Modeling Critical Success Factors for Industrial Symbiosis
Abstract
:1. Introduction
2. Literature Review
2.1. Enhanced Training and Education
2.2. Economic Growth and Profitability
2.3. Operational Cost Reduction
2.4. Waste Reduction and Environmental Impact
2.5. Leadership
2.6. Governance and Internal Organizational Structure
2.7. Clear Communication and Information Sharing:
2.8. Local and Social Acceptance
2.9. Inter-Organizational Relationships and Geographic Proximity
2.10. Policy and Regulatory Support and Compliance
2.11. Use of Technology and Technological Factors
3. Methodology
3.1. DEMATEL Methodology
3.1.1. Step 1: Calculate the Initial Average Direct Relation Matrix
3.1.2. Step 2: Calculate the Normalized Direct Relation Matrix
3.1.3. Step 3: Calculate the Total Relation Matrix
3.1.4. Step 4: Calculate and Depict the Prominence and Net Effects of CSFs
3.1.5. Step 5: Depict the Marked Causal Relationships Among CSFs
3.2. Sample Information and Data Collection Method
4. Results
4.1. Prominence and Net Effects of CSFs
4.2. Marked Causal Relationships Among CSFs
5. Discussion and Conclusions
5.1. Discussion of the Key Findings
5.2. Managerial Implications
5.3. Societal Implications
5.4. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Age Range | Gender | Highest Degrees | Company Classification | Current Position | Years of Experience |
---|---|---|---|---|---|---|
1 | 40–49 | Male | Elec. Eng, MSc in Sustainability | Group of Companies (Oil and Gas; Refinery) | Head, Group Strategy Division | 15 |
2 | 40–49 | Female | Mech. Eng, MSc in Materials Science and Technology | Manufacturing Company (Cement Industry) | Digital Project Management Officer (PMO) | 20 |
3 | 30–39 | Male | Chem. Eng, MSc in Sustainability | Multinational Energy Corporation (Water/Waste and Energy Management) | Business Development Manager | 8 |
4 | 30–39 | Male | MSc in Supply Chain Management | Multinational Manufacturing Company (Refrigeration and Glass Producer) | Head, Engineering Department | 10 |
5 | 30–39 | Male | MBA, MSc in Supply Chain Management | Multinational Manufacturing Company (Aluminium and Copper Manufacturer) | Purchasing Category Manager | 9 |
6 | 40–49 | Male | Chem. Eng, MBA | Renewable energy Power Generation Company (Renewable Hydrogen) | Head of Technical Management | 20 |
7 | 40–49 | Female | Mech. Eng, MBA, PhD in Mechanical Engineering | Energy Company (Oil and Gas; Refinery) | Engineering and Construction Refineries Director | 14 |
8 | 40–49 | Male | Mech. Eng, MBA, MSc in Supply Chain Management | Group of Companies (Oil and Gas; Refinery) | Head, Group Strategy Division | 20 |
9 | 30–39 | Male | MSc in Maritime Management | Group of Companies (Oil and Gas; Refinery) | Head of Sustainability Reporting | 12 |
10 | 30–39 | Female | Chem. Eng | Group of Companies (Oil and Gas; Refinery) | Group Planning and Budgeting Advisor | 14 |
11 | 40–49 | Male | Elec. Eng, MSc in Electronics | High Technologies and Industrial Cooperation Company (Sensors, IoT) | Production Manager | 20 |
12 | 30–39 | Male | MSc in Energy and Finance | Group of Companies (Oil and Gas; Refinery) | Senior Mergers and Acquisitions Expert | 6 |
