Pt Effect on H2 Kinetics Sorption in Mn Oxide-Based Polymeric Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Materials Synthesis
2.2. SEM-EDX and TEM Analyses
2.3. X-ray Diffractions
2.4. Pressure Composition Isotherm Tests
2.5. Density Functional Theory (DFT) Calculations
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pedicini, R.; Romagnoli, M.; Santangelo, P.E. A Critical review of polymer electrolyte membrane fuel cell systems for automotive applications: Components, materials, and comparative assessment. Energies 2023, 16, 3111. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipinski, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sust. Energy Rev. 2020, 120, 109620–109652. [Google Scholar] [CrossRef]
- Carbone, A.; Gaeta, M.; Romeo, A.; Portale, G.; Pedicini, R.; Gatto, I.; Castriciano, M. Porphyrin/s-PEEK membranes with improved conductivity and durability for PEMFC technology. ACS Appl. Energy Mater. 2018, 1, 1664–1673. [Google Scholar] [CrossRef]
- Gatto, I.; Saccà, A.; Carbone, A.; Pedicini, R.; Passalacqua, E. MEAs for polymer electrolyte fuel cell (PEFC) working at medium temperature. J. Fuel Cell Sci. Technol. 2006, 3, 361–365. [Google Scholar] [CrossRef]
- Romagnoli, M.; Cannio, M.; Righi, S.; Santangelo, P.E.; Pedicini, R.; Carbone, A.; Gatto, I. Smart catalyst deposition by 3D printing for polymer electrolyte membrane fuel cell manufacturing. Renew. Energy 2021, 163, 414–422. [Google Scholar]
- Wu, M.; He, J.; Xu, M.; Zhang, T.; Liu, F. Barrier identification, analysis and solutions of hydrogen energy storage application in multiple power scenarios based on improved DEMATAL-ISM approach. Int. J. Hydrogen Energy 2022, 47, 30329–30346. [Google Scholar] [CrossRef]
- Marocco, P.; Gandiglio, M.; Audisio, D.; Santarelli, M. Assessment of the role of hydrogen to produce high-temperature heat in the steel industry. J. Clean. Prod. 2023, 388, 135969–135981. [Google Scholar] [CrossRef]
- Tsiklios, C.; Hermesmann, M.; Müller, T.E. Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations. Appl. Energy 2022, 327, 120097–120124. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Zhang, T.; Uratani, J.; Huang, Y.; Xu, L.; Griffiths, S.; Ding, Y. Hydrogen liquefaction and storage: Recent progress and perspectives. Renew. Sust. Energy Rev. 2023, 176, 113204–113227. [Google Scholar] [CrossRef]
- Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A review on metal hydride materials for hydrogen storage. J. Energy Storage 2023, 72 Pt B, 108456–108473. [Google Scholar] [CrossRef]
- Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 30 October 2023).
