Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates
Abstract
1. Introduction
2. Materials
2.1. Asphalt Binder
2.2. Aggregate
2.3. Palm Oil Clinker (POC)
3. Experimental Procedures
Preparation of Samples
4. Design of Experiments and ANOVA Analysis Using RSM
5. Results
5.1. Marshall Properties
5.2. Volumetric Properties
5.3. Statistical Analysis
5.4. Multi-Objective Optimization and Validation
6. Conclusions
- •
- In this study, two independent factors, POC and BC, were investigated. The experimental results displayed that incorporating POC has a minimal impact on Marshall stability, flow, stiffness, VFA, and VMA. However, it does influence the density, as the density of the compacted sample decreases with an increase in POC content due to its lower specific gravity compared to conventional aggregates. On the other hand, the asphalt binder content significantly affects the Marshall and volumetric properties.
- •
- Based on the mix design criteria, POC was found to be suitable for use as a fine aggregate replacement in stone mastic asphalt mixtures, up to 100%, while still meeting the design requirements according to JKR Malaysia specifications.
- •
- The optimum binder content was designed to achieve 4% air voids, with all mixtures falling within the range of 6.15 ± 0.1% of the total mixture weight.
- •
- Using ANOVA, different models were developed to cover six responses: stability, flow, stiffness, VIM, VFA, and VMA. These models were statistically validated, and the results showed that all models were significant and well-fitted, based on an R2 value greater than 0.80, low p-values, and insignificant lack-of-fit for all the predicted responses.
- •
- Based on multi-objective optimization, the results indicate that using 60% POC and 6% BC achieves the optimum Marshall and volumetric properties. Moreover, the optimized values were validated, showing a strong correlation (error < 5%) between the predicted results and the experimentally obtained values.
7. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
POC | Palm oil clinker |
SMA | Stone mastic asphalt |
RSM | Response surface methodology |
ANOVA | Analysis of variance |
GDP | Gross domestic product |
S. G | Specific gravity |
W. A | Water absorption |
M. C | Moisture content |
F. A | Fine aggregate |
C. A | Coarse aggregate |
ASTM | American Society for Testing and Materials |
BS | British Standard |
JKR | Malaysian Public Works Department (Jabatan Kerja Raya) |
VMA | Voids in the mineral aggregate |
VIM | Air voids or voids in the mixture |
VFA | Voids filled with asphalt |
DOE | Design of experiments |
BC | Binder content |
OBC | Optimum binder content |
References
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A comparative review of hot and warm mix asphalt technologies from environmental and economic perspectives: Towards a sustainable asphalt pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Koting, S.; Babalghaith, A.M.; Isa, M.H.M.; Khairuddin, F.H. Influence of Coal Bottom Ash as Fine Aggregate Replacement on the Mechanical Properties of Stone Mastic Asphalt. Appl. Sci. 2025, 15, 6826. [Google Scholar] [CrossRef]
- Mondal, A.; Ransinchung, R.; Choudhary, J. Sustainable recycling of industrial waste fillers and reclaimed asphalt pavement to produce environmentally feasible warm mix asphalt. Innov. Infrastruct. Solut. 2023, 8, 34. [Google Scholar] [CrossRef]
- Shaheen, A.u.H.; Ahmed, K.S.; Sarfraz, Y.; Riaz, M.T.; Shahzad, A. Physico-Mechanical Characterization of Cement Concrete using Quarry Waste as Fine Aggregate Replacement of Natural Sand. Arab. J. Sci. Eng. 2023, 48, 13807–13821. [Google Scholar] [CrossRef]
- Odugbose, B.D.; Halim, H.B.; Izwan, J.; Johari, M.A.M.; Mazlan, D.; Wan Mamat Ali, W.M.A. Effects of Incorporating Oil Palm Mesocarp Fiber as Partial Replacement of Fine Aggregate on the Sound Absorption Performance and Mechanical Properties of Standard Concrete. Arab. J. Sci. Eng. 2024, 50, 13267–13282. [Google Scholar] [CrossRef]
- Ragab, M.; Abo El-Naga, I. Performance Assessment of Cold Asphalt Concrete Mixtures Containing Recycled Paving Materials. Arab. J. Sci. Eng. 2022, 47, 4351–4360. [Google Scholar] [CrossRef]
