Research on Functional Modularity and Health Monitoring Design of Home Fitness Equipment
Abstract
:1. Introduction
2. Multi-Functional Integrated Analysis of Household Fitness Equipment
2.1. Functional Modular Design
2.2. Optimized Layout Design of Household Fitness Equipment
3. The Multifunctional Integration and Health Monitoring Design of Home Fitness Equipment
3.1. Structural Design Practice of Home Fitness Equipment
3.2. Intelligent Monitoring Design Based on Multidimensional Health Data
3.2.1. Acquisition Technology of Biological Signals
- Space Optimization Trade-offs
- 2.
- Sensor Calibration Under Dynamic Movement
- 3.
- Integration of Multimodal Sensors
3.2.2. Data Processing and Analysis
Data Source
4. Design of the Health Monitoring System for the Intelligent Exercise Bike
4.1. Collection of Human Physiological Parameters
4.1.1. Collection of Heart Rate
4.1.2. Collection of Body Temperature
4.1.3. Collection of Blood Pressure
4.2. Data Cleaning and Preprocessing
4.3. Data Standardization
4.4. Data Integration
- (1)
- Received Signal of Each Sensor
- (2)
- Data Integration
- (3)
- The Relationship of Heart Rate and Age
- (4)
- The Relationship between Energy Consumed and Body Weight
- (5)
- The Gentle Link Between Age and Breathing Rate
- (6)
- The Link Between Age and Cycling Speed
4.5. Guidance on Equipment Data Monitoring Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Zhu, H. Importance of national fitness sports relying on virtual reality technology in the development of sports economy. Comput. Intell. Neurosci. 2022, 2022, 4128981. [Google Scholar] [CrossRef] [PubMed]
- Si, Q.; Liu, J.; Liu, L. Design of home fitness assistant system based on android mobile network and optical sensing system. Opt. Quantum Electron. 2024, 56, 694. [Google Scholar] [CrossRef]
- Vajna, S.; Weber, C.; Bley, H. Integrated Design Engineering; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kim, D.; Kim, J. Is innovation design-or technology-driven? Citation as a measure of innovation pollination. World Pat. Inf. 2021, 64, 102010. [Google Scholar] [CrossRef]
- Dilmaghani, R.S.; Bobarshad, H.; Ghavami, M.; Choobkar, S.; Wolfe, C. Wireless sensor networks for monitoring physiological signals of multiple patients. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 347–356. [Google Scholar] [CrossRef]
- Mather, J.D.; Hayes, L.D.; Mair, J.L.; Sculthorpe, N.F. Validity of resting heart rate derived from contact-based smartphone photoplethysmography compared with electrocardiography: A scoping review and checklist for optimal acquisition and reporting. Front. Digit. Health 2024, 6, 1326511. [Google Scholar] [CrossRef]
- Han, T.R.; Wang, J.; Xi, R.; Yan, H.Q.; Li, L.H. Adherence to ACSM exercise guidelines and its influence on Fibromyalgia treatment outcomes: A meta-analysis of randomized controlled trials. Front. Physiol. 2024, 15, 1413038. [Google Scholar] [CrossRef]
- Liao, X.; Lei, X.; Sun, P. A Systematic Study of Physical Fitness Assistance Training for Adolescents Based on Kinect Motion Capture. J. Electr. Syst. 2024, 20, 1454–1463. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y. Design of Cloud Storage-Oriented Sports Physical Fitness Monitoring System. Comput. Intell. Neurosci. 2022, 2022, 1889381. [Google Scholar] [CrossRef]
