Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container
Abstract
:1. Introduction
2. Mathematical Modeling
Flow Study
3. Solution Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
velocity along r | v | kinematic viscosity | |
velocity along x | u | temperature | T |
gravitational acceleration | g | fluid density | |
thermal expansion coefficient | thermal diffusivity | ||
specific heat capacity at constant pressure | fluid parameters | c | |
heat generation/absorption parameter | trace | ||
first Rivlin–Ericksen tensor | dynamic viscosity | ||
fluid compressibility factor | surface temperature | ||
variables ambient temperature | |||
reference temperature | reference length | L | |
freestream velocity | dimension less variable | ||
velocity of fluid | stream function | ||
curvature parameter | K | mixed convection parameter | |
magnetic field parameter | M | fluid parameters | |
thermal stratification parameter | Prandtl number | ||
heat absorption/generation parameter |
References
- Dom´ınguez-Lozoya, J.C.; Dom´ınguez-Lozoya, D.R.; Cuevas, S.; Avalos-Z´u˜niga, R.A. MHD generation for sustainable development, from thermal to wave energy conversion. Sustainability 2024, 16, 10041. [Google Scholar] [CrossRef]
- Takabe, H. Basic properties of plasma in fluid model. In The Physics of Laser Plasmas and Applications Volume 2: Fluid Models and Atomic Physics of Plasmas; Springer: Cham, Switzerland, 2024; pp. 15–97. [Google Scholar]
- Bafakeeh, O.T.; Raghunath, K.; Ali, F.; Khalid, M.; Tag-ElDin, E.S.M.; Oreijah, M.; Guedri, K.; Khedher, N.B.; Khan, M.I. Hall current and soret effects on unsteady mhd rotating flow of second-grade fluid through porous media under the influences of thermal radiation and chemical reactions. Catalysts 2022, 12, 1233. [Google Scholar] [CrossRef]
- Sarkar, B.; Devi, L.; Boruah, A.J. An overview of numerical simulations in accretion physics. arXiv 2024, arXiv:2409.14224. [Google Scholar]
- Federici, G.; Siccinio, M.; Bachmann, C.; Giannini, L.; Luongo, C.; Lungaroni, M. Relationship between magnetic field and tokamak sizea system engineering perspective and implications to fusion development. Nucl. Fusion 2024, 64, 036025. [Google Scholar] [CrossRef]
- Melchiorri, L. Development of a System Magneto-Thermal-Hydraulics Code for the Modelling of Nuclear Fusion Reactors. 2024. Available online: https://iris.uniroma1.it/handle/11573/1699751 (accessed on 20 February 2025).
- Walkington, M. Numerical Simulation of Magnetohydrodynamic Flows and Its Application to In-Vessel Components of a Fusion Reactor. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2023. [Google Scholar]
- Bazhar, Z.; Robin, V.; Bouali, Z. A residence time-based concept for modeling and analyzing the impact of diffusion on auto-ignition processes with thermal stratification. Phys. Fluids 2024, 36, 107108. [Google Scholar] [CrossRef]
- Du, Y.; Calzavarini, E.; Sun, C. The physics of freezing and melting in the presence of flows. Nat. Rev. Phys. 2024, 6, 676–690. [Google Scholar] [CrossRef]
- Jackson, J. Fluid flow and convective heat transfer to fluids at supercritical pressure. Nucl. Eng. Des. 2013, 264, 24–40. [Google Scholar] [CrossRef]
- Alghamdi, M.; Zamir, T.; Akbar, N.S.; Muhammad, T. Neural intellectual computing systems for the analysis of thermally stratified mixed convective micropolar liquid with the interaction of thermal diffusive nanofluid over a heated sheet. Neural Comput. Appl. 2024, 37, 1575–1599. [Google Scholar] [CrossRef]
- Pan, M.; Shen, L.; Zhou, Q.; Dong, Y. Particle transport and turbulence modification in unstably stratified mixed convection within a horizontal channel. Int. J. Heat Mass Transf. 2025, 236, 126377. [Google Scholar] [CrossRef]
- Barman, T.; Sahoo, S. Role of partial stable stratification on fluid flow and heat transfer in rotating thermal convection. Phys. Fluids 2024, 36, 046613. [Google Scholar] [CrossRef]
- Jamrus, F.N.; Waini, I.; Khan, U.; Ishak, A. Effects of magnetohydrodynamics and velocity slip on mixed convective flow of thermally stratified ternary hybrid nanofluid over a stretching/shrinking sheet. Case Stud. Therm. Eng. 2024, 55, 104161. [Google Scholar] [CrossRef]