13 | 40–49 | Male | Mech. Eng, MBA | Multinational Energy Corporation (Oil and Gas) | Senior Charterer | 25 |
14 | 60–69 | Male | Min. Metall. Eng, MBA | Multinational Mining corporation (Industrial Minerals) | General Manager; Chairman of the Board of Directors | 43 |
Average Direct Relation Matrix | |||||||||||
CSFs | CSF1 | CSF2 | CSF3 | CSF4 | CSF5 | CSF6 | CSF7 | CSF8 | CSF9 | CSF10 | CSF11 |
CSF1 | 2.786 | 2.500 | 2.571 | 2.357 | 2.143 | 2.929 | 2.143 | 1.786 | 2.429 | 3.643 | |
CSF2 | 2.071 | 3.143 | 2.714 | 2.571 | 1.857 | 1.643 | 2.000 | 1.500 | 1.929 | 2.786 | |
CSF3 | 1.929 | 3.429 | 2.429 | 1.929 | 1.500 | 1.643 | 1.286 | 1.786 | 1.714 | 2.500 | |
CSF4 | 1.643 | 2.714 | 2.500 | 1.929 | 1.571 | 1.857 | 3.286 | 2.071 | 3.286 | 2.357 | |
CSF5 | 3.429 | 3.500 | 2.786 | 3.071 | 3.571 | 3.357 | 2.500 | 3.000 | 2.571 | 2.929 | |
CSF6 | 2.214 | 2.857 | 2.714 | 2.500 | 2.857 | 2.857 | 1.714 | 2.071 | 2.214 | 2.143 | |
CSF7 | 2.500 | 2.929 | 2.929 | 2.286 | 2.643 | 2.692 | 2.786 | 2.857 | 2.786 | 2.357 | |
CSF8 | 1.286 | 2.643 | 1.000 | 2.643 | 1.929 | 1.286 | 1.714 | 1.714 | 2.429 | 1.143 | |
CSF9 | 1.429 | 2.857 | 2.714 | 2.571 | 1.714 | 1.500 | 2.357 | 2.071 | 1.929 | 1.786 | |
CSF10 | 1.857 | 2.929 | 2.571 | 3.429 | 2.286 | 2.571 | 2.000 | 2.571 | 2.000 | 2.357 | |
CSF11 | 2.929 | 3.214 | 3.286 | 5.786 | 1.714 | 1.714 | 2.500 | 1.786 | 1.857 | 1.929 | |
Normalized Direct Relation Matrix | |||||||||||
CSFs | CSF1 | CSF2 | CSF3 | CSF4 | CSF5 | CSF6 | CSF7 | CSF8 | CSF9 | CSF10 | CSF11 |
CSF1 | 0.000 | 0.091 | 0.081 | 0.084 | 0.077 | 0.070 | 0.095 | 0.070 | 0.058 | 0.079 | 0.119 |
CSF2 | 0.067 | 0.000 | 0.102 | 0.088 | 0.084 | 0.060 | 0.053 | 0.065 | 0.049 | 0.063 | 0.091 |
CSF3 | 0.063 | 0.112 | 0.000 | 0.079 | 0.063 | 0.049 | 0.053 | 0.042 | 0.058 | 0.056 | 0.081 |
CSF4 | 0.053 | 0.088 | 0.081 | 0.000 | 0.063 | 0.051 | 0.060 | 0.107 | 0.067 | 0.107 | 0.077 |
CSF5 | 0.112 | 0.114 | 0.091 | 0.100 | 0.000 | 0.116 | 0.109 | 0.081 | 0.098 | 0.084 | 0.095 |
CSF6 | 0.072 | 0.093 | 0.088 | 0.081 | 0.093 | 0.000 | 0.093 | 0.056 | 0.067 | 0.072 | 0.070 |
CSF7 | 0.081 | 0.095 | 0.095 | 0.074 | 0.086 | 0.088 | 0.000 | 0.091 | 0.093 | 0.091 | 0.077 |
CSF8 | 0.042 | 0.086 | 0.033 | 0.086 | 0.063 | 0.042 | 0.056 | 0.000 | 0.056 | 0.079 | 0.037 |
CSF9 | 0.047 | 0.093 | 0.088 | 0.084 | 0.056 | 0.049 | 0.077 | 0.067 | 0.000 | 0.063 | 0.058 |
CSF10 | 0.060 | 0.095 | 0.084 | 0.112 | 0.074 | 0.084 | 0.065 | 0.084 | 0.065 | 0.000 | 0.077 |
CSF11 | 0.095 | 0.105 | 0.107 | 0.188 | 0.056 | 0.056 | 0.081 | 0.058 | 0.060 | 0.063 | 0.000 |
Total Relation Matrix | |||||||||||
CSFs | CSF1 | CSF2 | CSF3 | CSF4 | CSF5 | CSF6 | CSF7 | CSF8 | CSF9 | CSF10 | CSF11 |
CSF1 | 0.238 | 0.408 | 0.365 | 0.407 | 0.315 | 0.292 | 0.337 | 0.313 | 0.284 | 0.332 | 0.375 |
CSF2 | 0.273 | 0.287 | 0.348 | 0.371 | 0.292 | 0.256 | 0.271 | 0.279 | 0.248 | 0.287 | 0.319 |
CSF3 | 0.250 | 0.363 | 0.234 | 0.338 | 0.255 | 0.228 | 0.251 | 0.240 | 0.238 | 0.260 | 0.291 |
CSF4 | 0.263 | 0.375 | 0.335 | 0.297 | 0.279 | 0.252 | 0.281 | 0.322 | 0.269 | 0.331 | 0.311 |
CSF5 | 0.383 | 0.490 | 0.428 | 0.480 | 0.291 | 0.375 | 0.397 | 0.370 | 0.362 | 0.385 | 0.406 |