- Babalghaith, A.M.; Koting, S.; Sulong, N.H.R.; Khan, M.Z.H.; Milad, A.; Yusoff, N.I.M.; Ibrahim, M.R.; Mohamed, A.H.b.N. A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes. Environ. Sci. Pollut. Res. 2022, 29, 35557–35582. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Abdul Patah, M.F.; Ibrahim, M.R.; Karim, M.R. A review of the utilization of coal bottom ash (CBA) in the construction industry. Sustainability 2021, 13, 8031. [Google Scholar] [CrossRef]
- Akbulut, H.; Gürer, C. Use of aggregates produced from marble quarry waste in asphalt pavements. Build. Environ. 2007, 42, 1921–1930. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Yap, S.P.; Yuen, C.W.; Onn, C.C.; Koting, S.; Babalghaith, A.M. Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. J. Clean. Prod. 2020, 262, 121462. [Google Scholar] [CrossRef]
- Dughaishi, H.A.; Lawati, J.A.; Bilema, M.; Babalghaith, A.M.; Mashaan, N.S.; Yusoff, N.I.M.; Milad, A. Encouraging sustainable use of RAP materials for pavement construction in Oman: A Review. Recycling 2022, 7, 35. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Koting, S.; Katman, H.Y.B.; Ibrahim, M.R.; Babalghaith, A.M.; Asqool, O. Performance of High Content Reclaimed Asphalt Pavement (RAP) in Asphaltic Mix with Crumb Rubber Modifier and Waste Engine Oil as Rejuvenator. Appl. Sci. 2021, 11, 5226. [Google Scholar] [CrossRef]
- Qomaruddin, M.; Lie, H.A.; Widayat, P. Chemical and Microstructural Changes in Reclaimed Asphalt Pavement Aggregates by Pyrolysis. Arab. J. Sci. Eng. 2024, 49, 13429–13438. [Google Scholar] [CrossRef]
- Abdulrahman, S.; Wahhab, H.A.-a.; Rafiq, W.; Babalghaith, A.M.; Baig, M.G.; Farouk, A.I.B. Stripping and cracking resistance of sustainable warm stone mastic asphalt incorporating construction and demolition waste aggregates with digital image processing. Clean. Mater. 2025, 17, 100324. [Google Scholar] [CrossRef]
- Ndoke, P.N. Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electron. J. Pract. Technol. 2006, 5, 145–152. [Google Scholar]
- Oyedepo, O.J.; Olanitori, L.M.; Olukanni, E.O. Investigation of palm kernel shell as partial replacement for aggregate in asphaltic concrete. Malays. J. Civ. Eng. 2015, 27, 223–234. [Google Scholar] [CrossRef]
- Ameli, A.; Babagoli, R.; Norouzi, N.; Jalali, F.; Poorheydari Mamaghani, F. Laboratory evaluation of the effect of coal waste ash (CWA) and rice husk ash (RHA) on performance of asphalt mastics and Stone matrix asphalt (SMA) mixture. Constr. Build. Mater. 2020, 236, 117557. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Fa, C.; Zhang, Y.; Xiong, J.; Chen, H. Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers. Constr. Build. Mater. 2020, 248, 118648. [Google Scholar] [CrossRef]
- Mansor, S.; Zainuddin, N.I.; Aziz, N.A.; Razali, M.; Joohari, M.I. Sugarcane bagasse fiber—An eco-friendly pavement of SMA. In Proceedings of the International Conference on Advances in Civil Engineering and Science Technology, ICACEST 2018, Penang, Malaysia, 5–6 September 2018. [Google Scholar]
- Jeffry, S.N.A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Mirza, J.; Drahman, S.H. Effects of nanocharcoal coconut-shell ash on the physical and rheological properties of bitumen. Constr. Build. Mater. 2018, 158, 1–10. [Google Scholar] [CrossRef]
- Prasad, S.G.S.; Venkatesh, U.M.V. An experimental investigation on stone matrix asphalt by using coconut and banana fibers. Int. J. Civ. Eng. Technol. 2018, 9, 964–973. [Google Scholar]
- Bolden, J.; Abu-Lebdeh, T.; Fini, E. Utilization of recycled and waste materials in various construction applications. Am. J. Environ. Sci. 2013, 9, 14–24. [Google Scholar] [CrossRef]
- Lam, M.K.; Jamalluddin, N.A.; Lee, K.T. Chapter 23—Production of Biodiesel Using Palm Oil. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd ed.; Pandey, A., Larroche, C., Dussap, C.-G., Gnansounou, E., Khanal, S.K., Ricke, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 539–574. [Google Scholar]
- Malaysian Palm Oil Board. Monthly Production of Oil Palm Products Summary for The Month of December. Available online: http://bepi.mpob.gov.my/index.php/en/production/production-2019/production-of-oil-palm-products-2019.html (accessed on 10 January 2020).
