plant Essential Oils. Carbohydr. Polym. 2013, 98, 1117–1126. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A. Thermoprocessed Starch-Polyester Bilayer Films as Affected by the Addition of Gellan or Xanthan Gum. Food Hydrocoll. 2021, 113, 106509. [Google Scholar] [CrossRef]
- Saberi, B.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Mechanical and Physical Properties of Pea Starch Edible Films in the Presence of Glycerol. J. Food Process Preserv. 2016, 40, 1339–1351. [Google Scholar] [CrossRef]
- Wong, C.W.; Wijayanti, H.B.; Bhandari, B.R. Maillard Reaction in Limited Moisture and Low Water Activity Environment. Water Stress Biol. Chem. Pharm. Food Syst. 2015, 41–63. [Google Scholar] [CrossRef]
- Stading, M.; Hermansson, A.-M.; Gatenholm, P. Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films. Carbohydr. Polym. 1998, 36, 217–224. [Google Scholar]
- Rindlav-Westling, Å.; Stading, M.; Gatenholm, P. Crystallinity and Morphology in Films of Starch, Amylose and Amylopectin Blends. Biomacromolecules 2002, 3, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Moreno, O.; Díaz, R.; Atarés, L.; Chiralt, A. Influence of the Processing Method and Antimicrobial Agents on Properties of Starch-gelatin Biodegradable Films. Polym. Int. 2016, 65, 905–914. [Google Scholar] [CrossRef]
- Mohan, C.C.; Harini, K.; Karthikeyan, S.; Sudharsan, K.; Sukumar, M. Effect of Film Constituents and Different Processing Conditions on the Properties of Starch Based Thermoplastic Films. Int. J. Biol. Macromol. 2018, 120, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Fortunati, E.; Cháfer, M.; Kenny, J.M.; Chiralt, A.; González-Martínez, C. Properties and Ageing Behaviour of Pea Starch Films as Affected by Blend with Poly(Vinyl Alcohol). Food Hydrocoll. 2015, 48, 84–93. [Google Scholar] [CrossRef]
- Gerçekaslan, K.E. Hydration Level Significantly Impacts the Freezable-and Unfreezable-Water Contents of Native and Modified Starches. Food Sci. Technol. 2021, 41, 426–431. [Google Scholar] [CrossRef]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and Microstructural Properties of Biodegradable Films Based on Pea Starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Karim, R.; Rahman, R.A.; Sultan, M.T.; Johnson, S.K.; Paykary, M. Effect of Glycerol on the Physicochemical Properties of Cereal Starch Films. Czech J. Food Sci. 2018, 36, 403–409. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Gil, N.J.B.; González-Martínez, C.; Chiralt, A. Antioxidant Poly (Lactic Acid) Films with Rice Straw Extract for Food Packaging Applications. Food Packag. Shelf Life 2022, 34, 101003. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Improving Properties of Thermoplastic Starch Films by Incorporating Active Extracts and Cellulose Fibres Isolated from Rice or Coffee Husk. Food Packag. Shelf Life 2019, 22, 100383. [Google Scholar] [CrossRef]
