Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review
Abstract
:1. Introduction
Contribution of this Review Paper
2. Review Approach
3. Topologies and Configuration
4. Global Status of HPPs
Wind + Solar Project | |||||||
---|---|---|---|---|---|---|---|
Project | Location | Wind (MW) | Solar (MW) | Storage (MW/MWh) | Main Function | Status | Reference |
Cynog park | U.K. | 3.6 | 5 | Maximizing grid utilization | Operating (2016) | [47] | |
Minnesota Community Site | U.S. | 5 | 0.5 | Local municipality, but ensuring grid connection compliance | Operating (2018) | [12] | |
Kavithal Solar Wind Project | India | 50 | 28.8 | Enhanced and flatter power output, shared transmission infrastructure | Operating (2018) | [49] | |
Louzes | Greece | 24 | 1 | Operating (2012) | [12] | ||
Wind + Solar + Battery | |||||||
Haringvliet | Netherlands | 21 | 41 | 12 | Frequency containment reserve services and time-shifting services | Operating (2020) | [12,47] |
Kennedy Energy Park | Australia | 43.2 | 15 | 2/4 * | Meet local energy demand without excessive storage capacity | Operating (2017) | [12,47] |
La Plana | Spain | 0.85 | 0.245 | 0.4/0.5 * | Support remote areas without access to the gird and minimize diesel consumption | Operating (2017) | [50] |
Tilos Hybrid Plant | Greece | 0.8 | 0.16 | 0.8 | Power demand and enhanced stability | Operating (2018) | [51] |
Wheattridge Renewable Energy | USA | 300 | 50 | 30 | Contribution to GHG reduction | Operating (2020) | [52] |
Graciosa | Portugal | 4.5 | 1 | 6 | Meet power demand | Operating (2020) | |
Grand Ridge | USA | 210 | 20 | 36 | Enhanced energy supply stability | Operating (2020) | [53] |
Upcoming, under development, and approved [12] | |||||||
Kendinin | Australia | 120 | 50 | N/A | Enhanced and flatter power output | Under feasibility study | [12] |
Clarke Creek | Australia | 800 | N/A | N/A | Enhanced and flatter power output | Under feasibility study | |
Andra Pradesh hybrid project | India | 16 | 25 | 10 | Enhanced and flatter power output | Contracted | |
Tender Project | India | N/A | N/A | N/A | Enhanced and flatter power output | Approved | |
Three Gorges, Inner Mongolia | China | 2.7 GW | 300 | 880 | Enhanced and flatter power output | Under construction | |
Northwest Ohio | USA | 105 | 3.5 | 1 | Enhanced and flatter power output | Under development | |
Megisti hybrid project | Greece | 1 | 0.85 | 1.44 | Weak power grid | Under licensing | |
Angios Elestratios Green Island | Greece | 1 | 0.101 | 0.72 | Weak power grid | Under development | |
Endesa | Portugal | 264 | 365 | 168 | Enhanced and flatter power output | Under Planning |
5. Optimization Techniques
Summary and Evaluation
6. Sizing Methodologies
6.1. Sizing HPPs Using the Classical Approach
6.2. Modern Methods
6.3. Sizing HPPs Using Software Tools
Summary and Evaluation
7. Control and Energy Management Strategies
7.1. Control Strategies
Summary and Evaluation
7.2. Energy Management Strategies
Summary and Evaluation
8. Discussion
Control and Energy Management Strategies
9. Research Opportunities
10. Future Trends
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPP | hybrid power plant |
RES | renewable energy sources |
MW | mega watt |
PCC | point of common connection |
COE | cost of energy |
ASC | annualized system cost |
LCOE | levelized cost of energy |
LCC | life cycle cost |
LLP | loss of load probability |
LPSP | loss of power supply probability |
RF | renewable fraction |
REF | renewable energy factor |
AI | artificial intelligence |
GA | genetic algorithm |
PSO | particle swarm optimization |
HOMER | hybrid optimization of multiple energy resources |
EMSs | energy management strategies |
PV | photovoltaic |
WT | wind turbine |
HRES | hybrid renewable energy system |
WoS | Web of Science |
AC | alternate current |
DC | direct current |
LPM | linear programming model |
MOEA | multi-objective evolutionary algorithms |
MILP | multi-integer linear programming |
NLP | non-linear programming |
HSA | harmony search algorithm |
SA | simulated annealing |
ACA | ant colony algorithm |
BFO | bacterial foraging algorithm |
ABC | artificial bee colony algorithm |
CS | cuckoo search |
ANN | artificial neural network |
SOC | state of charge |
FLC | fuzzy logic control |
FL | fuzzy logic |
ANFIS | adaptive neuro-fuzzy inference system |
FAHP | fuzzy analytic hierarchy process |
GAPSO | generic algorithm particle swarm optimization |
SOO | single-objective optimization |
MOO | multi-objective optimization |
NPV | net present value |
IPSO | improved particle swarm optimization |
