The Tesla Turbine—Design, Simulations, Testing and Proposed Applications: A Technological Review
Abstract
1. Introduction: The Tesla Turbine
2. Tesla Turbine: From the Patent to the Existing Models
2.1. Other Designs
2.1.1. Leaman Designs
2.1.2. Armstrong’s Design
2.1.3. Beans Design of Tesla Turbine
2.1.4. North’s Design
2.1.5. Rice’s Design
2.1.6. Hoya & Guha’s Design

3. The Mathematical Approach to the Tesla Turbine
3.1. Fluid Dynamics Analysis
- The fluid is stationary, laminar, and two-dimensional;
- Admission is total, i.e., the machine is powered by infinite nozzles;
- The fluid dynamic field is considered radially symmetric, and the inlet fluid is uniform. This implies an independence of the entry conditions with respect to all derivatives, which θ are therefore null;
- The inlet and discharge effects are not considered; the fluid therefore evolves in the impeller, only in the gaps between the discs.
- Continuity equation:
3.2. Radial Velocity
3.3. Tangential Velocity and Moment
- , the gap through two discs where DH = 2b;
- is the flow rate per gap;
- ri, ro, respectively, inner radius and outer radius;
- ω = Uo/ro angular speed;
- Vθ_ro, average tangential velocity at rotor inlet.
3.4. Power and Efficiency
3.5. Spiral Tracking (The Path of Fluid)
3.6. Nozzle Sizing
4. A Technical Remark Review: Previous and Actual Work on Tesla Turbine and Related Issues
5. Considerations on Rotating Fluid Flow in Contact with Discs—Simulation Analysis Summary
6. The Numerical Simulation Studies and Experimental Tests Comparison
- inner diameter of the disc 55 mm;
- case diameter 218 mm;
- channel length 100 mm;
- inlet nozzle diameter 25 mm;
- rotational speed 2000–3000 rpm.
7. Experimental Test Bench and Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| at | Speed of sound at nozzle throat |
| b | Gap distance between discs |
| cp | Specific heat capacity at constant pressure |
| DH | Hydraulic diameter |
| f | Friction factor |
| FPo | Drag enhancement number |
| h | Enthalpy |
| J | Moment of inertia of the rotor |
| Mass flow rate per disc gap | |
| M | rotor tip Mach number |
| n | Velocity profile modifier |
| P | Pressure |
| P∗ | Dimensionless pressure for incompressible nozzle flow |
| Po | Pressure at the turbine outer radius |
| Po | Pressure at the turbine outer radius |
| Pnt | Total pressure upstream of the nozzle |
| Dimensionless pressure/Derivative of with respect to ξ | |
| 0th order, 1st order, etc., pressure terms | |
| Po | Poiseuille number |
| r | Radial coordinate |
| ro | outer radius of turbine disc |
| ri | inner radius of turbine disc |
| R | Ideal gas constant |
| Re | Reynolds number |
| Modified Reynolds number | |
| T | Temperature |
| Tt | Gas temperature at nozzle throat for choked flow |
| Tnt | Total temperature upstream of the nozzle |
| U | Disc velocity |
| Uo | Disc speed at the turbine outer radius |
| Ui | Disc speed at the turbine inner radius |
| V | Velocity |
| vθ | Tangential component of fluid velocity |
| vr | Radial component of fluid velocity |
| vz | Axial component of fluid velocity |
| vo,c | Nozzle exit velocity for choked flow (of an ideal gas) |
| vo,i | Isentropic nozzle exit velocity for choked flow |
| v | Velocity vector |
| Mean velocity difference | |
| Vro | Dimensionless radial velocity at the turbine outer radius |
| W | Shaft power |
| W | Dimensionless relative velocity |
| Dimensionless relative velocity difference | |
| Dimensionless velocity difference at the turbine inner radius | |