- Züttel, A. Materials for hydrogen storage. Mater. Today 2023, 6, 24–33. [Google Scholar] [CrossRef]
- Bénard, P.; Chahine, R. Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr. Mater. 2007, 56, 803–808. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Wang, L.; Zhang, X. Chemisorption solid materials for hydrogen storage near ambient temperature: A review. Front. Energy 2023, 17, 72–101. [Google Scholar] [CrossRef]
- Zafar, M.; Iqbal, T.; Fatima, S.; Sanuallah, Q.; Aman, S. Carbon nanotubes for production and storage of hydrogen: Challenges and development. Chem. Pap. 2022, 76, 609–625. [Google Scholar] [CrossRef]
- Fomkin, A.; Pribylov, A.; Men’shchikov, I.; Shkolin, A.; Aksyutin, O.; Ishkov, A.; Romanov, K.; Khozina, E. Adsorption-Based hydrogen storage in activated carbons and model carbon structures. Reactions 2021, 2, 209–226. [Google Scholar] [CrossRef]
- Pedicini, R.; Maisano, S.; Chiodo, V.; Conte, G.; Policicchio, A.; Agostino, R.G. Posidonia oceanica and wood chips activated carbon as interesting materials for Hydrogen Storage. Int. J. Hydrogen Energy 2020, 45, 14038–14047. [Google Scholar] [CrossRef]
- Oku, T. Hydrogen storage in boron nitride and carbon nanomaterials. Energies 2015, 8, 319–337. [Google Scholar] [CrossRef]
- Tozzini, V.; Pellegrini, V. Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 2013, 15, 80–89. [Google Scholar] [CrossRef]
- Zeleňák, V.; Saldan, I. Factors affecting hydrogen adsorption in metal-organic frameworks: A short review. Nanomaterials 2021, 11, 1638. [Google Scholar] [CrossRef]
- Ghaffari-Tabrizi, F.; Haemisch, J.; Lindner, D. Reducing hydrogen boil-off losses during fuelling by pre-cooling cryogenic tank. Hydrogen 2022, 3, 255–269. [Google Scholar] [CrossRef]
- Chao, B.; Klebanoff, L. Hydrogen storage technology. In Hydrogen Storage in Interstitial Metal Hydrides, 1st ed.; Klebanoff, L., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2012; pp. 109–132. [Google Scholar]
- Møller, K.T.; Sheppard, D.; Ravnsbæk, D.B.; Buckley, C.E.; Akiba, E.; Li, H.W.; Jensen, T.R. Complex metal hydrides for Hydrogen, thermal and electrochemical energy storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Wu, Y.; Guo, X.; Ye, J.; Yuan, B.; Wang, S.; Jiang, L. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 2019, 9, 408–428. [Google Scholar] [CrossRef] [PubMed]
- Strozi, R.B.; Ivanisenko, J.; Koudriachova, N.; Huot, J. Effect of HPT on the first hydrogenation of LaNi5 metal hydride. Energies 2021, 14, 6710. [Google Scholar] [CrossRef]
- Kubo, K.; Itoh, H.; Takahashi, T.; Ebisawa, T.; Nakamura, T.; Akiba, E. Hydrogen absorbing properties and structures of Ti–Cr–Mo alloys. J. Alloys Compd. 2003, 356–357, 452–455. [Google Scholar] [CrossRef]
- Ali, N.A.; Ismail, M. Modification of NaAlH4 properties using catalysts for solid-state hydrogen storage: A review. Int. J. Hydrogen Energy 2021, 46, 766–782. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L. Mechanical and thermal dehydrogenation of lithium alanate (LiAlH4) and lithium amide (LiNH2) hydride composites. Crystals 2012, 2, 159–175. [Google Scholar] [CrossRef]
- Garroni, S.; Santoru, A.; Cao, H.; Dornheim, M.; Klassen, T.; Milanese, C.; Gennari, F.; Pistidda, C. Recent progress and new perspectives on metal amide and imide systems for solid-state hydrogen storage. Energies 2018, 11, 1027. [Google Scholar] [CrossRef]
- Puszkiel, J.; Gasnier, A.; Amica, G.; Gennari, F. Tuning LiBH4 for hydrogen storage: Destabilization, additive, and nanoconfinement approaches. Molecules 2020, 25, 163. [Google Scholar] [CrossRef]
- Schmidt, W.R. Activity Report of the United Technologies Research Center for the Polymer Dispersed Metal Hydride Program, DOE Contract DEFC36-00G010535. Available online: https://www.energy.gov/eere/fuelcells/articles/final-report-doe-metal-hydride-center-excellence (accessed on 30 October 2023).