GWO | grey wolf optimization |
NREL | National Renewable Energy Laboratory |
HOGA | hybrid optimization of generic algorithm |
TRNSYS | transient system simulation software |
RETSCreen | renewable-energy and energy-efficiency technology screening software |
FC | fuel cell |
PGUs | power generating units |
STATCOM | static synchronous compensator |
MPC | model predictive control |
TLBO | teaching learning-based optimization |
EDE | enhanced differential evolution |
SSA | slap swarm algorithm |
FPA | flower pollination algorithm |
GSA | gravitation search algorithm |
CSA | crow search algorithm |
Appendix A
Assessment | Preferred Indicators | Functions |
---|---|---|
Technical indicator | LPSP | |
Economic indicator | NPC | |
ACS | + | |
LCOE | ||
Social political indicator | HDI | |
JC | ||
Energy Efficiency indicator | ECR | |
Environmental indicator | Ecarbon | |
LCCF | ||
LEOE |
Reference/Year of Study | System Studied | Topic Covered | Highlights |
---|---|---|---|
Chauhan and Saini [109] | HRES |
|
|
Siddaiah and Saini [25] | HRES |
|
|
Al-falahi et al. [55] | HRES |
|
|
Khan et al. [28] | Solar photovoltaic and wind hybrid energy systems |
|
|
Anoune et al. [17] | PV–wind based HRES |
|
|
Lian et al. [83] | HRES |
|
|
Lindberg et al. [13] | Wind–solar battery HPP |
|
|
Ammari et al. [34] | HRES |
|
|
Emad et al. [91] | Wind–solar battery |
|
|
Thirunavukkarasu et al. [81] | HRES |
|
|
Iweh et al. [35] | HRES |
|
|
Optimization Method | System Configurations | Optimization Function | Constraints | Reference |
---|---|---|---|---|
GA FL | Wind/PV/battery | Minimize total cost | Power balance State of charge | Adbelhak et al. [155] |
ACA, Integer LPM | Wind/PV | Minimize total cost | Number of PV panels, wind turbines, and batteries | Fetanat et al. [156] |
PSO SA | Wind/PV/battery | Minimize total present cost | Number of hybrid components, energy not supplied, battery SOC | Ahmadi et al. [157] |
CS | Wind/PV/battery | Minimize total cost | Seasonal variation in the load | Sanajaoba and Fernandez, [158] |
SA, CS, Improved HS | PV–wind–reverse osmosis–battery | Minimize total LCC | Surface area of PV arrays, wind turbine blades, quantity of batteries, LPSP, and SOC | Peng et al. [159] |
TLBO, EDE, and SSA | Wind–PV | Minimize TAC, reliability | Number of hybrid system components, LPSP, DOD | Khan et al. [20] |
Jaya, TLBO | Wind/PV/battery | Minimize TAC | Number of hybrid system components, LPSP, SOC | Khan et al. [160] |
AC, firefly algorithm, PSO, GA | Wind/PV/battery | NPC | Number of hybrid system components, SOC | Javed et al. [161] |
Crow and PSO | Wind/PV/battery | Minimize COE | Distribution of power supply and demand planning | Guneser et al. [162] |
GWO Sine cosine Algorithm | Wind/PV/H2 | Minimize LCC | Number of hybrid system components | Jahannoosh et al. [163] |
Optimization Method | System Configurations | Optimization Function | Constraints | Reference |
---|---|---|---|---|
FPA SA | Wind/PV/battery | Minimize LPSP Maximize cumulative saving | PV panel tilt angle, number of PVs, wind turbines, and batteries | Tahani et al. [164] |
PSO GA | Wind/PV/battery | Minimize LPSP Minimize LCC Minimize fluctuation rate Minimize loss of energy probability | Numbers of PVs, wind turbines, and batteries | Ma et al. [165] |
PSO Nelder Mead Algorithm | PV/wind/fuel cell | Minimize power loss | Power balance, bus voltage | Senthil et al. [166] |
PSO GSA | PV/wind | Minimize total energy loss Maximize voltage profit | Power flow m bus voltage, load constraints, PV/wind capacity | Radosavljevic et al. [167] |
Biogeography-based optimization, PSO | Wind/PV/battery | Minimize cost Minimize system index reliability | Power balance between supply and demand | Abuelrub et al. [168] |
CSA, PSO | Wind/PV/battery | Minimize cost Minimize loss Minimize voltage profile | Number of hybrid system components, size of batteries, network bus voltage constraint, allowable current constraint, peak capacity of each renewable DG constraint, and power balance constraint | Aliabadi et al. [169] |
References
- United Nation [UN]. Adoption of the Paris Agreement 2015; United Nation: New York, NY, USA, 2015. [Google Scholar]
- Dykes, K.; King, J.; DiOrio, N.; King, R.; Gevorgian, V.; Corbus, D.; Blair, N.; Anderson, K.; Stark, G.; Turchi, C.; et al. Opportunities for Research and Development of Hybrid Power Plants. National Renewable Energy Laboratory 2020; NREL/TP-5000-75026. Available online: https://www.nrel.gov/docs/fy20osti/75026.pdf (accessed on 7 April 2023).