- Andiappan, V.; Ng, D.K.; Tan, R.R. Cooperative Game Theory Analysis for Implementing Green Technologies in Palm Oil Milling Processes. In Green Technologies for the Oil Palm Industry; Springer: New York, NY, USA, 2019; pp. 173–190. [Google Scholar]
- Dungani, R.; Aditiawati, P.; Aprilia, S.; Yuniarti, K.; Karliati, T.; Suwandhi, I.; Sumardi, I. Biomaterial from Oil Palm Waste: Properties, Characterization and Applications. In Palm Oil; IntechOpen: London, UK, 2018; Volume 31. [Google Scholar] [CrossRef]
- Mohammed, M.; Salmiaton, A.; Azlina, W.W.; Amran, M.M.; Fakhru’l-Razi, A.; Taufiq-Yap, Y. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 1258–1270. [Google Scholar] [CrossRef]
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef]
- Yusof, M.; Hanim, S.J.; Roslan, A.M.; Ibrahim, K.N.; Abdullah, S.; Soplah, S.; Zakaria, M.R.; Hassan, M.A.; Shirai, Y. Life Cycle Assessment for Bioethanol Production from Oil Palm Frond Juice in an Oil Palm Based Biorefinery. Sustainability 2019, 11, 6928. [Google Scholar] [CrossRef]
- Kroehong, W.; Damrongwiriyanupap, N.; Sinsiri, T.; Jaturapitakkul, C. The Effect of Palm Oil Fuel Ash as a Supplementary Cementitious Material on Chloride Penetration and Microstructure of Blended Cement Paste. Arab. J. Sci. Eng. 2016, 41, 4799–4808. [Google Scholar] [CrossRef]
- Ahmad, H.; Hilton, M.; Mohd Noor, N. Physical properties of local palm oil clinker and fly ash. In Proceedings of the 1st Engineering Conference on Energy and Environment, Kuching, Sarawak, 27–28 December 2007. [Google Scholar]
- Tangchirapat, W.; Saeting, T.; Jaturapitakkul, C.; Kiattikomol, K.; Siripanichgorn, A. Use of waste ash from palm oil industry in concrete. Waste Manag. 2007, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Rame, R.; Purwanto, P.; Sudarno, S. Biotechnological approaches in utilizing agro-waste for biofuel production: An extensive review on techniques and challenges. Bioresour. Technol. Rep. 2023, 24, 101662. [Google Scholar] [CrossRef]
- Askari, D.F.A.; Shkur, S.S.; Rafiq, S.K.; Hilmi, H.D.M.; Ahmad, S.A. Prediction model of compressive strength for eco-friendly palm oil clinker light weight concrete: A review and data analysis. Discov. Civ. Eng. 2024, 1, 140. [Google Scholar] [CrossRef]
- Jamaludin, N.; Ghazali, N.; Muthusamy, K.; Razi, P.; Jaafar, M.M. Compressive strength of lightweight aggregate concrete with palm oil clinker waste as river sand replacement. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; p. 030004. [Google Scholar]
- Nayaka, R.R.; Alengaram, U.J.; Jumaat, M.Z.; Yusoff, S.B.; Ganasan, R. Performance evaluation of masonry grout containing high volume of palm oil industry by-products. J. Clean. Prod. 2019, 220, 1202–1214. [Google Scholar] [CrossRef]
- Ibrahim, H.A.; Razak, H.A.; Abutaha, F. Strength and abrasion resistance of palm oil clinker pervious concrete under different curing method. Constr. Build. Mater. 2017, 147, 576–587. [Google Scholar] [CrossRef]
- Lee, K.M.; Zanil, M.F.; Chan, K.K.; Chin, Z.P.; Liu, Y.C.; Lim, S. Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: An optimization study using artificial neural networks. Biomass Bioenergy 2020, 139, 105621. [Google Scholar] [CrossRef]
- Karim, M.R.; Hashim, H.; Razak, H.A.; Yusoff, S. Characterization of palm oil clinker powder for utilization in cement-based applications. Constr. Build. Mater. 2017, 135, 21–29. [Google Scholar] [CrossRef]
- Bayagoob, K.H.; Zeyad, A.M.; Amin, M.; Agwa, I.S.; Abd-Elrahman, M.H. Influence of palm oil ash and palm oil clinker on the properties of lightweight concrete. Rev. Adv. Mater. Sci. 2024, 63, 20240079. [Google Scholar] [CrossRef]
- Babalghaith, A.M.; Koting, S.; Sulong, N.H.R.; Karim, M.R.; AlMashjary, B.M. Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement. Constr. Build. Mater. 2020, 262, 120546. [Google Scholar] [CrossRef]
- Hamada, H.M.; Yahaya, F.M.; Muthusamy, K.; Jokhio, G.A.; Humada, A.M. Fresh and hardened properties of palm oil clinker lightweight aggregate concrete incorporating Nano-palm oil fuel ash. Constr. Build. Mater. 2019, 214, 344–354. [Google Scholar] [CrossRef]
- Abutaha, F.; Razak, H.A.; Ibrahim, H.A.; Ghayeb, H.H. Adopting particle-packing method to develop high strength palm oil clinker concrete. Resour. Conserv. Recycl. 2018, 131, 247–258. [Google Scholar] [CrossRef]
- Abutaha, F.; Abdul Razak, H.; Kanadasan, J. Effect of palm oil clinker (POC) aggregates on fresh and hardened properties of concrete. Constr. Build. Mater. 2016, 112, 416–423. [Google Scholar] [CrossRef]
- Ahmmad, R.; Jumaat, M.Z.; Alengaram, U.J.; Bahri, S.; Rehman, M.A.; bin Hashim, H. Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. J. Clean. Prod. 2016, 112, 566–574. [Google Scholar] [CrossRef]
- Kanadasan, J.; Razak, H.A. Mix design for self-compacting palm oil clinker concrete based on particle packing. Mater. Des. 2014, 56, 9–19. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Foo, W.; Abdullahi, M. Flexural strength of palm oil clinker concrete beams. Mater. Des. 2014, 53, 325–331. [Google Scholar] [CrossRef]
- Darvish, P.; Alengaram, U.J.; Poh, Y.S.; Ibrahim, S.; Yusoff, S. Volume based design approach for sustainable palm oil clinker as whole replacement for conventional sand in mortar. J. Build. Eng. 2020, 32, 101660. [Google Scholar] [CrossRef]
- Nayaka, R.R.; Alengaram, U.J.; Jumaat, M.Z.; Yusoff, S.B.; Alnahhal, M.F. High volume cement replacement by environmental friendly industrial by-product palm oil clinker powder in cement–lime masonry mortar. J. Clean. Prod. 2018, 190, 272–284. [Google Scholar] [CrossRef]
- Karim, M.R.; Chowdhury, F.I.; Zabed, H.; Saidur, M.R. Effect of elevated temperatures on compressive strength and microstructure of cement paste containing palm oil clinker powder. Constr. Build. Mater. 2018, 183, 376–383. [Google Scholar] [CrossRef]
- Karim, M.R.; Hashim, H.; Razak, H.A. Thermal activation effect on palm oil clinker properties and their influence on strength development in cement mortar. Constr. Build. Mater. 2016, 125, 670–678. [Google Scholar] [CrossRef]
- Karim, M.R.; Hashim, H.; Abdul Razak, H. Assessment of pozzolanic activity of palm oil clinker powder. Constr. Build. Mater. 2016, 127, 335–343. [Google Scholar] [CrossRef]
- Kanadasan, J.; Abdul Razak, H. Utilization of palm oil clinker as cement replacement material. Materials 2015, 8, 8817–8838. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- ASTM D5; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D113; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D4402; Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM D70; Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM D7175; Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International: West Conshohocken, PA, USA, 2015.
