Biomining of ‘Heavy’ Metals and Lanthanides from Red Mud of a Former Lignite Mines by Sorption on Chitin
Abstract
:1. Introduction
Additive in cement: | 500,000 up to 1,500,000 tons |
Raw material for iron/steel manufacturing: | 400,000 up to 1,500,000 tons |
Additive in landside construction: | 200,000 up to 500,000 tons |
Additive in construction industry: | 100,000 up to 300,000 tons |
Different proposes in chemical industries: | 100,000 tons |
2. Materials and Methods
2.1. Red Mud Sample Collection
2.2. Cleaning of the Red Mud Samples
2.3. Adsorption of ‘Heavy’ Metals and Lanthanides on Chitin
2.4. Desorption of ‘Heavy’ Metals and Lanthanides from Chitin
2.5. Preparing Solutions for ICP-OES-Analysis
2.6. ICP-OES-Analysis of ‘Heavy’ Metals and Lanthanides
3. Results and Discussion
3.1. Comparison of Element Concentrations in Water with Those in the Sampled Red Mud-like Sludges
3.2. Biomining of Different Elements from Red Mud-like Sludges with Chitin
3.3. Biomining of Rare Earth Elements from Red Mud-like Sludges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marschall, L. Aluminium: Metall der Moderne; 1., Aufl.; Oekom Verlag: München, Germany, 2008; ISBN 9783865816566. [Google Scholar]
- Kovács, T.; Sas, Z.; Jobbágy, V.; Csordás, A.; Szeiler, G.; Somlai, J. Radiological aspects of red mud disaster in Hungary. Acta Geophys. 2013, 61, 1026–1037. [Google Scholar] [CrossRef]
- Pontikes, Y.; Angelopoulos, G.N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resour. Conserv. Recycl. 2013, 73, 53–63. [Google Scholar] [CrossRef]
- Biswas, W.K.; Cooling, D. Sustainability Assessment of Red Sand as a Substitute for Virgin Sand and Crushed Limestone. J. Ind. Ecol. 2013, 17, 756–762. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 2004, 38, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Das, P.; Pandey, J.K.; Mishra, K.K.; Cardinale, M. Understanding redox processes during iron precipitation in standing water: Implications in formation of iron oxides minerals in the terrestrial planetary environment (especially Mars). Proc. Indian Natl. Sci. Acad. 2022, 88, 729–741. [Google Scholar] [CrossRef]
- Boulaiche, W.; Hamdi, B.; Trari, M. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2019, 9, 39. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D.N.; Kyzas, G.Z. Chitin Adsorbents for Toxic Metals: A Review. Int. J. Mol. Sci. 2017, 18, 114. [Google Scholar] [CrossRef] [PubMed]
- Blind, F.; Fränzle, S. Chitin as a Sorbent Superior to Other Biopolymers: Features and Applications in Environmental Research, Energy Conversion, and Understanding Evolution of Animals. Polysaccharides 2021, 2, 773–794. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, N. Formic acid-mediated liquefaction of chitin. Green Chem. 2016, 18, 5050–5058. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zhou, J.; Guo, S. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res. 2004, 38, 2643–2650. [Google Scholar] [CrossRef]
- Pinto, P.X.; Al-Abed, S.R.; Reisman, D.J. Biosorption of heavy metals from mining influenced water onto chitin products. Chem. Eng. J. 2011, 166, 1002–1009. [Google Scholar] [CrossRef]
- Göksungur, Y.; Uren, S.; Güvenç, U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour. Technol. 2005, 96, 103–109. [Google Scholar] [CrossRef]
- de Rossi, A.; Rigon, M.R.; Zaparoli, M.; Braido, R.D.; Colla, L.M.; Dotto, G.L.; Piccin, J.S. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ. Sci. Pollut. Res. Int. 2018, 25, 19179–19186. [Google Scholar] [CrossRef] [PubMed]
- Bustard, M.; McHale, A.P. Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng. 1998, 19, 351. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of cobalt(II) and nickel(II) by seaweeds: Batch and column studies. Sep. Purif. Technol. 2005, 44, 53–59. [Google Scholar] [CrossRef]
- Budelmann, P. Verbreitung der Flusskrebse (Decapoda) in der Südlichen Oberlausitz und die Eignung des Incasiven Kamberkrebses (Orconectes limosus) für Chitin-Basiertes Monitoring von Schwemetallen in Limnischen Ökosystemen. Master’s Thesis, TU Dresden, Zittau, Germany, 2021. [Google Scholar]
- Gebauer, T. Methodische Optimierung des Übertrags von Metallionen aus Umweltprobenmodellen auf Chitinoberflächen und von Diesen zu Zwecken Analytischem Biomonitroings sowie Untersuchungen zur Diffusion/Ausbereitung von Analyten in Chitinproben. Master’s Thesis, TU Dresden, Zittau, Germany, 2016. [Google Scholar]