- Khan, Q.; Farooq, M.; Ahmad, S. Generalized transport analysis on mixed convection squeeze flow of a casson fluid over an inclined stretching sheet with viscous dissipation and double stratification. Ain Shams Eng. J. 2024, 15, 102253. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Cheng, Y.; Wang, Y.; Zhu, Y.; Li, R.; Acharya, K.; Ibrahim, M. Thermal stratification and mixing processes response to meteorological factors in a monomictic reservoir. J. Environ. Manag. 2024, 354, 120205. [Google Scholar] [CrossRef] [PubMed]
- Karthik, S.; Iranian, D.; Alhazmi, H.; Khan, I.; Singh, A.; Khan, M.I. Double diffusive on powell eyring fluid flow by mixed convection from an exponential stretching surface with variable viscosity/thermal conductivity. Case Stud. Therm. Eng. 2024, 55, 104091. [Google Scholar] [CrossRef]
- Eng, F.J.N.B. Assessment of a Novel Concept for Co-Generation of Heat and Power. Ph.D. Thesis, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, Australia, 2021. [Google Scholar]
- Tawalbeh, M.; Shomope, I.; Al-Othman, A. Comprehensive review on non-newtonian nanofluids, preparation, characterization, and applications. Int. J. Thermofluids 2024, 22, 100705. [Google Scholar] [CrossRef]
- Rikitu, E.H.; Makinde, O.D. Entropy generation and heat transfer analysis of eyring-powell nanofluid flow through inclined microchannel subjected to magnetohydrodynamics and heat generation. Int. J. Thermofluids 2024, 22, 100640. [Google Scholar] [CrossRef]
- Hussain, M.; Ali, A.; Ranjha, Q.A.; Ahmad, I.; Anwar, M. Radiative magneto-cross eyring-powell flow with activation energy past porous stretching wedge considering suction/injection and ohmic heating effect. Numer. Heat Transf. Part B Fundam. 2024, 85, 867–882. [Google Scholar] [CrossRef]
- Mishra, S.; Baag, S.; Pattnaik, P.; Panda, S. Sensitivity analysis on enhanced thermal transport in eyring–powell nanofluid flow: Investigating over a radiating convective riga plate with non-uniform heat source/sink under flux conditions. J. Therm. Anal. Calorim. 2024, 149, 711–728. [Google Scholar] [CrossRef]
- Sagheer, S.; Razzaq, R.; Farooq, U. Non-similar analysis of heat generation and thermal radiation on eyring-powell hybrid nanofluid flow across a stretching surface. Adv. Mech. Eng. 2024, 16, 16878132241282562. [Google Scholar] [CrossRef]
- Ali, U.; Irfan, M. Thermal performance of joule heating in radiative eyring-powell nanofluid with arrhenius activation energy and gyrotactic motile microorganisms. Heliyon 2024, 10, e25070. [Google Scholar] [CrossRef]
- Karthik, S.; Iranian, D.; Alhazmi, H.; Khan, I.; Singh, A. Heat transfer due to electromagnetic radiation of mhd powell-eyring fluid with mass diffusion via lie symmetry scaling. Case Stud. Therm. Eng. 2024, 58, 104348. [Google Scholar] [CrossRef]
- Triveni, B.; Rao, M.V. Chemical reaction and viscous dissipation effects on MHD flow of Powell-Eyring nanomaterial fluid over a nonlinear stretching sheet in a porous medium. Proc. Inst. Mech. Eng. Part E 2024. [Google Scholar] [CrossRef]
- Žic, M.; Pereverzyev, S. Application of self-adapting regularization, machine learning tools and limits in Levenberg–Marquardt algorithm to solve CNLS problem. J. Electroanal. Chem. 2023, 939, 117420. [Google Scholar] [CrossRef]
- Cunha, J.V.D.S. Development of Novel Computational Methods Suitable for Modelling Intrinsically Disordered Proteins. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2020. [Google Scholar]
- Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial neural networks based optimization techniques: A review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Ibrahim, M.; Haider, A.; Lim, J.W.; Mainali, B.; Aslam, M.; Kumar, M.; Shahid, M.K. Artificial neural network modeling for the prediction, estimation, and treatment of diverse wastewaters: A comprehensive review and future perspective. Chemosphere 2024, 362, 142860. [Google Scholar] [CrossRef]
- Yan, Y.; Borhani, T.N.; Subraveti, S.G.; Pai, K.N.; Prasad, V.; Rajendran, A.; Nkulikiyinka, P.; Asibor, J.O.; Zhang, Z.; Shao, D.; et al. Harnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)–a state-of-the-art review. Energy Environ. Sci. 2021, 14, 6122–6157. [Google Scholar] [CrossRef]
- Ly, H.-B.; Nguyen, M.H.; Pham, B.T. Metaheuristic optimization of levenberg–marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Comput. Appl. 2021, 33, 17331–17351. [Google Scholar] [CrossRef]
- Bano, F.; Serbaya, S.H.; Rizwan, A.; Shabaz, M.; Hasan, F.; Khalifa, H.S. An artificial neural network and levenberg-marquardt training algorithm-based mathematical model for performance prediction. Appl. Math. Sci. Eng. 2024, 32, 2375529. [Google Scholar] [CrossRef]