- Jabatan Kerja Raya (JKR) Malaysia. Standard Specification for Road Work, in Section 4: Flexible Pavement 2008; Malaysian Public Works Department: Kuala Lumpur, Malaysia, 2008. [Google Scholar]
- ASTM C131; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D4791; Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2010.
- BS 812-3; Testing Aggregates—Part 3: Methods for Determination of Aggregate Impact Value. British Standards Institution: London, UK, 1975.
- ASTM C127; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C128; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- Hasan, K.; Roy, S.; Yahaya, F.M. An experimental and numerical investigation of using palm oil fuel ash as a partial cement replacement in steel fiber-reinforced concrete. Innov. Infrastruct. Solut. 2024, 9, 361. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J. Wills’ Mineral Processing Technology: An Introduction to the practical Aspects of Ore Treatment and Mineral Recovery; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Masri, K.; Fatin, N.N.; Chin, S.; Syafiqah, S.N.; Shaffie, E. Utilization of Bamboo Fiber towards sustainable asphalt mixture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; p. 012002. [Google Scholar]
- Yu, D.; Jia, A.; Feng, C.; Liu, W.; Fu, T.; Qiu, R. Preparation and mechanical properties of asphalt mixtures reinforced by modified bamboo fibers. Constr. Build. Mater. 2021, 286, 122984. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Yi, J.; Feng, D. Application of Corn Stalk Fibers in SMA Mixtures. J. Mater. Civ. Eng. 2021, 33, 04021147. [Google Scholar] [CrossRef]
- Fauzi, N.M.; Masri, K.; Ramadhansyah, P.; Samsudin, M.; Ismail, A.; Arshad, A.; Shaffie, E.; Norhidayah, A.; Hainin, M. Volumetric Properties and Resilient Modulus of Stone Mastic Asphalt incorporating Cellulose Fiber. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; p. 012028. [Google Scholar]
- Zhu, S.; Kong, L.; Fu, Y.; Peng, Y.; Chen, Y.; Wang, H.; Jian, O.; Zhao, P.; Zhang, W. Effect of hydrophilic group substituent position on adhesion at the emulsified asphalt/aggregate interface. Constr. Build. Mater. 2024, 444, 137783. [Google Scholar] [CrossRef]
- Al-Hadidy, A.; Yi-qiu, T. Effect of polyethylene on life of flexible pavements. Constr. Build. Mater. 2009, 23, 1456–1464. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wei, S.-H. Engineering properties and performance of asphalt mixtures incorporating steel slag. Constr. Build. Mater. 2016, 128, 148–153. [Google Scholar] [CrossRef]
- Rongali, U.; Singh, G.; Chourasiya, A.; Jain, P. Laboratory performance of stone matrix asphalt containing composite of fly ash and plastic waste. J. Ssientifc Ind. Res. 2013, 72, 186–192. [Google Scholar]
- Hainin, M.R.; Rusbintardjo, G.; Aziz, M.A.A.; Hamim, A.; Yusoff, N.I.M. Laboratory evaluation on steel slag as aggregate replacement in stone mastic asphalt mixtures. J. Teknol. 2013, 65. [Google Scholar] [CrossRef]
- Pourtahmasb, M.S.; Karim, M.R. Utilization of recycled concrete aggregates in stone mastic asphalt mixtures. Adv. Mater. Sci. Eng. 2014, 2014, 902307. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. Evaluation of rejuvenator’s effectiveness on the reclaimed asphalt pavement incorporated stone matrix asphalt mixtures. Constr. Build. Mater. 2019, 224, 909–919. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. Effect of rejuvenating agents on stone matrix asphalt mixtures incorporating RAP. Constr. Build. Mater. 