- Fraenzle, S.; Erler, M.; Blind, F.; Ariuntsetseg, L.; Narangarvuu, D. Chitin Adsorption in Environmental Monitoring: Not an Alternative to Moss Monitoring but a Method Providing (Lots of) Bonus Information. J. Sci. Arts 2019, 19, 659–674. [Google Scholar]
- Machado, M.D.; Santos, M.S.F.; Gouveia, C.; Soares, H.M.V.M.; Soares, E.V. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: The flocculation as a separation process. Bioresour. Technol. 2008, 99, 2107–2115. [Google Scholar] [CrossRef]
- Vasudevan, P.; Padmavathy, V.; Dhingra, S.C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresour. Technol. 2003, 89, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Das, N. Recovery of precious metals through biosorption—A review. Hydrometallurgy 2010, 103, 180–189. [Google Scholar] [CrossRef]
- Ojima, Y.; Kosako, S.; Kihara, M.; Miyoshi, N.; Igarashi, K.; Azuma, M. Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Sci. Rep. 2019, 9, 225. [Google Scholar] [CrossRef]
- Amini, M.; Younesi, H.; Bahramifar, N. Biosorption of U(VI) from Aqueous Solution by Chlorella vulgaris: Equilibrium, Kinetic, and Thermodynamic Studies. J. Environ. Eng. 2013, 139, 410–421. [Google Scholar] [CrossRef]
- Ghorbani, A.; Nazarfakhari, M.; Pourasad, Y.; Mesgari Abbasi, S. Removal of Pb ion from water samples using red mud (bauxite ore processing waste). E3S Web Conf. 2013, 1, 41019. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Souza Filho, I.R.; Springer, H.; Adam, C.; Raabe, D. Green steel from red mud through climate-neutral hydrogen plasma reduction. Nature 2024, 625, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yang, J.; Zheng, G.; Xia, T. Effects of Red Mud on Cadmium Uptake and Accumulation by Rice and Chemical Changes in Rhizospheres by Rhizobox Method. Minerals 2022, 12, 929. [Google Scholar] [CrossRef]
- Yang, T.; Sheng, L.; Wang, Y.; Wyckoff, K.N.; He, C.; He, Q. Characteristics of Cadmium Sorption by Heat-Activated Red Mud in Aqueous Solution. Sci. Rep. 2018, 8, 13558. [Google Scholar] [CrossRef]
- Smičiklas, I.; Smiljanić, S.; Perić-Grujić, A.; Šljivić-Ivanović, M.; Antonović, D. The influence of citrate anion on Ni(II) removal by raw red mud from aluminum industry. Chem. Eng. J. 2013, 214, 327–335. [Google Scholar] [CrossRef]
- Erler, M. Untersuchung des Bindungsverhaltens Ausgewählter Elemente und Ihrer Bodenrelavanter Komplexe an Chitin. Master’s Thesis, TU Dresden, Zittau, Germany, 2020. [Google Scholar]
- Bauer, A. Orientierende Untersuchung zur Bindung von Metallionen an Chitin und zur Davon Abhängigen Eignung von Arthropoden zur Bestimmung von Metallionenkonzentrationen in der Umwelt. Master’s Thesis, TU Dresden, Zittau, Germany, 2014. [Google Scholar]
- Emsley, J. The Oxford Book of the Elements; Oxford University Press: Oxford, UK, 2001; ISBN 9780198503415. [Google Scholar]
- Liu, Y.; Lin, C.; Wu, Y. Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. J. Hazard. Mater. 2007, 146, 255–261. [Google Scholar] [CrossRef]
Sampel ID | Sample Description | Sample Weight | Solvent |
---|---|---|---|
P1-1 | Riverbed sample | 0.5 g | DMF |
P1-2 | 0.5 g | Distilled Water | |
P1-3 | 1.0 g | DMF | |
P2-1 | Surface sample | 1.0 g | DMF |
Sample ID | Solvent | Sample Weight (g) | Total Amount of Bound Ion (µmol) | Saturation on Chitin (%) |
---|---|---|---|---|
P1-1 | DMF | 0.5 | 63.616 | 11.78 |
P1-2 | Distilled Water | 0.5 | 114.476 | 21.20 |
P1-3 | DMF | 1.0 | 107.495 | 19.91 |
P2-1 | DMF | 1.0 | 87.12 | 16.13 |
Elements | Lanthanum | Cerium | Europium | Samarium | Ytterbium |
---|---|---|---|---|---|
Concentration [µg/L] | 0.099 | 0.281 | 0.415 | <detection limit | <detection limit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blind, F.; Fränzle, S. Biomining of ‘Heavy’ Metals and Lanthanides from Red Mud of a Former Lignite Mines by Sorption on Chitin. Polysaccharides 2024, 5, 158-168. https://doi.org/10.3390/polysaccharides5020012
Blind F, Fränzle S. Biomining of ‘Heavy’ Metals and Lanthanides from Red Mud of a Former Lignite Mines by Sorption on Chitin. Polysaccharides. 2024; 5(2):158-168. https://doi.org/10.3390/polysaccharides5020012
Chicago/Turabian StyleBlind, Felix, and Stefan Fränzle. 2024. "Biomining of ‘Heavy’ Metals and Lanthanides from Red Mud of a Former Lignite Mines by Sorption on Chitin" Polysaccharides 5, no. 2: 158-168. https://doi.org/10.3390/polysaccharides5020012
APA StyleBlind, F., & Fränzle, S. (2024). Biomining of ‘Heavy’ Metals and Lanthanides from Red Mud of a Former Lignite Mines by Sorption on Chitin. Polysaccharides, 5(2), 158-168. https://doi.org/10.3390/polysaccharides5020012