| Dimensionless velocity difference at the turbine outer radius | |
| 0th order dimensionless velocity difference at the turbine outer radius | |
| 0th order, 1st order, etc., velocity terms | |
| z | Axial coordinate |
| Greek Symbol | |
| φ(z) | Dimensionless velocity profile |
| γ | Heat capacity ratio (cp/cv) |
| η | Efficiency |
| ηexp | Experimental turbine efficiency |
| ηi | Isentropic efficiency of the turbine as predicted by the integral perturbation solution of flow through the rotor |
| ηi,inc | Isentropic efficiency of the turbine as predicted by the integral perturbation solution of flow through the rotor, incompressible nozzle flow |
| ηnoz | Isentropic nozzle efficiency |
| ηrm | Efficiency of the rotor |
| µ | Viscosity |
| ν | Kinematic viscosity |
| o | Disc gap aspect ratio (=DH/ro) |
| θ | Azimuthal coordinate |
| ρ | Density |
| τ | Torque |
| τw | Wall shear stress |
| ω | Angular velocity of the rotor |
| ζ | Dimensionless radial coordinate |
References
- Tesla, N. Turbine. U.S. Patent 1,061,206, 6 May 1913. [Google Scholar]
- Armstrong, J.H. An Investigation of the Performance of a Modified Tesla Turbine. Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1952. [Google Scholar]
- Rice, W. An analytical and experimental investigation of multiple-disc turbines. J. Eng. Power 1965, 87, 29–36. [Google Scholar] [CrossRef]
- Hoya, G.P.; Guha, A. The design of a test rig and study of the performance and efficiency of a Tesla disc turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 451–465. [Google Scholar] [CrossRef]
- Guha, A.; Smiley, B. Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2010, 224, 261–277. [Google Scholar] [CrossRef]
- Rice, W. Tesla turbomachinery. In Handbook of Turbomachinery; Logan, E., Ed.; Marcel Dekker: New York, NY, USA, 2003; pp. 861–874. [Google Scholar]
- Guha, A. Structure of partly dispersed normal shock waves in vapor-droplet flows. Phys. Fluids A 1992, 4, 1566–1578. [Google Scholar] [CrossRef]
- Guha, A. Jump conditions across normal shock waves in pure vapor-droplet flows. J. Fluid Mech. 1992, 241, 349–369. [Google Scholar] [CrossRef]
- Guha, A. A unified theory of aerodynamic and condensation shock waves in vapor-droplet flows with or without a carrier gas. Phys. Fluids 1994, 6, 1893–1913. [Google Scholar] [CrossRef]
- Guha, A. A unified theory for the interpretation of total pressure and temperature in two-phase flows at subsonic and supersonic speeds. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 671–695. [Google Scholar] [CrossRef]
- Guha, A. Computation, analysis and theory of two-phase flows. Aeronaut. J. 1998, 102, 71–82. [Google Scholar] [CrossRef]
- Steidel, R.; Weiss, H. Performance Test of a Bladeless Turbine for Geothermal Applications; Report No. UCID-17068; Lawrence Livermore Laboratory: Livermore, CA, USA, 1974.
- Leaman, A.B. The Design, Construction and Investigation of a Tesla Turbine. Master’s Thesis, Faculty of the Graduate School of the University of Maryland, Livermore, CA, USA, 1950. Available online: https://archive.org/stream/leaman/leaman_djvu.txt (accessed on 15 November 2025).
- Beans, E.W. Investigation into the performance characteristics of a friction turbine. J. Spacecr. Rocket. 1966, 3, 131–134. [Google Scholar] [CrossRef]
- North, R.C. An Investigation of the Tesla Turbine. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1969. [Google Scholar]
- Romanin, V.D. Theory and Performance of Tesla Turbines. 2012. Available online: https://escholarship.org/content/qt6584x24x/qt6584x24x.pdf (accessed on 15 November 2025).
