Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Grape Pomace Extract (GPE)
Characterization of the Grape Pomace Extract (GPE)
2.3. Edible Film Production
2.3.1. Visual Aspect
2.3.2. Film Thickness, Water Activity, and Moisture Content
2.3.3. Solubility in Water
2.3.4. Water Vapor Permeability
2.4. Statistical Analyses
3. Results and Discussion
3.1. Characterization of the Grape Pomace Extract (GPE)
3.2. Characterization of Edible Films
3.2.1. Visual Aspect
3.2.2. Water Activity and Water Content of Edible Films
3.2.3. Thickness of Edible Films
3.2.4. Solubility in Water of Edible Films
3.2.5. Water Vapor Permeability of Edible Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colodel, C.; Vriesmann, L.C.; Teófilo, R.F.; de Oliveira Petkowicz, C.L. Optimization of Acid-Extraction of Pectic Fraction from Grape (Vitis Vinifera Cv. Chardonnay) Pomace, a Winery Waste. Int. J. Biol. Macromol. 2020, 161, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R. Produção Nacional de Vinhos Deve Fechar em Alta com Boas Perspectivas para 2022. Available online: https://www.bemminas.com.br/noticias/artigos/producao-nacional-de-vinhos-deve-fechar-em-alta-com-boas-perspectivas-para-2022/11641 (accessed on 2 February 2022).
- De Mello, L.M.R.; Machado, C.A.E. Vitivinicultura Brasileira: Panorama 2019; Brazilian Agricultural Research Corporation: Brasília, Brazil, 2020. [Google Scholar]
- Camargo, U.A.; Maia, J.D.G.; Nachtigal, J.C. Comunicado Técnico 63: BRS Violeta: Nova Cultivar de Uva para Suco e Vinho de Mesa; Brazilian Agricultural Research Corporation: Bento Gonçalves, RS, Brazil; Embrapa Grape & Wine: Bento Gonçalves, RS, Brazil, 2005. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of Grape Pomace Extract Incorporation on Chitosan Films Properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Moro, K.I.B.; Bender, A.B.B.; de Freitas Ferreira, D.; Speroni, C.S.; Barin, J.S.; da Silva, L.P.; Penna, N.G. Recovery of Phenolic Compounds from Grape Pomace (Vitis vinifera L.) by Microwave Hydrodiffusion and Gravity. LWT 2021, 150, 112066. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Bruno Romanini, E.; Misturini Rodrigues, L.; Finger, A.; Perez Cantuaria Chierrito, T.; Regina da Silva Scapim, M.; Scaramal Madrona, G. Ultrasound Assisted Extraction of Bioactive Compounds from BRS Violet Grape Pomace Followed by Alginate-Ca2+ Encapsulation. Food Chem. 2021, 338, 128101. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, C.-P.; Huang, G.-Q.; Xiao, J.-X. Fractionation and Structural Characterization of Polysaccharides Derived from Red Grape Pomace. Process Biochem. 2021, 109, 37–45. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable Green Processing of Grape Pomace for the Production of Value-Added Products: An Overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food By-Products Valorisation: Grape Pomace and Olive Pomace (Pâté) as Sources of Phenolic Compounds and Fiber for Enrichment of Tagliatelle Pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Costa, J.R.; Monteiro, M.J.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M.E. Fortification of Coconut Water with Microencapsulated Grape Pomace Extract towards a Novel Electrolyte Beverage: Biological, Sensorial and Quality Aspects. Future Foods 2021, 4, 100079. [Google Scholar] [CrossRef]
- Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of Protective Supports and Antioxidative Capacity of Two Bio-Based Films with Revalorised Fruit Pomaces Extracted from Blueberry and Red Grape Skin. Food Packag. Shelf Life 2019, 20, 100315. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Herniou-Julien, C.; Álvarez, K.; Alvarez, V.A. Structural Properties and in Vitro Digestibility of Edible and PH-Sensitive Films Made from Guinea Arrowroot Starch and Wastes from Wine Manufacture. Carbohydr. Polym. 2018, 184, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Wang, S.; Zhang, Z.; Liang, X.; Liu, X.; Zhang, J. Development of Red Apple Pomace Extract/Chitosan-Based Films Reinforced by TiO2 Nanoparticles as a Multifunctional Packaging Material. Int. J. Biol. Macromol. 2021, 168, 105–115. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Y.; Cui, J.; Yang, L.; Su, H.; Yang, P.; Pan, J. Colorimetric Films Based on Pectin/Sodium Alginate/Xanthan Gum Incorporated with Raspberry Pomace Extract for Monitoring Protein-Rich Food Freshness. Int. J. Biol. Macromol. 2021, 185, 959–965. [Google Scholar] [CrossRef]