CSF6 | 0.295 | 0.397 | 0.359 | 0.388 | 0.319 | 0.218 | 0.325 | 0.291 | 0.283 | 0.315 | 0.322 |
CSF7 | 0.321 | 0.426 | 0.388 | 0.409 | 0.333 | 0.316 | 0.260 | 0.341 | 0.324 | 0.352 | 0.349 |
CSF8 | 0.209 | 0.310 | 0.238 | 0.312 | 0.233 | 0.202 | 0.230 | 0.179 | 0.216 | 0.259 | 0.226 |
CSF9 | 0.239 | 0.353 | 0.319 | 0.345 | 0.253 | 0.232 | 0.275 | 0.267 | 0.188 | 0.272 | 0.274 |
CSF10 | 0.284 | 0.399 | 0.354 | 0.415 | 0.303 | 0.294 | 0.300 | 0.316 | 0.281 | 0.249 | 0.327 |
CSF11 | 0.331 | 0.432 | 0.397 | 0.505 | 0.305 | 0.285 | 0.332 | 0.314 | 0.294 | 0.329 | 0.278 |
References
- Sonel, E.; Gür, Ş.; Eren, T. Analysis of Factors Affecting Industrial Symbiosis Collaboration. Environ. Sci. Pollut. Res. 2022, 29, 8479–8486. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pinto, M.C.B. Analyzing the Critical Success Factors for Industrial Symbiosis—A Chinese Perspective. In Advances in Industrial and Production Engineering; Phanden, R.K., Mathiyazhagan, K., Kumar, R., Paulo Davim, J., Eds.; Springer: Singapore, 2021; pp. 23–33. ISBN 978-981-334-319-1. [Google Scholar]
- Nyakudya, P.; Madushele, N.; Madyira, D.M. A Review of Industrial Symbiosis in Influencing Green Manufacturing. In Proceedings of the 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 25–27 May 2022; pp. 80–84. [Google Scholar]
- Mileva-Boshkoska, B.; Rončević, B.; Uršič, E.D. Modeling and Evaluation of the Possibilities of Forming a Regional Industrial Symbiosis Networks. Social. Sci. 2018, 7, 13. [Google Scholar] [CrossRef]
- Teh, B.T.; Ho, C.S.; Matsuoka, Y.; Chau, L.W.; Gomi, K. Determinant Factors of Industrial Symbiosis: Greening Pasir Gudang Industrial Park. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012162. [Google Scholar] [CrossRef]
- Neves, A.; Godina, R.; Azevedo, S.G.; Pimentel, C.; Matias, J.C.O. The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation. Sustainability 2019, 11, 7095. [Google Scholar] [CrossRef]
- Agudo, F.L.; Bezerra, B.S.; Paes, L.A.B.; Gobbo, J.A., Jr. Proposal of an Assessment Tool to Diagnose Industrial Symbiosis Readiness. Sustain. Prod. Consum. 2022, 30, 916–929. [Google Scholar] [CrossRef]
- Agudo, F.L.; Bezerra, B.S.; Gobbo Júnior, J.A. Symbiotic Readiness: Factors That Interfere with the Industrial Symbiosis Implementation. J. Clean. Prod. 2023, 387, 135843. [Google Scholar] [CrossRef]
- Cudečka-Puriņa, N.; Atstāja, D.; Koval, V.; Purviņš, M.; Nesenenko, P.; Tkach, O. Achievement of Sustainable Development Goals through the Implementation of Circular Economy and Developing Regional Cooperation. Energies 2022, 15, 4072. [Google Scholar] [CrossRef]
- Agudo, F.L.; Bezerra, B.S.; Gobbo, J.A.; Paes, L.A.B. Unfolding Research Themes for Industrial Symbiosis and Underlying Theories. Sustain. Dev. 2022, 30, 1682–1702. [Google Scholar] [CrossRef]
- Boom-Cárcamo, E.; Peñabaena-Niebles, R. Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers. Sustainability 2022, 14, 4223. [Google Scholar] [CrossRef]
- Haq, H.; Välisuo, P.; Niemi, S. Modelling Sustainable Industrial Symbiosis. Energies 2021, 14, 1172. [Google Scholar] [CrossRef]
- Mortensen, L.; Kørnøv, L. Critical Factors for Industrial Symbiosis Emergence Process. J. Clean. Prod. 2019, 212, 56–69. [Google Scholar] [CrossRef]
