Design of Geopolymers Based on Greek CDWs Using the Taguchi Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Leachability Measurements
2.3. Geopolymer Preparation
2.4. Characterization Methods
2.5. Mechanical Strength Tests
3. Results and Discussion
3.1. Leachability Tests
3.2. Initial Experiments on Geopolymer Synthesis
3.3. Optimization of Geopolymer Synthesis
3.4. XRD Analysis
3.5. FTIR Analysis
3.6. Microstructural Analysis
4. Conclusions
- The ceramic part of Greek CDWs can be valorized as secondary raw materials in the development of greener building materials called geopolymers. Indeed, products with a wide variety of compressive strength values (2–43 MPa) were prepared depending the synthesis conditions.
- The leachability tests provided insight into the reactivity of CDWs to alkali activation. Brick waste exhibited greater sensitivity to alkali attack compared to tile waste, suggesting a higher potential for geopolymerization. This was further confirmed by synthesis experiments, which demonstrated that tile waste can be utilized either for producing low-strength building materials or for blending with the remaining ceramic fraction of Greek CDWs.
- The Taguchi method successfully identified the synthesis parameters that majorly affect the CDW geopolymer synthesis by targeting the maximum compressive strength of the prepared samples. Alkalinity of the activation solution plays the most important role in the CDW geopolymer synthesis, since it promotes CDW dissolution and offers charge balance in the newly formed geopolymer network.
- The optimum synthesis conditions to obtain CDW geopolymers of maximum compressive strength (42.8 MPa) are the following: Si/R = 0.5, R/Al = 1.0, Na/R = 0.5 (R = Na + K) at 90 °C for 48 h.
- Materials’ characterization showed that the successful preparation of CDW geopolymers is linked with the active participation of the amorphous aluminosilicate part of the precursor in the geopolymer synthesis, resulting in a new network where aluminum ions have substituted silicon in tetrahedral orientation. This network works as a binding matrix that encapsulates the unreacted part of the CDW precursor.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDW | construction and demolition waste |
DoE | design of experiments |
UNEP | United Nations Environment Programme |
XRD | X-ray diffraction |
FTIR | Fourier transform infrared spectroscopy |
SEM | Scanning Electron Microscopy |
BW | brick waste |
TW | tile waste |
AAS | atomic absorption spectroscopy |
NH | sodium hydroxide |
KH | potassium hydroxide |
Si sol | silicon oxide solution in the form of colloidal dispersion |
OPC | ordinary Portland cement |
UCS | unconfined compressive strength |
EDX | energy-dispersive X-ray |
MK | metakaolin |
FA | fly ash |
ANOVA | analysis of variance |
SSA | specific surface area |
References
- United Nations Environment Programme (UNEP). Global Waste Management Outlook 2024; UNEP: Nairobi, Kenya, 2024; Available online: https://www.unep.org/resources/global-waste-management-outlook-2024 (accessed on 20 May 2025).
- Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission); Oberender, A.; Fruergaard Astrup, T.; Frydkjær Witte, S.; Camboni, M.; Chiabrando, F.; Hayleck, M.; Akelytė, R. EU Construction & Demolition Waste Management Protocol Including Guidelines for Pre-Demolition and Pre-Renovation Audits of Construction Works—Updated Edition 2024; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Hellenic Statistical Authority (ELSTAT). Waste Generation and Treatment/2022; ELSTAT: Piraeus, Greece, 2022; Available online: https://www.statistics.gr/en/statistics/-/publication/SOP06/ (accessed on 20 May 2025).