2020, 254, 119298. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, Z.; Hu, J.; Zheng, D. Evaluation of Stone Mastic Asphalt Containing Ceramic Waste Aggregate for Cooling Asphalt Pavement. Materials 2020, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Babalghaith, A.M.; Koting, S.; Ibrahim, M.R.; Mohd, N.S.; Rozali, S.; Muhamad, M.R.; Zubir, M.N.M.; El-Shafei, A.; Khairuddin, F.H.; Yusoff, N.I.M. Effect of Black PET Fiber as Additive on the Mechanical Properties of Stone Mastic Asphalt (SMA) Mixtures. In Proceedings of the Advances in Civil Engineering Materials: Selected Articles from the International Conference on Architecture and Civil Engineering (ICACE2020), Kuala Lumpur, Malaysia, 21–23 December 2020; pp. 249–260. [Google Scholar]
- Azarhoosh, A.; Pouresmaeil, S. Prediction of Marshall Mix Design Parameters in Flexible Pavements Using Genetic Programming. Arab. J. Sci. Eng. 2020, 45, 8427–8441. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Chu, X.; Shi, L.; Zhan, X.; Cheng, H.; Sun, L. The mechanical behavior of designing recycled hot-mix asphalt containing fine RAP particles with multiple parameters using orthogonal experimental approach. Constr. Build. Mater. 2025, 458, 139654. [Google Scholar] [CrossRef]
- Esmaeili, N.; Alavi, M.Z.; Samadzad, M. Evaluation of the impacts of polymeric fibers and modifiers on the fracture properties of asphalt mixtures. Results Eng. 2025, 25, 103862. [Google Scholar] [CrossRef]
- Belc, A.L.; Costescu, C.; Belc, F. Considerations concerning the determination and interpretation of Marshall flow values in asphalt concretes. Int. Multidiscip. Sci. GeoConference SGEM 2018, 18, 97–104. [Google Scholar]
- Kuchu, J. Sustainable utilisation of sugar cane molasses as a partial replacement to bitumen in bituminous pavements. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2024; p. 012018. [Google Scholar]
- Zeiada, W.; Abu Dabous, S.; Al-Ruzouq, R.; Hamad, K.; Souliman, M.I.; Mirou, S. Effect of air voids and asphalt content changes on laboratory and simulated long-term fatigue performance of asphalt concrete pavements. Innov. Infrastruct. Solut. 2023, 8, 48. [Google Scholar] [CrossRef]
- Abdul-Rahman, M.N.; Abdul-Wahab, A.F. Green pavement using recycled polyethylene terephthalate (PET) as partial fine aggregate replacement in modified asphalt. Procedia Eng. 2013, 53, 124–128. [Google Scholar] [CrossRef]
- Acosta Álvarez, D.; Alonso Aenlle, A.; Tenza-Abril, A.J.; Ivorra, S. Influence of Partial Coarse Fraction Substitution of Natural Aggregate by Recycled Concrete Aggregate in Hot Asphalt Mixtures. Sustainability 2020, 12, 250. [Google Scholar] [CrossRef]
- Panda, M.; Suchismita, A.; Giri, J. Utilization of ripe coconut fiber in stone matrix asphalt mixes. Int. J. Transp. Sci. Technol. 2013, 2, 289–302. [Google Scholar] [CrossRef]
- Asi, I.M. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Constr. Build. Mater. 2006, 20, 982–989. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using waste plastic bottles as additive for stone mastic asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- National Asphalt Pavement Association. Designing and Constructing SMA Mixtures: State of the Practice; Quality Improvement Series 122-2002; National Asphalt Pavement Association (NAPA): Greenbelt, MD, USA, 2002. [Google Scholar]
- Chadbourn, B.A.; Skok Jr, E.L.; Newcomb, D.E.; Crow, B.L.; Spindle, S. The Effect of Voids in Mineral Aggregate (VMA) on Hot-Mix Asphalt Pavements; Minnesota Department of Transportation: Saint Paul, MN, USA, 1999. [Google Scholar]