- Matsch, L.; Rice, W. An asymptotic solution for laminar flow of an incompressible fluid between rotating discs. ASME Trans. J. Appl. Mech. 1968, 35, 155–159. [Google Scholar] [CrossRef]
- Rice, W. An analytical and experimental investigation of multiple disc pumps and compressors. ASME Trans. J. Eng. Power 1963, 85, 191–198. [Google Scholar] [CrossRef]
- Boyd, K.; Rice, W. Laminar inward flow of an incompressible fluid between rotating disk, with full Peripheral Admission. J. Appl. Mech. 1968, 35, 229–237. [Google Scholar] [CrossRef]
- Ladino, A.F.R. Numerical Simulation of the Flow Field in a Friction-Type Turbine (Tesla Turbine). Master’s Thesis, Institute of Thermal Powerplants Vienna University of Technology, Vienna, Austria, 2014. Available online: http://www.altmann.haan.de/combustion-force-turbine/VKT_papers/Tesla_Simulation.pdf (accessed on 15 November 2025).
- Sivaramakrishnaiah, M.; Santhosh Kumar Reddy, Y.; Sudarsana Reddy, G. Study and Design of Bladeless Tesla Turbine. Int. J. Theor. Appl. Mech. 2017, 12, 881–889. [Google Scholar]
- Lemma, E.; Deam, R.T.; Toncich, D.; Collins, R. Characterisation of a small viscous flow turbine. Exp. Therm. Fluid Sci. 2008, 33, 96–105. [Google Scholar] [CrossRef]
- Schroeder, H.B. An Investigation of Viscosity Force in Air by Means of a Viscosity Turbine. BAE Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 1950. [Google Scholar]
- Valente, A. Installation for pressure reduction of hydrocarbon gases in a near isothermal manner. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 3–6 November 2008. [Google Scholar]
- Couto, H.S.; Duarte, J.B.F.; Bastos-Netto, D. Tesla Turbine Revisit, Department of Mechanical Engineering. In Proceedings of the 8th Asia- Pacific International Symposium on Combustion and Energy Utilization, Sochi, Russia, 10–12 October 2006. [Google Scholar]
- Lampart, P.; Kosowski, K.; Piwowarski, M.; Jędrzejewski, Ł. Design analysis of Tesla micro-turbine operating on a low-boiling medium. Pol. Marit. Res. 2009, 16, 28–33. [Google Scholar] [CrossRef]
- Modi, P.N.; Seth, S.M. Hydralics and Fluid Mechnics including Hydralic Machines, 5th ed.; HFM Publication: Downers Grove, IL, USA, 2005; pp. 221, 284–289, 915–973. [Google Scholar]
- Sheshagiri Hebbar, K.; Sridhara, K.; Paranjpe, P.A. Performance of Conical Jet Nozzles in Terms of Discharge Coefficient. J. Aeronaut. Soc. India 1970, 22, 3–9. [Google Scholar]
- Deam, R.T.; Lemma, E.; Mace, B.; Collins, R. On scaling down turbines to millimetre size. ASME Trans. J. Eng. Gas Turbines Power 2008, 130, 052301-1–052301-9. [Google Scholar] [CrossRef]
- Guha, A.; Sengupta, S. The fluid dynamics of the rotating flow in a Tesla disc turbine. Eur. J. Mech.-B/Fluids 2013, 37, 112–123. [Google Scholar] [CrossRef]
- Carey, V.P. Assessment of Tesla turbine performance for small scale solar Rankine combined heat and power systems. J. Eng. Gas Turbines Power 2010, 132, 122301. [Google Scholar] [CrossRef]
- Choon, T.W.; Rahman, A.A.; Jer, F.S.; Aik, L.E. Optimization of Tesla turbine using computational fluid dynamics approach. In Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications, Langkawi, Malaysia, 25–28 September 2011; pp. 477–480. [Google Scholar]