- Marzouk, M.; Azab, S. Environmental and Economic Impact Assessment of Construction and Demolition Waste Disposal Using System Dynamics. Resour. Conserv. Recycl. 2014, 82, 41–49. [Google Scholar] [CrossRef]
- Allam, A.S.; Nik-Bakht, M. From Demolition to Deconstruction of the Built Environment: A Synthesis of the Literature. J. Build. Eng. 2023, 64, 105679. [Google Scholar] [CrossRef]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Development of Lightweight Geopolymer Composites by Combining Various CDW Streams. Ceramics 2023, 6, 837–857. [Google Scholar] [CrossRef]
- Zhang, B. Durability of Low-Carbon Geopolymer Concrete: A Critical Review. Sustain. Mater. Technol. 2024, 40, e00882. [Google Scholar] [CrossRef]
- Davidovits, J.; Comrie, D.C.; Paterson, J.H.; Ritcey, D.J. Geopolymeric Concretes for Environmental Protection. Concr. Int. 1990, 12, 30–39. [Google Scholar]
- Kioupis, D.; Tsivilis, S.; Kakali, G. Development of Green Building Materials through Alkali Activation of Industrial Wastes and By-Products. Mater. Today Proc. 2018, 5, 27329–27336. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, J.; Gao, X. Sea/Coral Sand in Marine Engineered Geopolymer Composites: Engineering, Mechanical, and Microstructure Properties. Int. J. Appl. Ceram. Technol. 2025, 22, e14874. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, R.; Jiang, X.; Li, W.; Zhu, X.; Huang, B. Effect of Particle Size and Curing Temperature on Mechanical and Microstructural Properties of Waste Glass-Slag-Based and Waste Glass-Fly Ash-Based Geopolymers. J. Clean. Prod. 2020, 273, 122970. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. The Characterisation of Source Materials in Fly Ash-Based Geopolymers. Mater. Lett. 2003, 57, 1272–1280. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, J. Sulfate Attack Resistance of Hybrid Fiber Reinforced Rubber Concrete. Mater. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Zeyad, A.M.; Agwa, I.S.; Amin, M. Effect of Elevated Temperatures on Mechanical Properties of Lightweight Geopolymer Concrete. Case Stud. Constr. Mater. 2021, 15, e00673. [Google Scholar] [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly Ash-Based Eco-Friendly Geopolymer Concrete: A Critical Review of the Long-Term Durability Properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-Friendly Geopolymer Materials: A Review of Performance Improvement, Potential Application and Sustainability Assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Rashad, A.M. The Effect of Polypropylene, Polyvinyl-Alcohol, Carbon and Glass Fibres on Geopolymers Properties. Mater. Sci. Technol. 2019, 35, 127–146. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Guo, L.; Zhang, J. Preparation of a Fly Ash-Based Porous Geopolymer Material for Copper Ion Removal. Mater. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Bai, C.; Zheng, K.; Wang, B.; Li, B.; Sun, G.; Li, X.; Wang, X.; Qiao, Y.; Colombo, P. Facile Construction of Porous Epoxy Resin/Geopolymer Composites Using Red Mud and Slag by Well-Distributed Dual-Blending. Int. J. Appl. Ceram. Technol. 2024, 21, 3967–3980. [Google Scholar] [CrossRef]
- Lazorenko, G.; Wang, Y.; Fedotov, A.; Kasprzhitskii, A. One-Part Alkali-Activated Binder Produced from Tungsten-Molybdenum (W-Mo) Tailings. Eng 2024, 5, 3148–3160. [Google Scholar] [CrossRef]
- da Silveira, A.R.; Freire, A.L.; Elyseu, F.; de Fátima Peralta Muniz Moreira, R.; Peterson, M.; Doyle, A.; Pergher, S.B.C.; Hotza, D.; De Noni, A. Synthesis of Waste-Derived Geopolymer–Zeolite Composite with Enhanced CO2 Adsorption Capacity. Eng 2024, 5, 3439–3450. [Google Scholar] [CrossRef]
- Tan, J.; Cai, J.; Li, J. Recycling of Unseparated Construction and Demolition Waste (UCDW) through Geopolymer Technology. Constr. Build. Mater. 2022, 341, 127771. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A.; Yildirim, G.; Aldemir, A.; Sahmaran, M. Properties of Geopolymers Sourced from Construction and Demolition Waste: A Review. J. Build. Eng. 2022, 50, 104104. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Valencia-Saavedra, W.; de Gutiérrez, R. Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units. Sustainability 2022, 14, 9685. [Google Scholar] [CrossRef]