- Shoaib, M.; Nisar, K.S.; Raja, M.A.Z.; Tabassum, R.; Sabir, Z. A stagnation point flow of cross nanofluid flow: Levenberg marquardt backpropagation computational approach. ZAMM-J. Appl. Math. Mech. Angew. Math. Und Mech. 2024, 104, e202300236. [Google Scholar] [CrossRef]
- Asghar, S.A.; Ahmad, I.; Ilyas, H.; Abdullah, M.; Shoaib, M.; Raja, M.A.Z. Numerical treatment of singular functional systems in quantum calculus: Adaptive backpropagated levenberg–marquardt neural networks. Eur. Phys. J. Plus 2024, 139, 10. [Google Scholar] [CrossRef]
- Shoaib, M.; Saqib, S.U.; Nisar, K.S.; Raja, M.A.Z.; Mohammed, I.A. Numerical treatment for the desirability of hall current and activation energy in the enhancement of heat transfer in a nanofluidic system. Arab. J. Chem. 2024, 17, 105526. [Google Scholar] [CrossRef]
- Osigbemeh, M.S.; Osuji, C.; Onyesolu, M.O.; Onochie, U.P. Comparison of the artificial neural network’s approximations for the levenberg-marquardt algorithm and the gradient descent optimization on datasets. Artif. Intell. Evol. 2024, 5, 24–38. [Google Scholar] [CrossRef]
- Ilango, M.S.; Pallavarapu, L. Melting heat transfer and entropy analysis of MHD Casson nanofluid flow through a stretchy surface with Joule heating and complete slip. World J. Eng. 2024. [Google Scholar] [CrossRef]
- Cham, B.M.; Islam, S.-u.; Majeed, A.H.; Ali, M.R.; Hendy, A.S. Numerical computations of magnetohydrodynamic (mhd) thermal fluid flow in a permeable cavity: A time dependent based study. Case Stud. Therm. Eng. 2024, 61, 104905. [Google Scholar] [CrossRef]
- Javed, T.; Ali, N.; Abbas, Z.; Sajid, M. Flow of an Eyring–Powell non-Newtonian fluid over a stretching sheet. Chem. Eng. Commun. 2013, 200, 327–336. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, I.; Badruddin, I.A.; Javid, M.; Zedan, A.S.A.H. On Maxwell slip flow of radiative ternary hybrid nanofluid subject to Smoluchowski-Nield’s constraints using an iterative numerical simulation. Int. J. Model. Simul. 2025, 1–25. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, I.; Zan-Ul-Abadin, Q.; Badruddin, I.A.; Hussien, M. Simulation of Casson hybrid nanofluid over bidirectional stretching surface with entropy analysis in stagnated domain. World J. Eng. 2024. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, I.; Javed, T. Dynamics of MHD tangent hyperbolic nanofluid with prescribed thermal conditions, random motion and thermo-migration of nanoparticles. J. Dispers. Sci. Technol. 2023, 44, 174–188. [Google Scholar] [CrossRef]
- Khalil-Ur-Rehman; Malik, M.Y.. Application of shooting method on mhd thermally stratified mixed convection flow of non-newtonian fluid over an inclined stretching cylinder. In Journal of Physics: Conference Series, Proceedings of the Fifteenth Asian Congress of Fluid Mechanics (15ACFM), Kuching, Malaysia, 21–23 November 2016; IOP Publishing: Bristol, UK, 2017; Volume 822, p. 012012. [Google Scholar]
Cases | MSE | Perfom | Gradient | Mu | Epoch | ||
---|---|---|---|---|---|---|---|
Training | Validation | Testing | |||||
1 | 2.8634 × | 4.0120 × | 3.2855 × | 2.86 × | 1.00 × | 1.00 × | 327 |
2 | 5.9889 × | 9.9859 × | 1.2361 × | 5.68 × | 1.14 × | 1.00 × | 289 |
3 | 3.9696 × | 5.5535 × | 1.6394 × | 3.97 × | 9.90 × | 1.00 × | 674 |
4 | 1.2154 × | 5.4755 × | 1.4029 × | 1.22 × | 9.85 × | 1.00 × | 301 |
Cases | MSE | Perfom | Gradient | Mu | Epoch | ||
---|---|---|---|---|---|---|---|
Training | Validation | Testing | |||||
1 | 2.3170 × | 2.1973 × | 3.2828 × | 2.32 × | 9.95 × | 1.00 × | 319 |
2 | 3.4683 × | 6.2595 × | 5.2422 × | 3.472 × | 9.992 × | 1.002 × | 284 |
3 | 3.2036 × | 3.35202 × | 3.62122 × | 3.102 × | 9.962 × | 1.002 × | 285 |
4 | 3.4141 × | 4.81472 × | 3.42196 × | 3.41 × | 9.92 × | 1.00 × | 308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, J.M.H.; Al Barakeh, Z.; Ghandour, R. Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container. Eng 2025, 6, 92. https://doi.org/10.3390/eng6050092
Barakat JMH, Al Barakeh Z, Ghandour R. Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container. Eng. 2025; 6(5):92. https://doi.org/10.3390/eng6050092
Chicago/Turabian StyleBarakat, Julien Moussa H., Zaher Al Barakeh, and Raymond Ghandour. 2025. "Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container" Eng 6, no. 5: 92. https://doi.org/10.3390/eng6050092
APA StyleBarakat, J. M. H., Al Barakeh, Z., & Ghandour, R. (2025). Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container. Eng, 6(5), 92. https://doi.org/10.3390/eng6050092