- Gregory, N.; Stuart, J.T.; Walker, W.S. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disc. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 248, 155–199. [Google Scholar]
- Faller, A.J.; Kaylor, R.E. Numerical study of the instability of the laminar Ekman boundary layer. J. Atmos. Sci. 1966, 23, 466–480. [Google Scholar] [CrossRef]
- Matsch, L.; Rice, W. Flow at low Reynolds number with partial admission between rotating disk. J. Appl. Mech. 1968, 34, 768–770. [Google Scholar] [CrossRef]
- Gauthier, G.; Gondret, P.; Moisy, F.; Rabaud, M. Instabilities in the flow between co- and counter-rotating discs. J. Fluid Mech. 2002, 473, 1–21. [Google Scholar] [CrossRef]
- Murata, S.; Yutaka, M.; Yoshiyuki, I. A Study on a Disc friction pump. Bull. Jpn. Soc. Mech. Eng. 1976, 19, 168–178. [Google Scholar] [CrossRef]
- Nendl, D. Dreidimensionale laminare instabilitäten bei ebenen wänden. Z. Angew. Math. Mech. 1973, 56, T211–T213. [Google Scholar] [CrossRef]
- Pikhtov, S.V.; Smirnov, E.M. Boundary layer stability on a rotating disc with corotation of the surrounding fluid. Fluid Dyn. 1993, 27, 657–663. [Google Scholar] [CrossRef]
- Schouveiler, L.; Le Gal, P.; Chauve, M.P. Stability of a traveling roll system in a rotating disc flow. Phys. Fluids 1998, 10, 2695–2697. [Google Scholar] [CrossRef]
- Serre, E.; Crespo del Arco, E.; Bontoux, P. Annular and spiral patterns in flows between rotating and stationary discs. J. Fluid Mech. 2001, 434, 65–100. [Google Scholar] [CrossRef]
- Sankov, P.I.; Smirnov, E.M. Bifurcation and transition to turbulence in the gap between rotating and stationary parallel discs. Fluid Dyn. 1985, 19, 695–702. [Google Scholar] [CrossRef]
- Wu, P.S. Evaluation of Analytical Models for Multiple-Disc Pump Rotor Calculations. Master’s Thesis, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, USA, 1986. [Google Scholar]
- von Kármán, T. Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1921, 1, 233–252. [Google Scholar] [CrossRef]
- Bödewadt, U.T. Die drehströmung über festem grunde. Z. Angew. Math. Mech. 1940, 20, 241–253. [Google Scholar] [CrossRef]
- Batchelor, G.K. Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Math. 1951, 4, 29–41. [Google Scholar] [CrossRef]
- Stewartson, K. On the flow between two rotating coaxial discs. Proc. Camb. Philos. Soc. 1953, 49, 333–341. [Google Scholar] [CrossRef]
- Picha, K.G.; Eckert, E.R.G. Study of the air flow between coaxial discs rotating with arbitrary velocities in an open or enclosed space. In Proceedings of the 3rd U.S. National Congress of Applied Mechanics, Providence, RI, USA, 11–14 June 1958; pp. 791–798. [Google Scholar]
- Lance, G.N.; Rogers, M.H. The axially symmetric flow of a viscous fluid between two infinite rotating discs. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 266, 109–121. [Google Scholar]
- Pearson, C.E. Numerical solutions for the time-dependent viscous flow between two rotating coaxial discs. J. Fluid Mech. 1965, 21, 623–633. [Google Scholar] [CrossRef]
- Sirivat, A. Stability experiment of flow between a stationary and a rotating disc. Phys. Fluids A 1991, 3, 2664–2671. [Google Scholar] [CrossRef]
- Dijkstra, D.; van Heijst, G.J.F. The flow between two finite rotating discs enclosed by a cylinder. J. Fluid Mech. 1983, 128, 123–154. [Google Scholar] [CrossRef]