- Rovnaník, P.; Rovnaníková, P.; Vyšvařil, M.; Grzeszczyk, S.; Janowska-Renkas, E. Rheological Properties and Microstructure of Binary Waste Red Brick Powder/Metakaolin Geopolymer. Constr. Build. Mater. 2018, 188, 924–933. [Google Scholar] [CrossRef]
- Ozcelikci, E.; Kul, A.; Gunal, M.F.; Ozel, B.F.; Yildirim, G.; Ashour, A.; Sahmaran, M. A Comprehensive Study on the Compressive Strength, Durability-Related Parameters and Microstructure of Geopolymer Mortars Based on Mixed Construction and Demolition Waste. J. Clean. Prod. 2023, 396, 136522. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M. Development of Ceramic Tile Waste Geopolymer Binders Based on Pre-Targeted Chemical Ratios and Ambient Curing. Constr. Build. Mater. 2020, 258, 120297. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Alengaram, U.J.; Yap, S.P. Mechanical Strength and Permeation Properties of High Calcium Fly Ash-Based Geopolymer Containing Recycled Brick Powder. J. Build. Eng. 2020, 32, 101655. [Google Scholar] [CrossRef]
- Yang, Z.X.; Ha, N.R.; Jang, M.S.; Hwang, K.H. Geopolymer Concrete Fabricated by Waste Concrete Sludge with Silica Fume. Mater. Sci. Forum 2009, 620–622, 791–794. [Google Scholar] [CrossRef]
- Fořt, J.; Vejmelková, E.; Koňáková, D.; Alblová, N.; Čáchová, M.; Keppert, M.; Rovnaníková, P.; Černý, R. Application of Waste Brick Powder in Alkali Activated Aluminosilicates: Functional and Environmental Aspects. J. Clean. Prod. 2018, 194, 714–725. [Google Scholar] [CrossRef]
- Ulugöl, H.; Kul, A.; Yıldırım, G.; Şahmaran, M.; Aldemir, A.; Figueira, D.; Ashour, A. Mechanical and Microstructural Characterization of Geopolymers from Assorted Construction and Demolition Waste-Based Masonry and Glass. J. Clean. Prod. 2021, 280, 124358. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Z.; Chen, W.; Zhang, J.; Kang, Z.; Pu, S.; Wan, Y. Effect of Synthesis Parameters on the Development of Unconfined Compressive Strength of Recycled Waste Concrete Powder-Based Geopolymers. Constr. Build. Mater. 2021, 292, 123264. [Google Scholar] [CrossRef]
- Reig, L.; Sanz, M.A.; Borrachero, M.V.; Monzó, J.; Soriano, L.; Payá, J. Compressive Strength and Microstructure of Alkali-Activated Mortars with High Ceramic Waste Content. Ceram. Int. 2017, 43, 13622–13634. [Google Scholar] [CrossRef]
- Kan, L.; Wang, W.; Liu, W.; Wu, M. Development and Characterization of Fly Ash Based PVA Fiber Reinforced Engineered Geopolymer Composites Incorporating Metakaolin. Cem. Concr. Compos. 2020, 108, 103521. [Google Scholar] [CrossRef]
- Olivia, M.; Nikraz, H. Properties of Fly Ash Geopolymer Concrete Designed by Taguchi Method. Mater. Des. 2012, 36, 191–198. [Google Scholar] [CrossRef]
- Yusoff, N.; Ramasamy, M.; Yusup, S. Taguchi’s Parametric Design Approach for the Selection of Optimization Variables in a Refrigerated Gas Plant. Chem. Eng. Res. Des. 2011, 89, 665–675. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Hadi, M.N.S.; Farhan, N.A.; Sheikh, M.N. Design of Geopolymer Concrete with GGBFS at Ambient Curing Condition Using Taguchi Method. Constr. Build. Mater. 2017, 140, 424–431. [Google Scholar] [CrossRef]
- Panagiotopoulou, C.; Kontori, E.; Perraki, T.; Kakali, G. Dissolution of Aluminosilicate Minerals and By-Products in Alkaline Media. J. Mater. Sci. 2007, 42, 2967–2973. [Google Scholar] [CrossRef]
- ASTM C109/C109M-21; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. CEN: Brussels, Belgium, 2016.
- Xu, H.; Van Deventer, J.S.J. The Geopolymerisation of Alumino-Silicate Minerals. Int. J. Min. Process 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Deloitte. Construction and Demolition Waste Management in Greece; European Commission: Brussels, Belgium, 2015; Available online: https://ec.europa.eu/environment/waste/studies/deliverables/CDW_Greece_Factsheet_Final.pdf (accessed on 20 May 2025).
- Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; van Deventer, J.S.J. The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K. Medium-Term Phase Stability of Na2O–Al2O3–SiO2–H2O Geopolymer Systems. Cem. Concr. Res. 2008, 38, 870–876. [Google Scholar] [CrossRef]
- Panitsa, O.A.; Kioupis, D.; Kakali, G. Thermal and Microwave Synthesis of Silica Fume-Based Solid Activator for the One-Part Geopolymerization of Fly Ash. Environ. Sci. Pollut. Res. 2022, 29, 59513–59523. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of Geopolymer Fly-Ash Based Foams Obtained with the Addition of Al Powder or H2O2 as Foaming Agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Nenadović, S.S.; Kljajević, L.M.; Nešić, M.A.; Petković, M.Ž.; Trivunac, K.V.; Pavlović, V.B. Structure Analysis of Geopolymers Synthesized from Clay Originated from Serbia. Env. Earth Sci. 2017, 76, 79. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of Geopolymer Materials to Acid Attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
Source | BW | TW |
---|---|---|
SiO2 | 52.3 | 56.7 |
Al2O3 | 15.1 | 16.3 |
Fe2O3 | 7.9 | 6.8 |
CaO | 6.1 | 7.1 |
MgO | 8.3 | 3.7 |
K2O | 1.6 | 3.2 |
Na2O | 0.8 | 0.5 |
SO3 | 0.3 | 0.2 |
TiO2 | 0.5 | 0.6 |
P2O5 | 0.2 | 0.1 |
Cl | 0.02 | 0.03 |
L.O.I. | 6.9 | 4.8 |
Amorphous content (%) | 43.3 | 32.5 |
SSA (m2/g) | 1.5667 | 1.6093 |
ID | Synthesis Parameters | Precursor | Activator | H2O | Curing Conditions | ||||
---|---|---|---|---|---|---|---|---|---|
Si/Na | Na/Al | L/S | Si Sol | NH | T (°C) | t (d) | |||
BWi1 | 0.0 | 1.0 | 0.25 | 71.5 | 0.0 | 8.5 | 20 | 50 | 2 |
BWi2 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 50 | 2 |
BWi3 | 1.0 | 1.0 | 0.25 | 61.7 | 22.0 | 7.3 | 9.0 | 50 | 2 |
BWi4 | 0.5 | 0.5 | 0.25 | 72.5 | 6.5 | 4.3 | 16.8 | 50 | 2 |
BWi5 | 0.5 | 1.5 | 0.25 | 61.0 | 16.3 | 10.8 | 11.8 | 50 | 2 |
BWi6 | 0.5 | 2.0 | 0.25 | 56.5 | 20.2 | 13.4 | 9.9 | 50 | 2 |
BWi7 | 0.5 | 1.0 | 0.35 | 61.3 | 10.9 | 7.3 | 20.5 | 50 | 2 |
BWi8 | 0.5 | 1.0 | 0.30 | 63.5 | 11.3 | 7.5 | 17.6 | 50 | 2 |
BWi9 | 0.5 | 1.0 | 0.20 | 69.0 | 12.3 | 8.2 | 10.5 | 50 | 2 |
BWi10 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 70 | 1 |
BWi11 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 70 | 3 |
BWi12 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 25 | 2 |
BWi13 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 70 | 2 |
BWi14 | 0.5 | 1.0 | 0.25 | 66.2 | 11.8 | 7.8 | 14.1 | 90 | 2 |
TWi1 | 0.0 | 1.0 | 0.25 | 70.9 | 0.0 | 9.1 | 20.0 | 50 | 2 |
TWi2 | 0.5 | 1.0 | 0.25 | 65.4 | 12.5 | 8.4 | 13.7 | 50 | 2 |
TWi3 | 1.0 | 1.0 | 0.25 | 60.6 | 23.3 | 7.8 | 8.4 | 50 | 2 |
TWi4 | 2.0 | 1.0 | 0.25 | 52.9 | 40.6 | 6.8 | 0.0 | 50 | 2 |
TWi5 | 1.0 | 0.5 | 0.25 | 69.0 | 13.2 | 4.4 | 13.4 | 50 | 2 |
TWi6 | 1.0 | 1.5 | 0.25 | 54.1 | 31.1 | 10.4 | 4.4 | 50 | 2 |
TWi7 | 1.0 | 2.0 | 0.25 | 48.8 | 37.5 | 12.5 | 1.3 | 50 | 2 |