- Iacondini, A.; Mencherini, U.; Passarini, F.; Vassura, I.; Fanelli, A.; Cibotti, P. Feasibility of Industrial Symbiosis in Italy as an Opportunity for Economic Development: Critical Success Factor Analysis, Impact and Constrains of the Specific Italian Regulations. Waste Biomass Valor. 2015, 6, 865–874. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, Z.; Wu, J.; He, Y.; Xu, H. Which Factors Promote or Inhibit Enterprises’ Participation in Industrial Symbiosis? An Analytical Approach and a Case Study in China. J. Clean. Prod. 2020, 244, 118600. [Google Scholar] [CrossRef]
- Lombardi, R. Non-Technical Barriers to (and Drivers for) the Circular Economy through Industrial Symbiosis: A Practical Input. Econ. Policy Energy Environ. 2017, 2017, 171–189. [Google Scholar] [CrossRef]
- Lybæk, R.; Christensen, T.B.; Thomsen, T.P. Enhancing Policies for Deployment of Industrial Symbiosis—What Are the Obstacles, Drivers and Future Way Forward? J. Clean. Prod. 2021, 280, 124351. [Google Scholar] [CrossRef]
- Mirata, M. Experiences from Early Stages of a National Industrial Symbiosis Programme in the UK: Determinants and Coordination Challenges. J. Clean. Prod. 2004, 12, 967–983. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Murakami, F.K.; Butturi, M.A.; Marinelli, S.; Kadel, N., Jr.; Rimini, B. Barriers, Drivers, and Relationships in Industrial Symbiosis of a Network of Brazilian Manufacturing Companies. Sustain. Prod. Consum. 2021, 26, 443–454. [Google Scholar] [CrossRef]
- Simboli, A.; Taddeo, R.; Morgante, A. Analysing the Development of Industrial Symbiosis in a Motorcycle Local Industrial Network: The Role of Contextual Factors. J. Clean. Prod. 2014, 66, 372–383. [Google Scholar] [CrossRef]
- Jakobsen, S.; Steinmo, M. Drivers and Barriers for Industrial Symbiosis: The Case of Mo Industrial Park. In Research Handbook of Innovation for a Circular Economy; Jakobsen, S., Lauvås, T., Quatraro, F., Rasmussen, E., Steinmo, M., Eds.; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2021; ISBN 978-1-80037-309-9. [Google Scholar]
- Jacobsen, B.N. Do Social Factors Really Matter When Companies Engage in Industrial Symbiosis? Progress. Ind. Ecol. Int. J. 2007, 4, 440–462. [Google Scholar] [CrossRef]
- Henriques, J.; Ferrão, P.; Castro, R.; Azevedo, J. Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers. Sustainability 2021, 13, 1723. [Google Scholar] [CrossRef]
- Morales, M.E.; Ureña, L.J.B.; Fuente, A.B.L. Key-Drivers Identification for Industrial Symbiosis Entailing Circular Economy Transition in Europe. In Proceedings of the 2023 IEEE European Technology and Engineering Management Summit (E-TEMS), Kaunas, Lithuania, 20–22 April 2023; pp. 39–43. [Google Scholar]
- Neves, Â.; Ferreira, H.; Lopes, F.J.; Godina, R.; Matias, J.C.O. Industrial Symbiosis Applied to Oil Refineries: Drivers and Barriers. In Quality Innovation and Sustainability; De Oliveira Matias, J.C., Oliveira Pimentel, C.M., Gonçalves Dos Reis, J.C., Costa Martins Das Dores, J.M., Santos, G., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 265–278. ISBN 978-3-031-12913-1. [Google Scholar]