- Jimenez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012, 5, 2058–2076. [Google Scholar] [CrossRef]
- Miller, K.S.; Krochta, J.M. Oxygen and Aroma Barrier Properties of Edible Films: A Review. Trends Food Sci. Technol. 1997, 8, 228–237. [Google Scholar] [CrossRef]
- Berti, S.; Jagus, R.J.; Flores, S.K.; González-Martínez, C. Antimicrobial Edible Starch Films Obtained By Casting and Thermo-compression Techniques. Food Bioprocess Technol. 2024, 17, 904–916. [Google Scholar] [CrossRef]
- Nordin, N.; Othman, S.H.; Rashid, S.A.; Basha, R.K. Effects of Glycerol and Thymol on Physical, Mechanical, and Thermal Properties of Corn Starch Films. Food Hydrocoll. 2020, 106, 105884. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of Starch Type on the Physico-Chemical Properties of Edible Films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- Mano, J.F.; Koniarova, D.; Reis, R.L. Thermal Properties of Thermoplastic Starch/Synthetic Polymer Blends with Potential Biomedical Applicability. J. Mater. Sci. Mater. Med. 2003, 14, 127–135. [Google Scholar] [CrossRef]
- Piyada, K.; Waranyou, S.; Thawien, W. Mechanical, Thermal and Structural Properties of Rice Starch Films Reinforced with Rice Starch Nanocrystals. Int. Food Res. J. 2013, 20, 439. [Google Scholar]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of Temperature, Solvent and PH on the Selective Extraction of Phenolic Compounds from Tiger Nuts by-Products: Triple-TOF-LC-MS-MS Characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef]
Film | L* | C*ab | h*ab | |||
---|---|---|---|---|---|---|
1W | 5W | 1W | 5W | 1W | 5W | |
TNSC | 66.1 ± 1.1 b1 | 66.0 ± 1.4 b1 | 15.3 ± 0.5 b1 | 14.5 ± 0.9 b1 | 81.1 ± 0.7 b1 | 81.1 ± 0.8 b1 |
TNST | 56.8 ± 1.6 c1 | 56.4 ± 1.5 c1 | 21.4 ± 0.2 a1 | 20.7 ± 0.4 a1 | 75.1 ± 0.6 c1 | 74.8 ± 0.5 c1 |
CST | 78.9 ± 0.3 a1 | 80.0 ± 2.0 a1 | 10.0 ± 0.8 c1 | 12.0 ± 0.7 c1 | 109.0 ± 0.6 a1 | 107.0 ± 2.0 a1 |
Film | EM (MPa) | TS (MPa) | εH (%) | |||
---|---|---|---|---|---|---|
1W | 5W | 1W | 5W | 1W | 5W | |
TNSC | 280 ± 50 b2 | 400 ± 80 b1 | 7.6 ± 1.1 b2 | 9.0 ± 2.0 a1 | 5.5 ± 1.5 b1 | 3.5 ± 0.9 b2 |
TNST | 460 ± 70 a2 | 650 ± 70 a1 | 10.2 ± 0.7 a1 | 9.0 ± 2.0 a1 | 7.0 ± 3.0 b1 | 2.0 ± 0.7 b2 |
CST | 70 ± 10 c2 | 160 ± 18 c1 | 4.4 ± 0.9 c2 | 6.5 ± 0.6 b1 | 25.0 ± 4.0 a1 | 20.0 ± 6.0 a1 |
Film | xW (g/100 g Film) | S (%) | SP (g/g) | |||
---|---|---|---|---|---|---|
1W | 5W | 1W | 5W | 1W | 5W | |
TNSC | 13.6 ± 0.4 c1 | 14.4 ± 0.7 a1 | 25.0 ± 5.0 a1 | 22.9 ± 0.6 b1 | 10.1 ± 0.6 a2 | 6.9 ± 0.9 b1 |