- Das, K.; Hansen, A.D.; Vangari, D.H.; Koivisto, M.J.; Sørensen, P.E.; Altin, M. Enhanced Features of Wind-based Hybrid Power Plants. In Proceedings of the 4th International Hybrid Power Systems Workshop 2019, Crete, Greece, 22–23 May 2019. [Google Scholar]
- Kryonidis, G.C.; Kontis, E.O.; Papadopoulos, T.A.; Pippi, K.D.; Nousdilis, A.I.; Barzegkar-Ntovom, G.A.; Boubaris, A.; Papanikolaou, N. Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective. Renew. Sustain. Energy Rev. 2021, 147, 111198. [Google Scholar] [CrossRef]
- Mar, A.; Pereira, P.; Martins, J. A survey on power grid faults and their origins: A contribution to improving power grid resilience. Energies 2019, 12, 4667. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; D’Accadia, M.D.; Vicidomini, M. A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment. Energy 2018, 155, 174–189. [Google Scholar] [CrossRef]
- Petersen, L.; Iov, F.; Tarnowski, G.C.; Gevorgian, V.; Koralewicz, P.; Stroe, D. Validating Performance Models for Hybrid Power Plant Control Assessment. Energies 2019, 12, 4330. [Google Scholar] [CrossRef]
- Bade, S.O.; Meenakshisundaram, A.; Omojiba, T.; Tomomewo, O. Battery Uses for Regulating Active Power in Utility-scale Wind-based Hybrid Power Plant. Am. J. Energy Res. 2023, 11, 82–92. [Google Scholar] [CrossRef]
- François, B.; Hingray, B.; Raynaud, D. Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renew. Energy 2016, 87, 686–696. [Google Scholar] [CrossRef]
- Guangqian, D.; Bekhrad, K.; Azarikhan, P. A hybrid algorithm-based optimization on modeling of grid-independent biodiesel-based hybrid solar/wind systems. Renew. Energy 2018, 122, 551–560. [Google Scholar] [CrossRef]
- Vivas, F.; De Las Heras, A.; Segura, F.; Andújar, J.M. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renew. Sustain. Energy Rev. 2018, 82, 126–155. [Google Scholar] [CrossRef]
- Wind Europe. Renewable Hybrid Power Plants-Exploring the Benefits and Market Opportunities. 2019. Available online: https://windeurope.org/wp-content/uploads/files/policy/position-papers/WindEurope-renewable-hybrid-power-plants-dasbenefits-and-market-opportunities.pdf (accessed on 7 April 2023).