- Herath, P.; Dissanayake, P.; Kumarasiri, B. Enablers to Facilitate Industrial Symbiosis for Better Waste Management of Industrial Zones in Sri Lanka. In Proceedings of the 10th World Construction Symposium 2022, Colombo, Sri Lanka, 24 June 2022; pp. 429–440. [Google Scholar]
- Rosendahl, S.; Lundkvist, K.; Haase, B.; Stemne, J.; Andersson, L.; Eriksson, R. Establishing an Industrial Symbiosis—Key Factors and Time Aspects in Steel Industry. Matériaux Tech. 2019, 107, 508. [Google Scholar] [CrossRef]
- Paquin, R.L.; Tilleman, S.G.; Howard-Grenville, J. Is There Cash in That Trash?: Factors Influencing Industrial Symbiosis Exchange Initiation and Completion. J. Ind. Ecol. 2014, 18, 268–279. [Google Scholar] [CrossRef]
- Ayazi, S.M.; Babgohari, A.Z.; Taghizadeh-Yazdi, M. Towards the Analysis of Industrial Symbiosis Enablers in Small and Medium Enterprises: A Hesitant Fuzzy Approach. In Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation; Jafari-Sadeghi, V., Amoozad Mahdiraji, H., Eds.; Emerald Publishing Limited: Bingley, UK, 2023; pp. 243–265. ISBN 978-1-80382-234-1. [Google Scholar]
- Bacudio, L.R.; Benjamin, M.F.D.; Eusebio, R.C.P.; Holaysan, S.A.K.; Promentilla, M.A.B.; Yu, K.D.S.; Aviso, K.B. Analyzing Barriers to Implementing Industrial Symbiosis Networks Using DEMATEL. Sustain. Prod. Consum. 2016, 7, 57–65. [Google Scholar] [CrossRef]
- Taqi, H.M.M.; Meem, E.J.; Bhattacharjee, P.; Salman, S.; Ali, S.M.; Sankaranarayanan, B. What Are the Challenges That Make the Journey towards Industrial Symbiosis Complicated? J. Clean. Prod. 2022, 370, 133384. [Google Scholar] [CrossRef]
- Ahuja, J.; Panda, T.K.; Luthra, S.; Kumar, A.; Choudhary, S.; Garza-Reyes, J.A. Do Human Critical Success Factors Matter in Adoption of Sustainable Manufacturing Practices? An Influential Mapping Analysis of Multi-Company Perspective. J. Clean. Prod. 2019, 239, 117981. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain Technology and the Sustainable Supply Chain: Theoretically Exploring Adoption Barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Kumar, A.; Ali, S.M.; Paul, S.K.; Sultana, R.; Rezaei, J. Critical Success Factors for a Circular Economy: Implications for Business Strategy and the Environment. Bus. Strategy Environ. 2020, 29, 3611–3635. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. A Grey-Based DEMATEL Model for Evaluating Business Process Management Critical Success Factors. Int. J. Prod. Econ. 2013, 146, 281–292. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Lee, Y.-S. Exploring the Critical Factors Influencing the Quality of Blog Interfaces Using the Decision-Making Trial and Evaluation Laboratory (DEMA℡) Method. Behav. Inf. Technol. 2014, 33, 184–194. [Google Scholar] [CrossRef]
- Khan, S.; Singh, R.; Haleem, A.; Dsilva, J.; Ali, S.S. Exploration of Critical Success Factors of Logistics 4.0: A DEMATEL Approach. Logistics 2022, 6, 13. [Google Scholar] [CrossRef]
- Wu, H.-H.; Chang, S.-Y. A Case Study of Using DEMATEL Method to Identify Critical Factors in Green Supply Chain Management. Appl. Math. Comput. 2015, 256, 394–403. [Google Scholar] [CrossRef]