TNST | 11.5 ± 0.6 a1 | 16.3 ± 0.4 b2 | 42.0± 0.0 b2 | 21.6 ± 0.0 a1 | 11.0 ± 2.0 a2 | 4.5 ± 0.7 a1 |
CST | 12.4 ± 0.2 b1 | 17.8 ± 0.4 c2 | 67.0 ± 4.0 c2 | 21.1 ± 0.4 a1 | 12.6 ± 1.4 a2 | 4.9 ± 0.2 a1 |
Film | OP·1014 (cm3·m−1·s−1·Pa−1) | WVP·1011 (g·Pa−1·s−1·m−1) | LP·1011 (g·Pa−1·s−1·m−1) | |||
---|---|---|---|---|---|---|
1W | 5W | 1W | 5W | 1W | 5W | |
TNSC | 17 ± 1 c1 | 9 ± 0 a2 | 68 ± 13 a1 | 50 ± 5 a1 | 2 ± 1 a2 | 4 ± 1 a1 |
TNST | 2 ± 1 a2 | 9 ± 1 a1 | 96 ± 13 b1 | 75 ± 19 b1 | 14 ± 0 b1 | 14 ± 3 b1 |
CST | 9 ± 1 b2 | 17 ± 1 b1 | 98 ± 9 b1 | 108 ± 1 c1 | 10 ± 3 b1 | 12 ± 1 b1 |
1W | |||||||||
Film | First Thermal Event [30–130 °C] | Second Thermal Event [140–240 °C] | Third Thermal Event [245–370 °C] | ||||||
To | Tp1 | %W1 | To | Tp2 | %W2 | To | Tp3 | %W3 | |
TNSC | 26 ± 1 a2 | 88 ± 5 a1 | 2.2 ± 0.3 b1 | 135 ± 5 b1 | 203 ± 3 a1 | 14 ± 1 a1 | 248.0 ± 1.4 b1 | 314.2 ± 0.2 ab1 | 67 ± 1 a1 |
TNST | - | - | - | 128 ± 1 b1 | 202 ± 3 a1 | 10 ± 1 b2 | 244 ± 2.0 b2 | 317.0 ± 0.9 a1 | 67 ± 1 a1 |
CST | 37 ± 5 a1 | 96 ± 3 a1 | 4.0 ± 0.3 a1 | 158 ± 1 a1 | 203 ± 2 a1 | 8 ± 1 b2 | 255.5 ± 0.7 a1 | 313 ± 1 b1 | 65.2 ± 0.2 b1 |
5W | |||||||||
Film | First Thermal Event [30–130 °C] | Second Thermal Event [140–240 °C] | Third Thermal Event [245–370 °C] | ||||||
To | Tp1 | %W1 | To | Tp2 | %W2 | To | Tp3 | %W3 | |
TNSC | 39 ± 1 a1 | 83 ± 1 b1 | 5 ± 1 b2 | 145 ± 2 a1 | 206 ± 3 a1 | 12 ± 2 a2 | 247 ± 3.0 b1 | 315 ± 1 b1 | 63 ± 1 b1 |
TNST | 39 ± 1 a | 99.8 ± 0.1 a | 3.44 ± 0.1 a | 142 ± 1 ab1 | 214 ± 5 a1 | 13 ± 2 a1 | 256.0 ± 1.4 a1 | 318 ± 1 a1 | 66.0 ± 0.5 a2 |
CST | 40 ± 6 a1 | 98.1 ± 0.4 a1 | 3.0 ± 0.4 a1 | 141 ± 1 b1 | 206 ± 1 a1 | 13 ± 1 a1 | 233 ± 2.0 c2 | 313.8 ± 0.2 b1 | 66 ± 1 a2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrón-Espá, A.; Martín-Esparza, M.E.; González-Martínez, C.; Chiralt, A. Horchata Processing Waste: A New Source for Starch Film Production. Polysaccharides 2025, 6, 50. https://doi.org/10.3390/polysaccharides6020050
Patrón-Espá A, Martín-Esparza ME, González-Martínez C, Chiralt A. Horchata Processing Waste: A New Source for Starch Film Production. Polysaccharides. 2025; 6(2):50. https://doi.org/10.3390/polysaccharides6020050
Chicago/Turabian StylePatrón-Espá, Anita, María Eugenia Martín-Esparza, Chelo González-Martínez, and Amparo Chiralt. 2025. "Horchata Processing Waste: A New Source for Starch Film Production" Polysaccharides 6, no. 2: 50. https://doi.org/10.3390/polysaccharides6020050
APA StylePatrón-Espá, A., Martín-Esparza, M. E., González-Martínez, C., & Chiralt, A. (2025). Horchata Processing Waste: A New Source for Starch Film Production. Polysaccharides, 6(2), 50. https://doi.org/10.3390/polysaccharides6020050