- Liu, Z.; Sun, L.; Li, J.; Liu, L. Effect of key design parameters on high temperature performance of asphalt mixtures. Constr. Build. Mater. 2022, 348, 128651. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Tan, G. Design optimization of SBS-modified asphalt mixture reinforced with eco-friendly basalt fiber based on response surface methodology. Materials 2018, 11, 1311. [Google Scholar] [CrossRef] [PubMed]
- Sheidaei, M.; Zhu, J.; Agardh, S. Assessing the Effect of Specimen Preparation Methods on DSR Test Results of Bitumen Using Factorial Design Analysis. Materials 2024, 17, 5117. [Google Scholar] [CrossRef] [PubMed]
Aggregate | S. G | W. A (%) | M. C (%) | Reference | |
---|---|---|---|---|---|
Type | Size (mm) | ||||
F. A | <4.75 | 1.55 | 11.85 | - | [40] |
C. A | Max. 19 mm | 1.42 | 4.89 | - | |
F. A | <4.75 | 2.08 | – | – | [41] |
C. A | – | – | – | – | |
F. A | – | – | – | – | [36] |
C. A | 5–10 | 1.51 | 5.50 | 0.31 | |
F. A | – | – | – | – | [42] |
C. A | 4.75–10 | 1.78 | 5.70 | 0.38 | |
F. A | <4.75 | 2.15 | 5.75 | 0.11 | [43] |
C. A | 4.75–10 | 1.81 | 4.35 | 0.28 | |
F. A | – | – | – | – | [37] |
C. A | 4.75–9.5 | 1.88 | 3 ± 2 | – | |
F. A | <5 | 2.15 | 10 ± 5 | 0.5 ± 0.25 | [44] |
C. A | 5–14 | 1.73 | 3 ± 2 | 1 ± 0.5 | |
F. A | – | – | – | – | [45] |
C. A | – | 1.75 | 5.67 | 0.08 | |
F. A | <5 | 2.15 | 10 ± 5 | 0.5 ± 0.25 | [46] |
C. A | 5–10 | 1.73 | 3 ± 2 | 1 ± 0.5 | |
F. A | <5 | 2.01 | 26.45 | 0.11 | [47] |
C. A | 5–14 | 1.82 | 4.35 | 0.07 |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | LOI | Reference |
---|---|---|---|---|---|---|---|---|---|
65.4 | 1.95 | 2.70 | 5.70 | 6.40 | 0.32 | 9.50 | 0.63 | – | [41] |
60.29 | 5.83 | 4.71 | 3.28 | 4.2 | 0.20 | 7.24 | 0.31 | 5.23 | [48,49] |
65.30 | 4.23 | 5.65 | 3.89 | 3.72 | – | 13.65 | 0.09 | 2.42 | [50] |
63.9 | 3.89 | 3.30 | 6.93 | 3.37 | – | 10.20 | 0.21 | – | [39] |
62.78 | 3.41 | 6.49 | 6.89 | 3.52 | 0.39 | 10.54 | 0.08 | 3.67 | [51] |
60.29 | 5.83 | 4.71 | 3.27 | 3.76 | – | 7.79 | 0.11 | – | [52] |
59.9 | 5.37 | 6.93 | 6.37 | 3.13 | 0.24 | 15.10 | 2.60 | – | [53] |
59.9 | 3.89 | 6.93 | 6.37 | 3.3 | – | 15.10 | 0.39 | 1.89 | [46] |
Property | Temp. | Values | References | Specifications |
---|---|---|---|---|
Penetration, 0.1 mm | 25 °C | 87 | ASTM D-5 [55] | 80 to 100 |
Softening Point, °C | 46 | ASTM D-36 [56] | 45 to 52 | |
Ductility, cm | 25 °C | >100 | ASTM D-113 [57] | Min. 100 |
Rotational Viscosity, mPa·s | 135 °C | 312 | ASTM D-4402 [58] | - |
Rotational Viscosity, mPa·s | 165 °C | 100 | ASTM D-4402 [58] | <300 |
Specific Gravity | 25 °C | 1.030 | ASTM D-70 [59] | - |
G*/sinδ, Pa | 58 °C | 1576 | ASTM D-7175 [60] | >1000 |
Parameter | References | Value | Specifications |
---|---|---|---|
Los Angeles abrasion, % | ASTM-C131 [62] | 19.8 | <30% |
Flakiness index, % | ASTM-D4791 [63] | 7.3 | <20% |
Elongation index, % | ASTM-D4791 [63] | 13.4 | <20% |
Impact value, % | BS-812: Part3 [64] | 10.3 | <15% |
C.A Specific gravity | ASTM-C127 [65] | 2.61 | - |
C.A Water absorption, % | ASTM-C127 [65] | 0.65 | <2% |
F.A Specific gravity | ASTM-C128 [66] | 2.59 | - |
F.A Water absorption, % | ASTM-C128 [66] | 1.19 | <2% |
Element | Unit | Value |
---|---|---|
Na2O | % | 0.32 |
MgO | % | 6.4 |
Al2O3 | % | 1.95 |
SiO2 | % | 65.36 |
P2O5 | % | 6.56 |
SO3 | % | 0.64 |
Cl | % | 0.11 |
K2O | % | 9.52 |
CaO | % | 5.74 |
TiO2 | % | 0.11 |
Cr2O3 | % | 0.02 |