- Bodini, R.B.; Pugine, S.M.P.; de Melo, M.P.; de Carvalho, R.A. Antioxidant and Anti-Inflammatory Properties of Orally Disintegrating Films Based on Starch and Hydroxypropyl Methylcellulose Incorporated with Cordia Verbenacea (Erva Baleeira) Extract. Int. J. Biol. Macromol. 2020, 159, 714–724. [Google Scholar] [CrossRef]
- Tedesco, M.P.; dos Santos Garcia, V.A.; Borges, J.G.; Osiro, D.; Vanin, F.M.; Pedroso Yoshida, C.M.; de Carvalho, R.A. Production of Oral Films Based on Pre-Gelatinized Starch, CMC and HPMC for Delivery of Bioactive Compounds Extract from Acerola Industrial Waste. Ind. Crop. Prod. 2021, 170, 113684. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, L. Preparation of a Visual PH-Sensing Film Based on Tara Gum Incorporating Cellulose and Extracts from Grape Skins. Sens. Actuators B Chem. 2016, 235, 401–407. [Google Scholar] [CrossRef]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.-T.; Guerra Dias, A.R.; da Rosa Zavareze, E. PH-Sensitive Films Containing Anthocyanins Extracted from Black Bean Seed Coat and Red Cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Nogueira, G.F.; de Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers 2020, 12, 2518. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and Characterization of Arrowroot (Maranta Arundinaceae L.) Starch and Its Application in Edible Films. Carbohydr. Polym. 2018, 186, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Villas-Boas, F.; Franco, C.M.L. Effect of Bacterial β-Amylase and Fungal α-Amylase on the Digestibility and Structural Characteristics of Potato and Arrowroot Starches. Food Hydrocoll. 2016, 52, 795–803. [Google Scholar] [CrossRef] [Green Version]
- De Souza, D.C.; de Silva, R.J.; Guerra, T.S.; de Silva, L.F.L.; Resende, L.V.; Pereira, J. Characterization of Arrowroot Starch in Different Agronomic Managements. Rev. Ceres 2019, 66, 323–332. [Google Scholar] [CrossRef]
- Chan, S.Y.; Goh, C.F.; Lau, J.Y.; Tiew, Y.C.; Balakrishnan, T. Rice Starch Thin Films as a Potential Buccal Delivery System: Effect of Plasticiser and Drug Loading on Drug Release Profile. Int. J. Pharm. 2019, 562, 203–211. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W.; Association of Official Analytical Chemists International. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 0-935584-77-3. [Google Scholar]
- Martínez, C.; Centro Internacional de Agricultura Tropical. Evaluación de La Calidad Culinaria y Molinera Del Arroz; CIAT Serie 04SR-07.01; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1989. [Google Scholar]
- Cunniff, P.; Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Washington, DC, USA, 1995; ISBN 978-0-935584-54-7. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Soares, C.T.; Cavasini, R.; Fakhouri, F.M.; de Oliveira, R.A. Bioactive Films of Arrowroot Starch and Blackberry Pulp: Physical, Mechanical and Barrier Properties and Stability to PH and Sterilization. Food Chem. 2019, 275, 417–425. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; Velasco, J.I.; de Oliveira, R.A. Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties Using Response Surface Methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- ASTM Standard Test Methods for Water Vapor Transmission of Materials. Method E96e80. In Annual Book of American Standard Testing Methods; ASTM International: West Conshohocken, PA, USA, 1989.