- Duan, P.; Zhou, J.; Fan, W. Safety tag generation and training material recommendation for construction workers: A persona-based approach. Eng. Constr. Archit. Manag. 2024, 31, 115–135. [Google Scholar] [CrossRef]
- Navandar, R.K.; Hasan, S.H.; Jadhav, N.; Singh, K.U.; Ram, M.; Venkatram, N. Modernizing sports an intelligent strategy for entertainment through internet of things in sports. Entertain. Comput. 2025, 52, 100804. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, B.; Huang, X. Application of Smart Wearable Devices in Athlete Health Monitoring. Appl. Math. Nonlinear Sci. 2024, 9, 1–22. [Google Scholar] [CrossRef]
- Vitazkova, D.; Foltan, E.; Kosnacova, H.; Micjan, M.; Donoval, M.; Kuzma, A.; Kopani, M.; Vavrinsky, E. Advances in respiratory monitoring: A comprehensive review of wearable and remote technologies. Biosensors 2024, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Mills, G.; Papadonikolaki, E. Exploring Multidimensional Modularity: Strategies to Reduce Complexity in Design Activities. J. Manag. Eng. 2024, 40, 05024002. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, R.; Guo, Z.; Liu, C. Afitness: Fitness Monitoring on Smart Devices via Acoustic Motion Images. ACM Trans. Sens. Netw. 2024, 20, 81. [Google Scholar] [CrossRef]
- Saif, A.; Khan, Z.; Parveen, A. Impact of rest interval duration on post-exercise recovery dynamics, ventilatory threshold and respiratory compensation point in endurance athletes: A randomized controlled trial. Sport Sci. Health 2024, 20, 1395–1405. [Google Scholar] [CrossRef]
- Guo, L.; Li, A.; Wang, M.; Dong, Y.; Qina, H. Spontaneous electricity and electromagnetic damping control system for fitness equipment. Ferroelectrics 2022, 597, 65–77. [Google Scholar] [CrossRef]
- Chiu, W.; Cho, H. The Role of Technology Readiness in Individuals’ Intention to use Health and Fitness Applications: A Comparison between Users and Non-Users. Asia Pac. Mark. Logist. 2021, 33, 807–825. [Google Scholar] [CrossRef]
- Izadi, M.; Arazi, H.; Ramirez-Campillo, R.; Mirzari, M.; Saidie, P. In-season in-field variable resistance training: Effects on strength, power, and anthropometry of junior soccer players. J. Sports Med. Phys. Fit. 2019, 60, 220–228. [Google Scholar] [CrossRef]
- Huang, G.; Ren, Y. Linking technological functions of fitness mobile apps with continuance usage among Chinese users: Moderating role of exercise self-efficacy. Comput. Hum. Behav. 2020, 103, 151–160. [Google Scholar] [CrossRef]
- Cho, T.S. The effect of quality of service on exercise satisfaction and reuse of home training applications. Korean J. Phys. Educ. 2020, 59, 4–223. [Google Scholar]
- Xie, Y.; Noor, A.I.M. Factors affecting residential end-use energy: Multiple regression analysis based on buildings, households, lifestyles, and equipment. Buildings 2022, 12, 538. [Google Scholar] [CrossRef]
- Chu, S.W.; Song, Y.; Zouo, J.J.; Cai, W. Human pose estimation using deep convolutional densenet hourglass network with intermediate points voting. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 22–25 September 2019; pp. 594–598. [Google Scholar]
- Lee, S.H.; Kim, J.; Yoon, S.H.; Kim, H.W. An analysis on key factors of mobile fitness application by using text mining techniques: User experience perspective. J. Inf. Technol. Serv. 2020, 19, 117–137. [Google Scholar]