MnO | % | 0.17 |
Fe2O3 | % | 2.71 |
CuO | % | 0.08 |
ZnO | % | 0.02 |
Rb2O | % | 0.15 |
SrO | % | 0.02 |
Y2O3 | % | 0.00 |
ZrO2 | % | 0.01 |
Dy2O3 | % | 0.08 |
Re | % | 0.03 |
Property | Unit | Value |
---|---|---|
Aggregate size | mm | <4.75 |
Specific gravity | - | 2.080 |
Color | - | Gray |
Moisture content | % | 0.43 |
Water absorption | % | 6.5 |
Factors | Unit | Code | Levels | ||
---|---|---|---|---|---|
−α | 0 | +α | |||
POC | % | X1 | 0 | 50 | 100 |
BC | % | X2 | 5 | 6 | 7 |
Run No. | Independent Factors | Responses | ||||||
---|---|---|---|---|---|---|---|---|
X1 POC (%) | X2 BC (%) | Y1 Stability (N) | Y2 Flow (mm) | Y3 Stiffness (kN/mm) | Y4 VMA (%) | Y5 VIM (%) | Y6 VFA (%) | |
1 | 100 | 5 | 10,639 | 3.01 | 3534 | 17.88 | 7.29 | 59.23 |
2 | 0 | 5.5 | 8801 | 4.9 | 1796 | 17.56 | 5.26 | 70.07 |
3 | 50 | 6 | 9304 | 4.41 | 2109 | 17.32 | 4.21 | 75.68 |
4 | 40 | 5 | 10,011 | 5.21 | 1921 | 17.01 | 6.09 | 64.18 |
5 | 40 | 5.5 | 8507 | 4.46 | 1907 | 17.41 | 5.4 | 69 |
6 | 100 | 5 | 10,336 | 3 | 3445 | 17.88 | 7.29 | 59.23 |
7 | 50 | 6 | 8647 | 4.43 | 1951 | 17.3 | 4.19 | 75.79 |
8 | 0 | 5.5 | 7887 | 4.5 | 1753 | 17.56 | 5.84 | 67.69 |
9 | 0 | 7 | 7217 | 2.26 | 3193 | 19.15 | 2.36 | 87.02 |
10 | 40 | 5 | 9799 | 4.99 | 1964 | 17.32 | 6.44 | 62.83 |
11 | 80 | 5.5 | 9832 | 3.97 | 2477 | 17.25 | 6.52 | 64.29 |
12 | 0 | 7 | 6851 | 2.39 | 2866 | 18.81 | 3.14 | 83.3 |
13 | 100 | 6 | 9649 | 4.02 | 2400 | 17.26 | 4.2 | 75.52 |
14 | 0 | 6 | 7699 | 3.87 | 1989 | 18.25 | 4.39 | 75.41 |
15 | 100 | 6 | 8815 | 4.1 | 2150 | 16.96 | 3.97 | 76.61 |
16 | 50 | 6 | 8341 | 3.83 | 2178 | 17.61 | 4.54 | 74.2 |
17 | 40 | 7 | 6999 | 2.45 | 2856 | 18.09 | 2.67 | 85.22 |
18 | 20 | 6.5 | 8083 | 3.24 | 2494 | 18.45 | 2.99 | 82.87 |
19 | 80 | 7 | 7901 | 3.27 | 2416 | 17.55 | 3.43 | 81.5 |
20 | 60 | 6.5 | 8211 | 3.86 | 2127 | 17.32 | 2.94 | 82.94 |
21 | 80 | 7 | 7914 | 3.16 | 2504 | 17.05 | 2.83 | 84.33 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder, % | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 9.72 | 10.39 | 9.36 | 9.91 | 9.74 | 8.90 | 10.55 |
5.5 | 8.34 | 10.55 | 9.08 | 8.25 | 10.07 | 8.05 | 10.28 |
6.0 | 8.29 | 8.06 | 8.41 | 6.94 | 8.48 | 8.83 | 9.73 |
6.5 | 8.63 | 8.61 | 7.91 | 7.36 | 9.17 | 8.69 | 10.49 |
7.0 | 8.53 | 8.33 | 8.53 | 7.16 | 8.38 | 8.41 | 9.05 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder, % | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 3.24 | 3.16 | 2.99 | 4.11 | 2.80 | 3.55 | 2.51 |
5.5 | 3.70 | 2.86 | 2.88 | 3.74 | 3.54 | 3.33 | 3.58 |
6.0 | 3.13 | 4.03 | 4.19 | 3.18 | 4.42 | 3.32 | 4.06 |
6.5 | 2.71 | 3.67 | 3.96 | 3.58 | 2.95 | 4.06 | 4.42 |
7.0 | 2.48 | 2.66 | 3.36 | 3.07 | 3.21 | 3.22 | 3.23 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 6.56 | 6.78 | 6.61 | 6.27 | 7.07 | 7.65 | 6.96 |
5.5 | 5.55 | 5.59 | 5.32 | 5.30 | 5.36 | 6.41 | 6.09 |
6.0 | 4.39 | 4.7 | 4.53 | 4.59 | 4.20 | 4.47 | 4.08 |
6.5 | 3.47 | 3.21 | 3.01 | 3.06 | 2.78 | 3.28 | 3.34 |
7.0 | 2.75 | 3.25 | 2.73 | 2.80 | 2.62 | 3.13 | 2.72 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 2.266 | 2.265 | 2.231 | 2.223 | 2.192 | 2.165 | 2.169 |
5.5 | 2.274 | 2.277 | 2.246 | 2.231 | 2.217 | 2.179 | 2.174 |
6.0 | 2.286 | 2.282 | 2.249 | 2.232 | 2.229 | 2.209 | 2.206 |
6.5 | 2.291 | 2.291 | 2.268 | 2.252 | 2.247 | 2.222 | 2.208 |
7.0 | 2.292 | 2.284 | 2.259 | 2.243 | 2.235 | 2.210 | 2.208 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder, % | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 62.88 | 62.08 | 62.34 | 63.50 | 60.30 | 58.12 | 60.47 |