- Gauthier, G.; Gondret, P.; Rabaud, M. Axisymmetric propagating vortices in the flow between a stationary and a rotating disc enclosed by a cylinder. J. Fluid Mech. 1999, 386, 105–126. [Google Scholar] [CrossRef]
- Zandbergen, P.J.; Dijkstra, D. Von Kármán swirling flows. Annu. Rev. Fluid Mech. 1987, 19, 465–491. [Google Scholar] [CrossRef]
- Poncet, S.; Chauve, M.P.; Le Gal, P. Turbulent rotating disc flow with inward throughflow. J. Fluid Mech. 2005, 522, 253–262. [Google Scholar] [CrossRef]
- Poncet, S.; Chauve, M.P.; Schiestel, R. Batchelor versus Stewartson flow structures in a rotor-stator cavity with throughflow. Phys. Fluids 2005, 17, 075110. [Google Scholar] [CrossRef]
- Mellor, G.L.; Chapple, P.J.; Stokes, V.K. On the flow between a rotating and a stationary disc. J. Fluid Mech. 1968, 31, 95–112. [Google Scholar] [CrossRef]
- Rogers, M.H.; Lance, G.N. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disc. J. Fluid Mech. 1960, 7, 617–631. [Google Scholar] [CrossRef]
- Kreith, F. Convection Heat Transfer in Rotating Systems. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1969; Volume 5, pp. 129–251. ISBN 9780120200054. [Google Scholar] [CrossRef]
- Fahidy, T.; Cóuret, F. A Re-examination of Heat Transfer in Laminar Divergent Flow Between Two Parallel Fixed Discs. Can. J. Chem. Eng. 2001, 79, 132–136. [Google Scholar] [CrossRef]
- Batista, M. Steady flow of incompressible fluid between two co-rotating disks. Appl. Math. Model. 2011, 35, 5225–5233. [Google Scholar] [CrossRef]
- Talluri, L.; Dumont, O.; Manfrida, G.; Lemort, V.; Fiaschi, D. Geometry definition and performance assessment of Tesla turbines for ORC. Energy 2020, 211, 11857. [Google Scholar] [CrossRef]
- Breiter and Pohlhausen, Laminar Flow Between Two Parallel Fixed Discs. Aeronautical Research Laboratory Office of Aerospace Research United States Air Force. 1962. Available online: https://apps.dtic.mil/sti/tr/pdf/AD0275562.pdf (accessed on 25 September 2025).
- Rusin, K.; Wróblewski, W.; Strozik, M. Comparison of methods for the determination of Tesla turbine performance. J. Theor. Appl. Mech. 2019, 57, 563–575. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Rulik, S. The evaluation of numerical methods for determining the efficiency of Tesla turbine operation. J. Mech. Sci. Technol. 2018, 32, 5711–5721. [Google Scholar] [CrossRef]
- Neckel, A.; Godinho, M. Influence of geometry on the efficiency of convergent–divergent nozzles applied to Tesla turbines. Exp. Therm. Fluid Sci. 2015, 62, 131–140. [Google Scholar] [CrossRef]
- Romanin, V.D.; Carey, V.P. An integral perturbation model of flow and momentum transport in rotating microchannels with smooth or microstructured wall surfaces. Phys. Fluids 2011, 23, 082003. [Google Scholar] [CrossRef]
- Manfrida, G.; Talluri, L. Fluid dynamics assessment of the Tesla turbine rotor. Therm. Sci. 2019, 23, 1–10. [Google Scholar] [CrossRef]
- Ciappi, L.; Fiaschi, D.; Niknam, P.; Talluri, L. Computational investigation of the flow inside a Tesla turbine rotor. Energy 2019, 173, 207–217. [Google Scholar] [CrossRef]
- Dumont, O.; Talluri, L.; Fiaschi, D.; Manfrida, G.; Lemort, V. Comparison of a scroll, a screw, a roots, a piston expander and a Tesla turbine for small-scale organic Rankine cycle. In Proceedings of the 5th International Seminar on ORC Power Systems, Athens, Greece, 9–11 September 2019. [Google Scholar]