- Ribeiro, T.P.; de Lima, M.A.C.; Alves, R.E.; de Gonçalves, A.L.; Souza, A.P.C. Chemical Characterization of Winemaking Byproducts from Grape Varieties Cultivated in Vale Do São Francisco, Brazil. Food Sci. Technol. 2018, 38, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Valduga, E.; Lima, L.; do Prado, R.; Padilha, F.F.; Treichel, H. Extração, Secagem Por Atomização e Microencapsulamento de Antocianinas Do Bagaço Da Uva “Isabel” (Vitis Labrusca). Ciênc. Agrotecnol. 2008, 32, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Kyraleou, M.; Kallithraka, S.; Gkanidi, E.; Koundouras, S.; Mannion, D.T.; Kilcawley, K.N. Discrimination of Five Greek Red Grape Varieties According to the Anthocyanin and Proanthocyanidin Profiles of Their Skins and Seeds. J. Food Compos. Anal. 2020, 92, 103547. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Chen, H.; Zhang, Z.; Ge, M. Anthocyanin Degradation and the Underlying Molecular Mechanism in a Red-Fleshed Grape Variety. LWT 2021, 151, 112198. [Google Scholar] [CrossRef]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and Antioxidant Activity of Red Wines Made from Endemic Grape Varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Sikuten, I.; Stambuk, P.; Tomaz, I.; Marchal, C.; Kontic, J.K.; Lacombe, T.; Maletic, E.; Preiner, D. Discrimination of Genetic and Geographical Groups of Grape Varieties (Vitis vinifera L.) Based on Their Polyphenolic Profiles. J. Food Compos. Anal. 2021, 102, 104062. [Google Scholar] [CrossRef]
- Martineli, M.; Mendes, F.T.; dos Santos, J.R.P.; de Maranhão, C.M.; Castricini, A. Avaliação Sensorial e da Qualidade de Uvas-Passas Processadas a Partir de Três Cultivares Produzidas No Semiárido. Braz. J. Food Technol. 2018, 21, e2017131. [Google Scholar] [CrossRef]
- Matta Fakhouri, F.; Nogueira, G.F.; de Oliveira, R.A.; Velasco, J.I. Bioactive Edible Films Based on Arrowroot Starch Incorporated with Cranberry Powder: Microstructure, Thermal Properties, Ascorbic Acid Content and Sensory Analysis. Polymers 2019, 11, 1650. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.V.D.; Lima, G.P.P.; Vieites, R.L. Avaliação nutricional de diferentes variedades de uva (Vitis sp.). Naturalia 2010, 33, 100–109. [Google Scholar]
- De Andrade, R.B.; de Barreto, G.; Guez, M.A.U.; Machado, B.A.S. Quantificação de Compostos Antioxidantes Presentes em Extrato Obtido a Partir de Cascas de Uvas Aragonez. In A Produção do Conhecimento nas Ciências da Saúde 2; Atena Editora: Ponta Grossa, Brazil, 2019; pp. 315–324. ISBN 978-85-7247-299-9. [Google Scholar]
- Luchese, C.L.; Sperotto, N.; Spada, J.C.; Tessaro, I.C. Effect of Blueberry Agro-Industrial Waste Addition to Corn Starch-Based Films for the Production of a PH-Indicator Film. Int. J. Biol. Macromol. 2017, 104, 11–18. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int. J. Biol. Macromol. 2011, 48, 44–49. [Google Scholar] [CrossRef]
- Gupta, M.S.; Kumar, T.P.; Gowda, D.V. Orodispersible Thin Film: A New Patient-Centered Innovation. J. Drug Deliv. Sci. Technol. 2020, 59, 101843. [Google Scholar] [CrossRef]
- Sha, H.; Yuan, C.; Cui, B.; Zhao, M.; Wang, J. Pre-Gelatinized Cassava Starch Orally Disintegrating Films: Influence of β-Cyclodextrin. Food Hydrocoll. 2022, 123, 107196. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Remedio, L.N.; Yoshida, C.M.P.; Carvalho, R.A. Carboxymethyl Cellulose-Based Orally Disintegrating Films Enriched with Natural Plant Extract for Oral Iron Delivery. J. Drug Deliv. Sci. Technol. 2021, 66, 102852. [Google Scholar] [CrossRef]