- Lindberg, O.; Arnqvist, J.; Munkhammar, J.; Lingfors, D. Review on power-production modeling of hybrid wind and PV power parks. J. Renew. Sustain. Energy 2021, 13, 042702. [Google Scholar] [CrossRef]
- Lawan, S.M.; Abidin, W.A.W.Z. A review of hybrid renewable energy systems based on wind and solar Energy: Modeling, design and Optimization. In Wind Solar Hybrid Renewable Energy System; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Mahesh, A.; Sandhu, K.S. Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renew. Sustain. Energy Rev. 2015, 52, 1135–1147. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar–wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A.B. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Ma, T.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Ding, Z.; Hou, H.; Yu, G.; Hu, E.; Duan, L.; Zhao, J. Performance analysis of a wind-solar hybrid power generation system. Energy Convers. Manag. 2019, 181, 223–234. [Google Scholar] [CrossRef]
- Khan, A.; Alghamdi, T.A.; Khan, Z.A.; Fatima, A.; Abid, S.; Khalid, A.; Javaid, N. Enhanced evolutionary sizing algorithms for optimal sizing of a Stand-Alone PV-WT-Battery hybrid system. Appl. Sci. 2019, 9, 5197. [Google Scholar] [CrossRef]
- Stanley, A.P.J.; King, J. Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant. Appl. Energy 2022, 317, 119139. [Google Scholar] [CrossRef]
- González-Ramírez, J.M.; Arcos-Vargas, Á.; Hernández, F.N. Optimal sizing of hybrid wind-photovoltaic plants: A factorial analysis. Sustain. Energy Technol. Assess. 2023, 57, 103155. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, H.; Dong, Y.; Wang, Y.; Dong, L.; Xiao, M. Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks. Appl. Energy 2019, 250, 389–403. [Google Scholar] [CrossRef]
- Ishraque, M.F.; Shezan, S.A.; Ali, M.; Rashid, M.M. Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources. Appl. Energy 2021, 292, 116879. [Google Scholar] [CrossRef]
- Siddaiah, R.; Saini, R. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [Google Scholar] [CrossRef]
- Ma, W.; Xue, X.; Liu, G. Techno-economic evaluation for hybrid renewable energy system: Application and merits. Energy 2018, 159, 385–409. [Google Scholar] [CrossRef]
- Tripp, C.; Guittet, D.; King, J.; Barker, A. A simplified, efficient approach to hybrid wind and solar plant site optimization. Wind Energ. Sci. 2022, 7, 697–713. [Google Scholar] [CrossRef]
- Khan, F.A.; Pal, N.; Saeed, S.H. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renew. Sustain. Energy Rev. 2018, 92, 937–947. [Google Scholar] [CrossRef]
- Mahesh, A.; Sandhu, K.S. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm. Front. Energy 2020, 14, 139–151. [Google Scholar] [CrossRef]
- Ghofrani, M.; Hosseini, N.N. Optimizing hybrid renewable energy systems: A review. Sustain. Energy-Technol. Issues Appl. Case Stud. 2016, 8, 161–176. [Google Scholar]
- Belouda, M.; Hajjaji, M.A.; Sliti, H.; Mami, A. Bi-objective optimization of a standalone hybrid PV–Wind–battery system generation in a remote area in Tunisia. Sustain. Energy Grids Netw. 2018, 16, 315–326. [Google Scholar] [CrossRef]
- Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [Google Scholar] [CrossRef]
- Barakat, S.; Ibrahim, H.; Elbaset, A.A. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustain. Cities Soc. 2020, 60, 102178. [Google Scholar] [CrossRef]
- Ammari, C.; Belatrache, D.; Touhami, B.; Makhloufi, S. Sizing, optimization, control and energy management of hybrid renewable energy system—A review. Energy Built Environ. 2022, 3, 399–411. [Google Scholar] [CrossRef]
- Iweh, C.D.; Clarence, S.G.; Roger, A.H. The optimization of hybrid renewables for rural electrification: Techniques and the design problem. Int. J. Eng. Trends Technol. 2022, 70, 222–239. [Google Scholar] [CrossRef]
- Petersen, L.; Hesselbak, B.; Martinez, A.; Borsotti-Andruszkiewicz, R.M.; Tarnowski, G.C.; Steggel, N.; Osmond, D. Vestas power plant solutions integrating wind, solar PV and energy storage. In Proceedings of the 3rd International Hybrid Power Systems Workshop, Tenerife, Spain, 8–9 May 2018. [Google Scholar]
- Raducu, A.; Styliaras, N.; Funkqvist, J.; Ionita, C. Design and implementation of a hybrid power plant controller. In Proceedings of the 3rd International Hybrid Power Systems Workshop, Tenerife, Spain, 8–9 May 2018. [Google Scholar]
- Pombo, D.V.; Iov, F.; Stroe, D. A Novel Control Architecture for Hybrid Power Plants to Provide Coordinated Frequency Reserves. Energies 2019, 12, 919. [Google Scholar] [CrossRef]
- Long, Q.; Das, K.; Sørensen, P.E. Hierarchical Control Architecture of Co-located Hybrid Power Plants. IEEE TechRxiv 2021, 143, 108407. [Google Scholar] [CrossRef]