- Kandlikar, S.G.; Schmitt, D.; Carrano, A.L.; Taylor, J.B. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys. Fluids 2005, 17, 100606. [Google Scholar] [CrossRef]
- Qi, W.; Deng, Q.; Jiang, Y.; Yuan, Q.; Feng, Z. Disc Thickness and spacing distance impacts on flow characteristics of multichannel Tesla turbines. Energies 2018, 12, 44. [Google Scholar] [CrossRef]
- Qi, W.; Deng, Q.; Chi, Z.; Hu, L.; Yuan, Q.; Feng, Z. Influence of disc tip geometry on the aerodynamic performance and flow characteristics of multichannel Tesla turbines. Energies 2019, 12, 572. [Google Scholar] [CrossRef]
- Rusin, K.; Wróblewski, W.; Rulik, S.; Majkut, M.; Strozik, M. Performance Study of a Bladeless Microturbine. Energies 2021, 14, 3794. [Google Scholar] [CrossRef]
- Romanin, V.D.; Krishnan, V.G.; Carey, V.P.; Maharbiz, M.M. Experimental and analytical study of sub-watt scale Tesla turbine performance. In Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; pp. 1005–1014. [Google Scholar]
- Renuke, A.; Reggio, F.; Silvestri, P.; Traverso, A.; Pascenti, M. Experimental investigation on a 3 kW air Tesla expander with high speed generator. In Proceedings of the ASME Turbo Expo, Virtual, Online, 21–25 September 2020; Volume 5. [Google Scholar]
- Renuke, A.; Vannoni, A.; Pascenti, M.; Traverso, A. Experimental and numerical investigation of small-scale Tesla turbines. J. Eng. Gas Turbines Power 2019, 141, 121011. [Google Scholar] [CrossRef]
- Silvestri, P.; Traverso, A.; Reggio, F.; Efstathiadis, T. Theoretical and experimental investigation on rotor dynamic behavior of bladeless turbine for innovative cycles. In Proceedings of the ASME Turbo Expo, Phoenix, AZ, USA, 17–21 June 2019; Volume 3. [Google Scholar]
- Rusin, K.; Wróblewski, W.; Strozik, M. Experimental and numerical investigations of Tesla turbine. J. Phys. Conf. Ser. 2018, 1101, 012029. [Google Scholar] [CrossRef]
- Renuke, A.; Traverso, A.; Pascenti, M. Experimental campaign tests on a Tesla micro-expanders. E3S Web Conf. 2019, 113, 03015. [Google Scholar] [CrossRef]
- Manfrida, G.; Pacini, L.; Talluri, L. An upgraded Tesla turbine concept for ORC applications. Energy 2018, 158, 33–40. [Google Scholar] [CrossRef]
- Joseph, J.K.; Jeyanthinathan, R.; Harish, R. CFD investigation on the performance analysis of Tesla turbine. IOP Conf. Ser. Earth Environ. Sci. 2021, 850, 012026. [Google Scholar] [CrossRef]
- Awasthi, K.; Aggarwal, A. Experimental Investigation of Tesla Turbine and its Underlying Theory. Int. J. Eng. Trends Technol. (IJETT) 2014, 13, 98–100. [Google Scholar] [CrossRef]
- Sengupta, S.; Guha, A. Inflow-rotor interaction in Tesla disc turbines: Effects of discrete inflows, finite disc thickness, and radial clearance on the fluid dynamics and performance of the turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2018, 232, 971–991. [Google Scholar] [CrossRef]
- Talluri, L.; Dumont, O.; Manfrida, G.; Lemort, V.; Fiaschi, D. Experimental investigation of an Organic Rankine Cycle Tesla turbine working with R1233zd(E). Appl. Therm. Eng. 2020, 174, 115293. [Google Scholar] [CrossRef]
