Ultrasonically Accelerated Nitration of Hydroxyl-Terminated Polybutadiene: Process Efficiency and Product Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthetic Procedure
3. Results

4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Shu, Y.; Liu, N.; Lu, X.; Shu, Y.; Wang, X.; Mo, H.; Xu, M. Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of These Modifiers in Propellants and Explosives. Cent. Eur. J. Energ. Mater. 2019, 16, 153–193. [Google Scholar] [CrossRef]
- Ashrafi, M.; Dehnavi, M.A.; Fakhraian, H. Synthesis, Characterization and Properties of Nitropolybutadiene as Energetic Plasticizer for NHTPB Binder. Propellants Explos. Pyrotech. 2017, 42, 269–275. [Google Scholar] [CrossRef]
- Qin, P.; Zhang, X.; Jiang, K.; Cheng, J. Constant Strain Aging Model of HTPB Propellant Involving Thermal–Mechanical Coupled Effects. Aerospace 2025, 12, 589. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, K.; Yao, J.; Guo, X.; Shen, C.; Yan, S. Effect of Fluoroalcohol Chain Extension Modified HTPB Binder on the Combustion Performance of Aluminized Propellants. Crystals 2024, 14, 258. [Google Scholar] [CrossRef]
- Saha, S.; Patel, J.; Bhattacharjee, A.; Chowdhury, A.; Kumbhakarna, N. Experimental and computational study on the decomposition mechanisms of cured hydroxyl-terminated polybutadiene grafted with nitro and tetrazole groups. Combust. Flame 2025, 281, 114431. [Google Scholar] [CrossRef]
- Aljafree, N.; Norrrahim, M.; Samsuri, A.; Wan Yunus, W.M.Z. Environmental Impact and Sustainability of Nanocellulose-Based Nitrated Polymers in Propellants. RSC Adv. 2025, 15, 24167. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, Z.; Xu, W.; Jiang, L.; Xu, H.; Tang, Q.; Zheng, Q.; Li, J. Influence of Process Aids on Solid–Liquid Interfacial Properties of Three-Component Hydroxyl-Terminated Polybutadiene Propellants. Polymers 2025, 17, 286. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Moon, S.-J.; Kwon, Y.-R.; Moon, S.; Kim, D.; Kim, D.-H. Novel Glycidyl Carbamate Functional Epoxy Resin Using Hydroxyl-Terminated Polybutadiene. Polymers 2024, 16, 3107. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, J.; Li, Y.; Artiaga, R. The Synergistic Effect of Fe-Based MOFs and HTPB on AP Decomposition in Solid Propellants. Solids 2025, 6, 27. [Google Scholar] [CrossRef]
- Dou, J.; Xu, M.; Tan, B.; Lu, X.; Mo, H.; Wang, B.; Liu, N. Research Progress of Nitrate Ester Binders. FirePhysChem 2023, 3, 54–77. [Google Scholar] [CrossRef]
- Jouini, M.; Abdelaziz, A.; Trache, D.; Tarchoun, A.; Amokrane, S.; Benzetta, A.; Mezroua, A. HTPB Propellant Binder Supplemented with Nitro Potato Starch: Formulation, Characterization, and Thermal Decomposition Behavior. FirePhysChem 2024, 4, 211–215. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhang, X.; Mi, Z. Thermal Stability and Kinetics of Decomposition of Nitrated HTPB. J. Hazard. Mater. 2009, 172, 1659–1664. [Google Scholar] [CrossRef]
- Runtu, K.; Hafizah, M.; Triharjanto, R.; Navalino, D. Study of Burning Rate Characteristics of Composite Propellant Based on Nitrated Hydroxyl Terminated Polybutadiene (NHTPB) Binder. UIJRT 2022, 3, 100–104. [Google Scholar]
- Saha, S.; Bhattacharjee, A.; Bhagat, S.; Kumar, A.; Pawar, R.; Singh, S.; Namboothiri, I.; Chowdhury, A.; Kumbhakarna, N. Theoretical, Structural, and Thermal Aspects of Nitro-HTPB as a Prospective Energetic Binder—A Detailed Computational and Experimental Analysis. Mater. Today Commun. 2024, 38, 107892. [Google Scholar] [CrossRef]
- Jouini, M.; Abdelaziz, A.; Tarchoun, A.; Rahamnia, F.; Bekhouche, S.; Pal, Y.; Pang, W.; Trache, D. Enhancing Energetic Features of HTPB Binder Through Nitro-Functionalization and Nitrocellulose Doping. FirePhysChem 2025, in press. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Nie, H.; Zhang, Y.; Tan, L.; Yin, H.; Ma, X. Migration Kinetics and Mechanisms of Plasticizers, Stabilizers at Interfaces of NEPE Propellant/HTPB Liner/EPDMInsulation. J. Hazard. Mater. 2012, 229–230, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mei, L.; La, Y.; Liao, L.; Fu, Y. Molecular Dynamics Simulation on Compatibility and Glass Transition Temperature of HTPB/Plasticizer Blends. Adv. Mater. Res. 2013, 718–720, 136–140. [Google Scholar] [CrossRef]