- Almaiah, M.A.; Al Mulhem, A. Analysis of the essential factors affecting of intention to use of mobile learning applications: A comparison between universities adopters and non-adopters. Educ. Inf. Technol. 2019, 24, 1433–1468. [Google Scholar] [CrossRef]
- Yang, I.; Lee, J.; Lee, T.; Lee, S. The effect of one-person media creator and content characteristics on participation satisfaction and participation continuation of yoga home training. Korean J. Phys. Educ. 2021, 60, 275–286. [Google Scholar] [CrossRef]
- Waters, G.; Nussbaumer, R. TRIUMF/ISAC EPICS IOCs Using a PC104 Platform. In Proceedings of the ICALEPCS2003, Gyeongju, Republic of Korea, 13–17 October 2003. [Google Scholar]
Exercise Interval | 20 (Years) | 25 (Years) | 30 (Years) | 35 (Years) | 40 (Years) | 45 (Years) | 50 (Years) | 55 (Years) | 65 (Years) | 70 (Years) |
---|---|---|---|---|---|---|---|---|---|---|
100% (Maximum oxygen consumption, maximum exercise intensity) (bpm) | 200 | 195 | 190 | 185 | 180 | 175 | 170 | 165 | 155 | 150 |
90% (Anaerobic exercise, physical fitness, strength training, etc.) (bpm) | 180 | 176 | 171 | 167 | 162 | 158 | 153 | 149 | 140 | 135 |
80% (Aerobic exercise, cardiopulmonary exercise, strength training, etc.) (bpm) | 160 | 156 | 152 | 148 | 144 | 140 | 136 | 132 | 124 | 120 |
70% (Weight control, fitness/fat burning) (bpm) | 140 | 137 | 133 | 130 | 126 | 123 | 119 | 116 | 109 | 105 |
60% (Exercise, stay fit/warm up) (bpm) | 120 | 117 | 114 | 111 | 108 | 105 | 102 | 99 | 93 | 90 |
50% (Exercise, stay fit/warm up) (bpm) | 100 | 98 | 95 | 93 | 90 | 88 | 85 | 83 | 78 | 75 |
Age | SBP (Male) | Diastolic BP (Male) | SBP (Female) | Diastolic BP (Female) |
---|---|---|---|---|
16–20 | 115 | 73 | 110 | 70 |
21–25 | 115 | 73 | 110 | 71 |
26–30 | 115 | 75 | 112 | 73 |
31–35 | 117 | 76 | 114 | 74 |
36–40 | 120 | 80 | 116 | 77 |
41–45 | 124 | 81 | 122 | 78 |
46–50 | 128 | 82 | 128 | 79 |
51–55 | 134 | 84 | 134 | 80 |
56–60 | 137 | 84 | 139 | 82 |
61–65 | 148 | 86 | 145 | 83 |
Time (min) | 20-Years-Old (bpm) | 40-Years-Old (bpm) | 60-Years-Old (bpm) |
---|---|---|---|
0 | 75 | 80 | 85 |
10 | 110 | 115 | 118 |
20 | 125 | 130 | 132 |
30 | 135 | 140 | 140 |
40 | 140 | 143 | 145 |
50 | 138 | 141 | 143 |
60 | 130 | 135 | 138 |
Time (min) | 20-Years-Old (°C) | 40-Years-Old (°C) | 60-Years-Old (°C) |
---|---|---|---|
0 | 36.8 | 36.9 | 37.0 |
10 | 37.2 | 37.3 | 37.4 |
20 | 37.5 | 37.7 | 37.8 |
30 | 38.0 | 38.1 | 38.2 |
40 | 38.2 | 38.3 | 38.4 |
50 | 38.3 | 38.4 | 38.5 |
60 | 38.1 | 38.2 | 38.3 |
Time (min) | 20-Years-Old (mmHg) | 40-Years-Old (mmHg) | 60-Years-Old (mmHg) |
---|---|---|---|
0 | 118/76 | 125/80 | 130/85 |
10 | 132/78 | 138/82 | 142/86 |
20 | 138/80 | 144/84 | 148/88 |
30 | 142/82 | 150/87 | 155/90 |
40 | 144/84 | 152/89 | 160/92 |
50 | 142/83 | 150/88 | 158/91 |
60 | 138/80 | 147/86 | 155/89 |
Stopping Time of Exercise (min) | 20-Years-Old (bpm) | 40-Years-Old (bpm) | 60-Years-Old (bpm) |
---|---|---|---|
10 | 100 | 110 | 120 |
20 | 90 | 98 | 110 |
30 | 85 | 90 | 100 |
40 | 80 | 85 | 92 |
50 | 78 | 83 | 88 |
60 | 76 | 81 | 86 |
Stopping Time of Exercise (min) | 20-Years-Old (°C) | 40-Years-Old (°C) | 60-Years-Old (°C) |
---|---|---|---|
10 | 37.9 | 38 | 38.2 |
20 | 37.6 | 37.8 | 38 |
30 | 37.4 | 37.6 | 37.7 |
40 | 37.2 | 37.4 | 37.6 |
50 | 37 | 37.3 | 37.4 |
60 | 36.9 | 37.1 | 37.3 |
Stopping Time of Exercise (min) | 20-Years-Old (mmHg) | 40-Years-Old (mmHg) | 60-Years-Old (mmHg) |