- Liu, Z.; Lei, Z. Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2. J. Alloys Compd. 2007, 443, 121–124. [Google Scholar] [CrossRef]
- Suttisawat, Y.; Rangsunvigit, P.; Kitiyanan, B.; Kulprathipanja, S. Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2-doped NaAlH4. Int. J. Hydrogen Energy 2008, 33, 6195–6200. [Google Scholar] [CrossRef]
- Pedicini, R.; Saccà, A.; Carbone, A.; Passalacqua, E. Hydrogen storage based on the polymeric material. Int. J. Hydrogen Energy 2011, 36, 9062–9068. [Google Scholar] [CrossRef]
- Pedicini, R.; Schiavo, B.; Rispoli, P.; Saccà, A.; Carbone, A.; Gatto, I.; Passalacqua, E. Progress in polymeric material for hydrogen storage application in middle conditions. Energy 2014, 64, 607–614. [Google Scholar] [CrossRef]
- Pedicini, R.; Sigalas, M.; Carbone, A.; Gatto, I. Functionalised hybrid poly(ether ether ketone) containing MnO2: Investigation of operative conditions for hydrogen sorption. Int. J. Hydrogen Energy 2017, 42, 10089–10098. [Google Scholar] [CrossRef]
- Pedicini, R.; Matera, F.; Giacoppo, G.; Gatto, I.; Passalacqua, E. Performance assessment of an integrated PEFC and an hydrogen storage device based on innovative material. Int. J. Hydrogen Energy 2015, 40, 17388–17393. [Google Scholar] [CrossRef]
- Shah, M.A. Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature. Sci. Iran. 2012, 19, 964–966. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, L.; Lu, J.; Hong, X.; Liu, P. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm. J. Am. Chem. Soc. 2007, 129, 15465–15467. [Google Scholar] [CrossRef]
- Zhong, M.; Fu, Z.; Yuan, L.; Zhao, H.; Zhu, J.; He, Y.; Wang, C.; Tang, Y. A solution-phase synthesis method to prepare Pd-doped carbon aerogels for hydrogen storage. RSC Adv. 2015, 5, 20966–20971. [Google Scholar] [CrossRef]
- Zubizarreta, L.; Menéndez, J.A.; Pis, J.J.; Arenillas, A. Improving hydrogen storage in Ni-doped carbon nanospheres. Int. J. Hydrogen Energy 2009, 34, 3070–3076. [Google Scholar] [CrossRef]
Sample | Mass, g | Density, g dm−3 | Volume, dm3 | Exp H2, wt% | H2 Mass, g | H2 Volumetric Capacity, g dm3 |
---|---|---|---|---|---|---|
SPMnO50% | 0.5245 | 317.2 | 0.00165 | 0.08 | 0.0004 | 0.2545 |
SPMnO-5%Pt | 0.5941 | 529.6 | 0.0011 | 0.1 | 0.0006 | 0.5363 |
SPMnO-10%Pt | 0.5449 | 820.6 | 0.00066 | 0.22 | 0.0012 | 1.81 |
H Atoms | Desorption Energy, kJ/mol | |
---|---|---|
Mn24O48Hn | Mn22Pt2O48Hn | |
2 | 366 | 301 |
4 | 296 | 273 |
6 | 280 | 273 |
8 | 271 | 240 |
10 | / | 221 |
12 | 234 | 211 |
14 | / | 214 |
16 | / | 191 |
18 | / | 184 |
20 | / | 203 |
22 | / | 207 |
24 | 175 | 205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedicini, R.; Sigalas, M. Pt Effect on H2 Kinetics Sorption in Mn Oxide-Based Polymeric Material. Hydrogen 2024, 5, 1-13. https://doi.org/10.3390/hydrogen5010001
Pedicini R, Sigalas M. Pt Effect on H2 Kinetics Sorption in Mn Oxide-Based Polymeric Material. Hydrogen. 2024; 5(1):1-13. https://doi.org/10.3390/hydrogen5010001
Chicago/Turabian StylePedicini, Rolando, and Michalis Sigalas. 2024. "Pt Effect on H2 Kinetics Sorption in Mn Oxide-Based Polymeric Material" Hydrogen 5, no. 1: 1-13. https://doi.org/10.3390/hydrogen5010001
APA StylePedicini, R., & Sigalas, M. (2024). Pt Effect on H2 Kinetics Sorption in Mn Oxide-Based Polymeric Material. Hydrogen, 5(1), 1-13. https://doi.org/10.3390/hydrogen5010001