5.5 | 68.88 | 68.70 | 69.57 | 69.42 | 69.07 | 64.72 | 65.84 |
6.0 | 75.37 | 73.98 | 74.51 | 74.17 | 75.73 | 74.43 | 76.06 |
6.5 | 80.80 | 80.07 | 82.74 | 82.42 | 83.73 | 81.18 | 80.80 |
7.0 | 85.16 | 82.91 | 85.03 | 84.59 | 85.41 | 82.91 | 84.86 |
POC Content | |||||||
---|---|---|---|---|---|---|---|
Binder, % | Control | POC-10 | POC-20 | POC-40 | POC-60 | POC-80 | POC-100 |
5.0 | 17.67 | 17.88 | 17.54 | 17.17 | 17.82 | 18.26 | 17.59 |
5.5 | 17.81 | 17.87 | 17.42 | 17.33 | 17.31 | 18.16 | 17.81 |
6.0 | 17.84 | 18.14 | 17.75 | 17.72 | 17.31 | 17.47 | 17.06 |
6.5 | 18.07 | 18.23 | 17.47 | 17.42 | 17.10 | 17.44 | 17.42 |
7.0 | 18.48 | 18.92 | 18.24 | 18.20 | 17.96 | 18.30 | 17.87 |
Property | Stability | Flow | Stiffness | VMA | VIM | VFA |
---|---|---|---|---|---|---|
(N) | (mm) | N/mm | (%) | (%) | (%) | |
Standard Deviation | 392.83 | 0.306 | 168.11 | 0.206 | 0.467 | 2.02 |
Mean | 8640.16 | 3.78 | 2382.38 | 17.67 | 4.57 | 74.14 |
R2 | 0.90 | 0.90 | 0.92 | 0.90 | 0.93 | 0.96 |
Adjusted R2 | 0.87 | 0.87 | 0.89 | 0.87 | 0.90 | 0.94 |
Predicted R2 | 0.82 | 0.82 | 0.82 | 0.80 | 0.86 | 0.92 |
Adequate Precision | 17.28 | 17.03 | 18.69 | 17.36 | 18.0 | 23.57 |
F-value | 28.21 | 28.86 | 36.20 | 29.91 | 40.91 | 72.87 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
DI for POC (%) | 21.00 | 2.33 | 11.28 | 27.56 | 0.66 | 0.68 |
DI for BC (%) | 59.42 | 45.27 | 4.56 | 10.80 | 90.30 | 91.13 |
Model | S | S | S | S | S | S |
Lack of fit (F and p-value) | 0.767 | 3.39 | 2.85 | 1.02 | 3.44 | 3.02 |
0.630 | 0.054 | 0.083 | 0.482 | 0.052 | 0.072 | |
Final model type | Q | Q | Q | Q | Q | Q |
Factor | Parameters (Limitation) | Criteria |
---|---|---|
POC | - | 0–100 |
BC | - | 5–7 |
Stability | Not less than 6200 N | Maximize |
Flow | 2–4 mm | In range |
Stiffness | 2000–4000 N/mm | In range |
VIM | 3–5% | In range |
VMA | Not less than 17% | Maximize |
VFA | 75–85% | In range |
Factor | Value | JKR Requirements |
---|---|---|
POC | 60 | 0–100 |
BC | 6 | 5–7 |
Stability | 8865 | Maximize |
Flow | 4.18 | In range |
Stiffness | 2095 | In range |
VIM | 4.34 | In range |
VMA | 17.34 | Maximize |
VFA | 75 | In range |
Factor | Predicted Results | Experimental Results | Error (%) |
---|---|---|---|
POC | 60 | 60 | - |
BC | 6 | 6 | - |
Stability | 8865 | 8680 | 4.3 |
Flow | 4.18 | 4.32 | 3.2 |
Stiffness | 2095 | 2009 | 4.1 |
VIM | 4.34 | 4.2 | 3.2 |
VMA | 17.34 | 17.11 | 1.3 |
VFA | 75 | 75.73 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babalghaith, A.M.; Milad, A.; Rafiq, W.; Shahzad, S.; Koting, S.; Ali, A.S.B.; Ali, A.A. Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates. Eng 2025, 6, 213. https://doi.org/10.3390/eng6090213
Babalghaith AM, Milad A, Rafiq W, Shahzad S, Koting S, Ali ASB, Ali AA. Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates. Eng. 2025; 6(9):213. https://doi.org/10.3390/eng6090213
Chicago/Turabian StyleBabalghaith, Ali Mohammed, Abdalrhman Milad, Waqas Rafiq, Shaban Shahzad, Suhana Koting, Ahmed Suliman B. Ali, and Abdualmtalab Abdualaziz Ali. 2025. "Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates" Eng 6, no. 9: 213. https://doi.org/10.3390/eng6090213
APA StyleBabalghaith, A. M., Milad, A., Rafiq, W., Shahzad, S., Koting, S., Ali, A. S. B., & Ali, A. A. (2025). Utilizing Response Surface Methodology for Design Optimization of Stone Mastic Asphalt Containing Palm Oil Clinker Aggregates. Eng, 6(9), 213. https://doi.org/10.3390/eng6090213