- Zhao, G.; Irfan Ahmed, R.; Ahmad, N.; Yan, C.; Usmani, M.S. Prioritizing Critical Success Factors for Sustainable Energy Sector in China: A DEMATEL Approach. Energy Strategy Rev. 2021, 35, 100635. [Google Scholar] [CrossRef]
- Chountalas, P.T.; Chatzifoti, N.; Alexandropoulou, A.; Georgakellos, D.A. Analyzing Barriers to Innovation Management Implementation in Sustainable Tourism Using DEMATEL Method. World 2024, 5, 1004–1022. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, P.-Y. Analysis of Critical Factors for Social Games Based on Extended Technology Acceptance Model: A DEMA℡ Approach. Behav. Inf. Technol. 2018, 37, 774–785. [Google Scholar] [CrossRef]
- Huang, L.; Zhen, L.; Wang, J.; Zhang, X. Blockchain Implementation for Circular Supply Chain Management: Evaluating Critical Success Factors. Ind. Mark. Manag. 2022, 102, 451–464. [Google Scholar] [CrossRef]
- Chrysikopoulos, S.K.; Chountalas, P.T.; Georgakellos, D.A.; Lagodimos, A.G. Green Certificates Research: Bibliometric Assessment of Current State and Future Directions. Sustainability 2024, 16, 1129. [Google Scholar] [CrossRef]
- Chrysikopoulos, S.K.; Chountalas, P.T.; Georgakellos, D.A.; Lagodimos, A.G. Decarbonization in the Oil and Gas Sector: The Role of Power Purchase Agreements and Renewable Energy Certificates. Sustainability 2024, 16, 6339. [Google Scholar] [CrossRef]
Critical Success Factors | Impact | ||||
---|---|---|---|---|---|
CSF1: Enhanced Training and Education | 3.665 | 3.086 | 6.751 | 0.579 | Cause |
CSF2: Economic Growth and Profitability | 3.231 | 4.238 | 7.469 | −1.007 | Effect |
CSF3: Operational Cost Reduction | 2.950 | 3.766 | 6.716 | −0.817 | Effect |
CSF4: Waste Reduction and Environmental Impact | 3.314 | 4.267 | 7.581 | −0.953 | Effect |
CSF5: Leadership | 4.367 | 3.179 | 7.546 | 1.187 | Cause |
CSF6: Governance and Internal Organizational Structure | 3.511 | 2.951 | 6.462 | 0.560 | Cause |
CSF7: Clear Communication and Information Sharing | 3.818 | 3.259 | 7.077 | 0.560 | Cause |
CSF8: Local and Social Acceptance | 2.614 | 3.231 | 5.845 | −0.617 | Effect |
CSF9: Inter-organizational Relationships and Geographic Proximity | 3.017 | 2.988 | 6.005 | 0.029 | Cause |
CSF10: Policy and Regulatory Support and Compliance | 3.521 | 3.369 | 6.890 | 0.153 | Cause |
CSF11: Use of Technology and Technological Factors | 3.803 | 3.477 | 7.281 | 0.326 | Cause |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysikopoulos, S.K.; Chountalas, P.T.; Georgakellos, D.A.; Lagodimos, A.G. Modeling Critical Success Factors for Industrial Symbiosis. Eng 2024, 5, 2902-2919. https://doi.org/10.3390/eng5040151
Chrysikopoulos SK, Chountalas PT, Georgakellos DA, Lagodimos AG. Modeling Critical Success Factors for Industrial Symbiosis. Eng. 2024; 5(4):2902-2919. https://doi.org/10.3390/eng5040151
Chicago/Turabian StyleChrysikopoulos, Stamatios K., Panos T. Chountalas, Dimitrios A. Georgakellos, and Athanasios G. Lagodimos. 2024. "Modeling Critical Success Factors for Industrial Symbiosis" Eng 5, no. 4: 2902-2919. https://doi.org/10.3390/eng5040151
APA StyleChrysikopoulos, S. K., Chountalas, P. T., Georgakellos, D. A., & Lagodimos, A. G. (2024). Modeling Critical Success Factors for Industrial Symbiosis. Eng, 5(4), 2902-2919. https://doi.org/10.3390/eng5040151