- Akwi, F.M.; Watts, P. Continuous Flow Chemistry: Where Are We Now? Recent Applications, Challenges and Limitations. Chem. Commun. 2018, 54, 13894–13928. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Liang, X.; Zhou, X.; Zhu, R.; Liu, F. Research Progress on Continuous-Flow Nitrification Technology and Equipment. Pharmaceut. Front. 2025, 7, 77–90. [Google Scholar] [CrossRef]
- Krishnan, P.; Ayyaswamy, K.; Nayak, S. Hydroxy Terminated Polybutadiene: Chemical Modifications and Applications. J. Macromol. Sci. A 2013, 50, 128–138. [Google Scholar] [CrossRef]
- Colclough, M.; Paul, N. Nitrated Hydroxy-Terminated Polybutadiene: Synthesis and Properties. In Nitration; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1996; Volume 623, pp. 97–103. [Google Scholar]
- Yoon, S.; Lee, S.; Lee, J. Comprehensive Review on Post-Polymerization Modification of Hydroxyl-Terminated Polybutadiene (HTPB). Elastomers Compos. 2024, 59, 108–120. [Google Scholar]
- Colclough, M.; Desai, H.; Millar, R.; Paul, N.; Stewart, M.; Golding, P. Energetic Polymers as Binders in Composite Propellants and Explosives. Polym. Adv. Technol. 1993, 5, 554–560. [Google Scholar] [CrossRef]
- Chien, J.; Kohara, T.; Lillya, C.; Sarubbi, T.; Su, B.-H. Phase Transfer-Catalyzed Nitromercuration of Diene Polymers. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 2723–2729. [Google Scholar] [CrossRef]
- Ghayeni, H.; Razeghi, R.; Olyaei, A. Synthesis and Characterization of Nitro-Functionalized Hydroxyl-Terminated Polybutadiene Using N-Iodosuccinimide. Polym. Bull. 2020, 77, 4993–5004. [Google Scholar] [CrossRef]
- Abusaidi, H.; Ghorbani, M.; Ghaien, H. Development of Composite Solid Propellant Based on Nitro-Functionalized Hydroxyl-Terminated Polybutadiene. Propellants Explos. Pyrotech. 2017, 42, 671–675. [Google Scholar] [CrossRef]
- Azazy, A.; Saleh, A.; Aly, W.; Elbeih, A.; Hussein, A.K.; Elshenawy, T.; Abdelhafiz, M.; Wafy, T.; Zaki, M.; Ahmed, H. Enhancing the Propulsion Characteristics of Rockets by Adding the Energetic Nitro-Hydroxyl-Terminated Polybutadiene (NHTPB) in the Propellant Compositions. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1172, 012032. [Google Scholar] [CrossRef]
- Ghayeni, H.; Razeghi, R.; Kazemi, F.; Olyaei, A. An Efficient Synthesis, Evaluation of Parameters and Characterization of Nitro-Hydroxyl-Terminated Polybutadiene (Nitro-HTPB). Propellants Explos. Pyrotech. 2018, 43, 574–582. [Google Scholar] [CrossRef]
- Pant, C.; Santosh, M.; Banerjee, S.; Khanna, P. Single Step Synthesis of Nitro-Functionalized Hydroxyl-Terminated Polybutadiene. Propellants Explos. Pyrotech. 2013, 35, 748–753. [Google Scholar] [CrossRef]
- Alavi Nikje, M.M.; Mozaffari, Z. Chemoselective Epoxidation of Hydroxyl-Terminated Polybutadiene (HTPB) Using In-Situ Generated Dimethyl Dioxirane (DMD). Des. Monomers Polym. 2007, 10, 67–77. [Google Scholar] [CrossRef]
- Demchenko, A. Practical Aspects of Wavelength Ratiometry in the Studies of Intermolecular Interactions. J. Mol. Struct. 2014, 1077, 51–67. [Google Scholar] [CrossRef]







| HTPB | NO2-HTPB | |
|---|---|---|
| Average molecular weights | 4810 g/mol | 5375 g/mol |
| Specific gravity | 0.89 | 1.14 |
| Glass transition temperature | −76 °C | −27 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bakov, V.; Yaneva, S.; Rangelova, N.; Berner, M.; Ganchev, D.; Georgiev, N. Ultrasonically Accelerated Nitration of Hydroxyl-Terminated Polybutadiene: Process Efficiency and Product Characterization. Eng 2026, 7, 12. https://doi.org/10.3390/eng7010012
Bakov V, Yaneva S, Rangelova N, Berner M, Ganchev D, Georgiev N. Ultrasonically Accelerated Nitration of Hydroxyl-Terminated Polybutadiene: Process Efficiency and Product Characterization. Eng. 2026; 7(1):12. https://doi.org/10.3390/eng7010012
Chicago/Turabian StyleBakov, Ventsislav, Spaska Yaneva, Nadezhda Rangelova, Milko Berner, Damyan Ganchev, and Nikolai Georgiev. 2026. "Ultrasonically Accelerated Nitration of Hydroxyl-Terminated Polybutadiene: Process Efficiency and Product Characterization" Eng 7, no. 1: 12. https://doi.org/10.3390/eng7010012
APA StyleBakov, V., Yaneva, S., Rangelova, N., Berner, M., Ganchev, D., & Georgiev, N. (2026). Ultrasonically Accelerated Nitration of Hydroxyl-Terminated Polybutadiene: Process Efficiency and Product Characterization. Eng, 7(1), 12. https://doi.org/10.3390/eng7010012