- Savas, Ö. On flow visualization using reflective flakes. J. Fluid Mech. 1985, 152, 235–248. [Google Scholar] [CrossRef]
- Savas, Ö. Stability of Bödewadt flow. J. Fluid Mech. 1987, 183, 77–94. [Google Scholar] [CrossRef]
- Holodniok, M.; Kubíček, M.; Hlaváček, V. Computation of the flow between two rotating coaxial discs. J. Fluid Mech. 1977, 81, 689–699. [Google Scholar] [CrossRef]
- Holodniok, M.; Kubíček, M.; Hlaváček, V. Computation of the flow between two rotating coaxial discs: Multiplicity of steady-state solutions. J. Fluid Mech. 1981, 108, 227–240. [Google Scholar] [CrossRef]
- Yu, Y.M.; Pustovalov, V.N. Calculation of laminar flow of a viscous fluid between rotating discs. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1982, 1, 76–81. [Google Scholar]
- Thomazoni, A.L.R.; Ermel, C.; Schneider, P.S.; Vieira, L.W.; Hunt, J.D.; Ferreira, S.B.; Rech, C.; Gouvêa, V.S. Influence of operational parameters on the performance of Tesla turbines: Experimental investigation of a small-scale turbine. Energy 2022, 261, 125159. [Google Scholar] [CrossRef]
- Onanuga, O.K.; Erusiafe, N.E.; Olopade, M.A.; Chendo, M.A.C. Experimental and analytical analysis of a bladeless turbine of an incompressible fluid in a confined cylinder. Results Eng. 2020, 6, 100130. [Google Scholar] [CrossRef]
- Lyu, W.; Ma, H.; Zhou, H.; Zhang, J.; Yurchenko, D.; Zhou, S. Design, simulation and experimental validation of a Tesla turbine based rotational electromagnetic energy harvester for pipelines. Mech. Syst. Signal Process. 2025, 224, 112034. [Google Scholar] [CrossRef]
- Kachawong, T.; Koonsrisuk, A. From vapor to liquid: Unlocking the potential of Tesla turbines in ORC power plants with variable steam qualities. Energy 2025, 315, 134306. [Google Scholar] [CrossRef]
- Li, L.; Teng, S.; Zhao, Y.; An, D.; Xi, H. Experimental study on a Tesla turbine integrated into a Mini-ORC system using R245fa as working fluid. Energy 2025, 324, 136067. [Google Scholar] [CrossRef]
- Islam, S.H.T.; Islam, M.; Rafee, A.K.; Islam, T. A Practical Design Approach of the Tesla Turbine for Hydro Power Applications. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1305, 012004. [Google Scholar] [CrossRef]
- Choon, T.W.; AnasRahman, A.; Li, T.S.; Aik, L.E. Tesla turbine for energy conversion: An automotive application. In Proceedings of the 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER), Kota Kinabalu, Malaysia, 3–4 December 2012; pp. 820–825. [Google Scholar] [CrossRef]
- Talluri, L.; Fiaschi, D.; Neri, G.; Ciappi, L. Design and optimization of a Tesla turbine for ORC applications. Appl. Energy 2018, 226, 300–319. [Google Scholar] [CrossRef]
- Teng, S.; Li, L.; Yan, C.; An, D.; Zhao, Y.; Xi, H. Multi-parameter experimental study of a tesla turbine applied to an organic Rankine cycle system for low-grade heat utilisation. Energy Convers. Manag. 2025, 333, 119824. [Google Scholar] [CrossRef]



















| Author | Method | η |
|---|---|---|
| Leaman [13] | torque/speed and inlet pressure/flow measurement | ~8% |
| Armstrong [2] | same, variations in disc spacing | ~24% |
| Beans [14] | same, modified disc profile | ~4% |
| North [15] | same (traditional) | (not reported but comparable) |
| Rice [3] | experimental & analytical | ~36–41% |