- Singh, T.K.; Cadwallader, K.R. The Shelf Life of Foods: An Overview. ACS Symp. Ser. 2002, 836, 2–21. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, K.; Mallika, E.N. Water Activity. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 751–754. ISBN 978-0-12-384733-1. [Google Scholar]
- McHugh, T.H.; Huxsoll, C.C.; Krochta, J.M. Permeability Properties of Fruit Puree Edible Films. J. Food Sci. 1996, 61, 88–91. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Yamashita, F.; Laurindo, J.B. Evaluation of the Effects of Glycerol and Sorbitol Concentration and Water Activity on the Water Barrier Properties of Cassava Starch Films through a Solubility Approach. Carbohydr. Polym. 2008, 72, 82–87. [Google Scholar] [CrossRef]
- Muscat, D.; Adhikari, B.; Adhikari, R.; Chaudhary, D.S. Comparative Study of Film Forming Behaviour of Low and High Amylose Starches Using Glycerol and Xylitol as Plasticizers. J. Food Eng. 2012, 109, 189–201. [Google Scholar] [CrossRef]
- Staroszczyk, H.; Kusznierewicz, B.; Malinowska-Pańczyk, E.; Sinkiewicz, I.; Gottfried, K.; Kołodziejska, I. Fish Gelatin Films Containing Aqueous Extracts from Phenolic-Rich Fruit Pomace. LWT 2020, 117, 108613. [Google Scholar] [CrossRef]
- Mukurumbira, A.R.; Mellem, J.J.; Amonsou, E.O. Effects of Amadumbe Starch Nanocrystals on the Physicochemical Properties of Starch Biocomposite Films. Carbohydr. Polym. 2017, 165, 142–148. [Google Scholar] [CrossRef]
- Ferreira Nogueira, G.; Matta Fakhouri, F.; de Oliveira, R.A. Incorporation of Spray Dried and Freeze Dried Blackberry Particles in Edible Films: Morphology, Stability to PH, Sterilization and Biodegradation. Food Packag. Shelf Life 2019, 20, 100313. [Google Scholar] [CrossRef]
- Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; de Soares, F.F.N.; Mattoso, L.H.C. Antimicrobial and Physical-Mechanical Properties of Pectin/Papaya Puree/Cinnamaldehyde Nanoemulsion Edible Composite Films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of Pectin Films with Pomegranate Juice and Citric Acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef] [PubMed]
Analysis | Grape Pomace Extract (GPE) 1 |
---|---|
Moisture content (%−w.b.) | 91.29 ± 0.14 |
Total soluble solids (°Brix) | 12.05 ± 0.11 |
pH (decimal) | 3.70 ± 0.01 |
Total titratable acidity (g of tartaric acid/100 g of GPE) | 5.60 ± 0.04 |
Total anthocyanins (mg/100 g of GPE solids) | 159.27 ± 2.73 |
Analysis | Edible Film 1 | |||
---|---|---|---|---|
0% GPE | 20% GPE | 30% GPE | 40% GPE | |
Water activity (decimal) | 0.47 ± 0.02 a | 0.50 ± 0.01 a | 0.50 ± 0.01 a | 0.49 ± 0.03 a |
Moisture content (%−w.b.) | 8.17 ± 0.21 c | 10.68 ± 0.45 b | 11.75 ± 0.40 ba | 12.48 ± 0.38 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, G.F.; Soares, I.H.B.T.; Soares, C.T.; Fakhouri, F.M.; de Oliveira, R.A. Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract. Polysaccharides 2022, 3, 250-263. https://doi.org/10.3390/polysaccharides3010014
Nogueira GF, Soares IHBT, Soares CT, Fakhouri FM, de Oliveira RA. Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract. Polysaccharides. 2022; 3(1):250-263. https://doi.org/10.3390/polysaccharides3010014
Chicago/Turabian StyleNogueira, Gislaine Ferreira, Isabela Helena Bratfischer Tagliari Soares, Cyntia Trevisan Soares, Farayde Matta Fakhouri, and Rafael Augustus de Oliveira. 2022. "Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract" Polysaccharides 3, no. 1: 250-263. https://doi.org/10.3390/polysaccharides3010014
APA StyleNogueira, G. F., Soares, I. H. B. T., Soares, C. T., Fakhouri, F. M., & de Oliveira, R. A. (2022). Development and Characterization of Arrowroot Starch Films Incorporated with Grape Pomace Extract. Polysaccharides, 3(1), 250-263. https://doi.org/10.3390/polysaccharides3010014