---|---|---|---|
10 | 130/78 | 140/83 | 148/87 |
20 | 125/76 | 135/80 | 144/85 |
30 | 122/75 | 132/78 | 140/83 |
40 | 120/74 | 130/77 | 138/82 |
50 | 119/74 | 128/76 | 136/81 |
60 | 118/74 | 126/76 | 134/80 |
Age | Stature (cm) | Weight (kg) | Heart Rate (bpm) | To Consume Energy (kcal) | Intensity | Respiratory Rate (bpm) | Cycling Speed (km/h) | Movement Duration (min) | Rowing Frequency (spm) |
---|---|---|---|---|---|---|---|---|---|
22 | 152 | 66 | 121 | 321.8161835 | 6.289256493 | 18 | 20 | 30 | 25 |
26 | 190 | 80 | 113 | 365.8697033 | 6.425256968 | 16 | 19 | 35 | 28 |
27 | 187 | 84 | 98 | 407.1135179 | 4.415480476 | 14 | 21 | 40 | 30 |
28 | 160 | 66 | 118 | 353.9340417 | 7.142822604 | 17 | 22 | 38 | 27 |
30 | 178 | 99 | 129 | 302.9815185 | 3.365198206 | 20 | 18 | 45 | 29 |
33 | 156 | 54 | 124 | 275.8057083 | 5.983084242 | 19 | 19 | 32 | 26 |
36 | 194 | 91 | 147 | 216.5707963 | 5.631450534 | 22 | 23 | 50 | 32 |
39 | 156 | 63 | 123 | 403.7630436 | 3.101151347 | 18 | 20 | 42 | 28 |
40 | 150 | 81 | 135 | 272.4847423 | 4.58703803 | 21 | 22 | 44 | 31 |
41 | 172 | 80 | 97 | 291.368635 | 6.933520925 | 14 | 21 | 31 | 29 |
43 | 150 | 82 | 112 | 352.4776358 | 7.089027972 | 17 | 19 | 36 | 27 |
45 | 176 | 97 | 117 | 346.2316841 | 7.21012146 | 18 | 18 | 38 | 28 |
47 | 184 | 90 | 127 | 369.9677718 | 2.15598695 | 20 | 21 | 39 | 30 |
49 | 165 | 96 | 116 | 319.6742693 | 6.402372652 | 19 | 19 | 30 | 29 |
51 | 193 | 97 | 111 | 309.8955392 | 4.867224765 | 16 | 20 | 43 | 28 |
53 | 153 | 86 | 119 | 303.8410946 | 2.376634499 | 17 | 21 | 34 | 30 |
57 | 189 | 97 | 104 | 332.359797 | 3.992420832 | 14 | 22 | 37 | 29 |
58 | 176 | 52 | 143 | 344.759661 | 1.948140562 | 21 | 24 | 46 | 31 |
Age | Body Building Apparatus | Movement Duration (min) | Heart Rate (bpm) | Energy Consumption (kcal) | Strength (1–10) |
---|---|---|---|---|---|
22 | Exercise bike | 30 | 120 | 300 | 6 |
26 | Rowing machine | 25 | 115 | 280 | 5 |
27 | Spring tensioner | 20 | 110 | 260 | 4 |
28 | Exercise bike | 35 | 125 | 350 | 7 |
30 | Rowing machine | 30 | 120 | 330 | 6 |
33 | Spring tensioner | 25 | 115 | 310 | 5 |
36 | Exercise bike | 40 | 130 | 400 | 8 |
39 | Rowing machine | 35 | 125 | 380 | 7 |
40 | Spring tensioner | 30 | 120 | 360 | 6 |
41 | Exercise bike | 45 | 135 | 450 | 9 |
43 | Rowing machine | 40 | 130 | 430 | 8 |
45 | Spring tensioner | 35 | 125 | 410 | 7 |
47 | Exercise bike | 50 | 140 | 500 | 10 |
49 | Rowing machine | 45 | 135 | 480 | 9 |
51 | Spring tensioner | 40 | 130 | 460 | 8 |
53 | Exercise bike | 55 | 145 | 550 | 10 |
57 | Rowing machine | 50 | 140 | 530 | 9 |
58 | Spring tensioner | 45 | 135 | 510 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Li, C. Research on Functional Modularity and Health Monitoring Design of Home Fitness Equipment. Eng 2025, 6, 115. https://doi.org/10.3390/eng6060115
Song X, Li C. Research on Functional Modularity and Health Monitoring Design of Home Fitness Equipment. Eng. 2025; 6(6):115. https://doi.org/10.3390/eng6060115
Chicago/Turabian StyleSong, Xinyue, and Cuiyu Li. 2025. "Research on Functional Modularity and Health Monitoring Design of Home Fitness Equipment" Eng 6, no. 6: 115. https://doi.org/10.3390/eng6060115
APA StyleSong, X., & Li, C. (2025). Research on Functional Modularity and Health Monitoring Design of Home Fitness Equipment. Eng, 6(6), 115. https://doi.org/10.3390/eng6060115