TWi8 | 1.0 | 1.0 | 0.20 | 62.9 | 24.1 | 8.0 | 4.9 | 50 | 2 |
TWi9 | 1.0 | 1.0 | 0.30 | 58.1 | 22.3 | 7.4 | 12.1 | 50 | 2 |
ID | Investigated Parameters | Precursor | Activator | H2O | ||||
---|---|---|---|---|---|---|---|---|
Si/Na | Na/Al | Na/R | Si Sol | NH | KH | |||
BWt1 | 0.0 | 0.4 | 0.0 | 75.0 | - | - | 5.0 | 20.0 |
BWt2 | 0.0 | 0.7 | 0.5 | 72.7 | - | 3.0 | 4.2 | 20.0 |
BWt3 | 0.0 | 1.0 | 1.0 | 71.5 | - | 8.5 | - | 20.0 |
BWt4 | 0.5 | 0.4 | 0.5 | 73.2 | 5.2 | 1.7 | 2.4 | 17.4 |
BWt5 | 0.5 | 0.7 | 1.0 | 69.8 | 8.7 | 5.8 | - | 15.6 |
BWt6 | 0.5 | 1.0 | 0.0 | 63.7 | 11.4 | - | 10.6 | 14.3 |
BWt7 | 1.0 | 0.4 | 1.0 | 71.5 | 10.2 | 3.4 | - | 14.9 |
BWt8 | 1.0 | 0.7 | 0.0 | 64.5 | 16.1 | - | 7.5 | 12.0 |
BWt9 | 1.0 | 1.0 | 0.5 | 60.6 | 21.6 | 3.6 | 5.0 | 9.2 |
Precursor | Silicon (mg/L) | Aluminum (mg/L) | ||
---|---|---|---|---|
NH (10M) | KH (10M) | NH (10M) | KH (10M) | |
BW | 39.3 | 28.9 | 15.1 | 8.6 |
TW | 25.2 | 19.3 | 10.7 | 5.9 |
ID | UCS (MPa) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | Average | SD | |
BWi1 | 10.9 | 11.5 | 11.1 | 11.2 | 0.3 |
BWi2 | 17.5 | 16.4 | 16.8 | 16.9 | 0.6 |
BWi3 | 13.4 | 12.3 | 11.5 | 12.4 | 1.0 |
BWi4 | 6.3 | 7.4 | 6.9 | 6.9 | 0.6 |
BWi5 | 1.9 | 2.1 | 2.2 | 2.1 | 0.2 |
BWi6 | 0.7 | 0.8 | 0.8 | 0.8 | 0.1 |
BWi7 | 11.6 | 11.9 | 12.2 | 11.9 | 0.3 |
BWi8 | 15.4 | 15.9 | 15.5 | 15.6 | 0.3 |
BWi9 | 12.8 | 13.9 | 14.6 | 13.8 | 0.9 |
TWi1 | 2.3 | 2.7 | 2.4 | 2.5 | 0.2 |
TWi2 | 4.8 | 4.1 | 4.0 | 4.3 | 0.4 |
TWi3 | 6.2 | 6.9 | 7.2 | 6.8 | 0.5 |
TWi4 | 5.8 | 5.1 | 4.9 | 5.3 | 0.5 |
TWi5 | 3.6 | 3.6 | 4.1 | 3.8 | 0.4 |
TWi6 | 5.5 | 5.5 | 5.6 | 5.5 | 0.1 |
TWi7 | 0.3 | 0.4 | 0.4 | 0.4 | 0.1 |
TWi8 | 4.8 | 5.6 | 4.7 | 5.0 | 0.5 |
TWi9 | 5.2 | 6.1 | 6.4 | 5.9 | 0.6 |
ID | UCS (MPa) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | Average | SD | |
BWt1 | 4.1 | 4.4 | 4.2 | 4.2 | 0.2 |
BWt2 | 19.1 | 22.3 | 19.8 | 20.4 | 1.7 |
BWt3 | 16.5 | 14.1 | 15.1 | 15.2 | 1.2 |
BWt4 | 13.7 | 14.9 | 13.5 | 14.0 | 0.8 |
BWt5 | 31.7 | 28.7 | 29.1 | 29.8 | 1.6 |
BWt6 | 38.4 | 37.9 | 39.1 | 38.5 | 0.6 |
BWt7 | 13.1 | 12.1 | 12.6 | 12.6 | 0.5 |
BWt8 | 19.9 | 21.2 | 22.6 | 21.2 | 1.4 |
BWt9 | 39.5 | 36.4 | 33.2 | 36.4 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kioupis, D. Design of Geopolymers Based on Greek CDWs Using the Taguchi Method. Eng 2025, 6, 109. https://doi.org/10.3390/eng6060109
Kioupis D. Design of Geopolymers Based on Greek CDWs Using the Taguchi Method. Eng. 2025; 6(6):109. https://doi.org/10.3390/eng6060109
Chicago/Turabian StyleKioupis, Dimitrios. 2025. "Design of Geopolymers Based on Greek CDWs Using the Taguchi Method" Eng 6, no. 6: 109. https://doi.org/10.3390/eng6060109
APA StyleKioupis, D. (2025). Design of Geopolymers Based on Greek CDWs Using the Taguchi Method. Eng, 6(6), 109. https://doi.org/10.3390/eng6060109