| Hoya & Guha [4] | test rig with nozzle modifications | ~25% |
| Performance | Losses | Advantages | |
|---|---|---|---|
| Mechanical efficiencies | 5–20%. | High viscous losses in the boundary layer between discs | Silent operation |
| Theoretical efficiencies (by CFD): | up to 40–60% * | Difficulty in maintaining uniform spacing (0.2–1 mm) | Simple construction (no blades) |
| Rotational speeds | 3000–30,000 ** | Flow losses between discs and casing | Possible use with “dirty” fluids or in low-enthalpy micro-cycles |
| Pressure | 1–6 bar (air), 0.1–0.3 MPa (steam/liquids). | Need for resistant and well-balanced materials | |
| Experimental power | from a few watts to several hundred watts | ||
| Author/Institution | Year | Fluid | Boundary Conditions | Efficiency/Results |
|---|---|---|---|---|
| Awasthi & Aggarwal | 2014 | Water | 6 discs prototype; D = 180 mm | |
| Kirwan et al. | 2022 | Compressed air | 3 bar, 4000 rpm | P < 1 kW, ηmax 14.2% |
| Talluri et al. | 2020 | R1233zd (E) | Organic Rankine Cycle | ηshaft 9.6%, ηadiabatic 30% |
| Turan et al. | 2017 | Air | Disc and gap variation | ηmax 5–15% |
| Klingl et al. | 2025 | Air (CFD & test) | HPC test | Losses quantification |
| Bansal & Zuber | 2021 | Air | Test on prototype | ηmax 10–20% |
| Author | ro | rl | Central (c) Shaft (s) Exhaust | # Discs | Disc Spacing | Steam (s) Water (w) Air (a) | Operating Pressure | Max Speed | Max Torque | Max Power | Max Efficiency |
|---|---|---|---|---|---|---|---|---|---|---|---|
| mm | mm | mm | bar | rpm | Nm | W | % | ||||
| Amstrong | 88.9 | 47.62 | s | 10 | variable | s | 8.1 | 6000 | 0.1 | 530 | 4.26 |
| Beans | 76.2 | 30.5 | s | 6 | 12.7–6.7 | a | 2.75 | 17,000 | 0.9 | 5600 | 24 |
| Rice | 88.9 | 33.5 | c | 9 | 1.6 | a | 9.6 | 11,800 | n/a | 1800 | 23.2 |
| Leaman | 63 | 10 | c | 4 | 3.2 | a | 5.8 | 9000 | 0.1 | 87 | 8.24 |
| Lemma | 25 | 5.95 | s | 6 | n/a | a | 0.514 | 96,000 | 0.04 | 220 | 20 |
| Tesla | 228.5 | n/a | s | 25 | n/a | s | 8.6 | 9000 | n/a | 150,000 | n/a |
| Emran | 18.8 | 17 | s | 4 | n/a | a | 5.9 | 50,000 | 0.345 | n/a | n/a |
| Peshlakai | 75 | 34.5 | s | 12 | 1.3 | a | 6.14 | n/a | n/a | 12 | 31 |
| Boudicek | 100 | 17 | c | 13 | n/a | a | 20.5 | n/a | 0.7 | 58.3 | 20.45 |
| Romanin | 36.5 | 18 | s | 10 | 1.2 | a | 5.4 | 24,170 | n/a | n/a | 16.3 |
| Romanin | 5 | 1 | c | 4 | 0.5 | w | n/a | n/a | n/a | 35 | 13.7 |
| Hoya & Guha | 46 | 12.5 | c | 8 | 0.2 | a | 3.6 | 25,000 | 0.7 | 140 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Capata, R.; Calabria, A. The Tesla Turbine—Design, Simulations, Testing and Proposed Applications: A Technological Review. Eng 2026, 7, 30. https://doi.org/10.3390/eng7010030
Capata R, Calabria A. The Tesla Turbine—Design, Simulations, Testing and Proposed Applications: A Technological Review. Eng. 2026; 7(1):30. https://doi.org/10.3390/eng7010030
Chicago/Turabian StyleCapata, Roberto, and Alfonso Calabria. 2026. "The Tesla Turbine—Design, Simulations, Testing and Proposed Applications: A Technological Review" Eng 7, no. 1: 30. https://doi.org/10.3390/eng7010030
APA StyleCapata, R., & Calabria, A. (2026). The Tesla Turbine—Design, Simulations, Testing and Proposed Applications: A Technological Review. Eng, 7(1), 30. https://doi.org/10.3390/eng7010030