- Bade, S.O.; Tomomewo, O.; Meenakshisundaram, A. Utility-Scale Wind-Based Hybrid Power Plants and Control Strategy. Sustain. Energy 2023, 11, 12–20. [Google Scholar] [CrossRef]
- Nallolla, C.A.; Vijayapriya, P.; Dhanamjayulu, C.; Padmanaban, S. Multi-Objective Optimization Algorithms for a hybrid AC/DC microgrid using RES: A Comprehensive review. Electronics 2023, 12, 1062. [Google Scholar] [CrossRef]
- Modu, B.; Abdullah, P.; Bukar, A.L.; Hamza, M.F. A systematic review of hybrid renewable energy systems with hydrogen storage: Sizing, optimization, and energy management strategy. Int. J. Hydrogen Energy 2023, 48, 38354–38373. [Google Scholar] [CrossRef]
- Khan, A.A.; Minai, A.F.; Pachauri, R.K.; Malik, H. Optimal Sizing, control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review. Energies 2022, 15, 6249. [Google Scholar] [CrossRef]
- Rullo, P.; Costa-Castelló, R.; Roda, V.; Feroldi, D. Energy Management strategy for a bioethanol isolated hybrid system: Simulations and experiments. Energies 2018, 11, 1362. [Google Scholar] [CrossRef]
- Silva, A.R.; Estanqueiro, A. From Wind to Hybrid: A contribution to the optimal design of Utility-Scale Hybrid Power Plants. Energies 2022, 15, 2560. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, M. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew. Sustain. Energy Rev. 2014, 38, 47–63. [Google Scholar] [CrossRef]
- Klonari, V.; Fraile, D.; Rossi, R.; Schmela, M. Exploring the Viability of HybridWind-Solar Power Plants. 2019. Available online: https://hybridpowersystems.org/crete2019/wp-content/uploads/sites/13/2020/03/3A_1_HYB19_063_paper_Klonari_Vasiliki.pdf (accessed on 29 July 2023).
- Australian Renewable Energy Agency [ARENA]. Knowledge Sharing (Finclose Report). 2018. Available online: https://arena.gov.au/assets/2017/02/Kennedy-Park-FinClose-Report-Windlab.pdf (accessed on 30 July 2023).
- India Energy Storage Alliance. Hero Launches India’s First Solar-Wind Hybrid Project, n.d. Available online: https://indiaesa.info/buzz/news/industry-news/1192-hero-launches-india-s-first-solar-wind-hybrid-project (accessed on 29 July 2023).
- Energymatters. Gamesa Commissions Hybrid System’s Battery Storage 2016. Available online: https://www.energymatters.com.au/renewable-news/gamesa-offgrid-battery-em5744/ (accessed on 30 July 2023).
- Kokkinidis, T. Tilos, Greece’s First Energy-Self-Sufficient Island. Greekreporter 2022. Available online: https://greekreporter.com/2022/01/21/tilos-greece-first-energy-self-sufficient-island/ (accessed on 30 July 2023).
- Gearino, D. A Clean Energy Trifecta: Wind, Solar and Storage in the Same Project. Inside Climate News 2022. Available online: https://insideclimatenews.org/news/06102022/a-clean-energy-trifecta-wind-solar-and-storage-in-the-same-project/ (accessed on 30 July 2023).
- Invenergy. Grand Ridge Energy Center-Case Study Invenergy n.d. Available online: https://invenergy.com/projects/case-studies/blt0d2f2a9438d0674c (accessed on 30 July 2023).
- Eriksson, E.; Gray, E.M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems—A critical review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.; Jayasinghe, S.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Chang, C. Multi-choice goal programming model for the optimal location of renewable energy facilities. Renew. Sustain. Energy Rev. 2015, 41, 379–389. [Google Scholar] [CrossRef]
- Wang, R.; Li, G.; Ming, M.; Wu, G.; Wang, L. An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system. Energy 2017, 141, 2288–2299. [Google Scholar] [CrossRef]
- Khan, A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [Google Scholar] [CrossRef]
- Moretti, L.; Astolfi, M.; Vergara, C.; Macchi, E.; Pérez-Arriaga, J.I.; Manzolini, G. A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification. Appl. Energy 2019, 233–234, 1104–1121. [Google Scholar] [CrossRef]
- Wu, N.; Wang, H. Deep learning adaptive dynamic programming for real time energy management and control strategy of micro-grid. J. Clean. Prod. 2018, 204, 1169–1177. [Google Scholar] [CrossRef]
- Das, B.; Kumar, A. A NLP approach to optimally size an energy storage system for proper utilization of renewable energy sources. Procedia Comput. Sci. 2018, 125, 483–491. [Google Scholar] [CrossRef]
- Reddy, S.S.; Momoh, J.A. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Trans. Smart Grid 2015, 6, 3114–3125. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- Roy, P.; He, J.; Liao, Y. Cost minimization of Battery-Supercapacitor hybrid energy storage for hourly dispatching Wind-Solar hybrid power system. IEEE Access 2020, 8, 210099–210115. [Google Scholar] [CrossRef]
- Sawle, Y.; Gupta, S.; Bohre, A.K. Techno-economic scrutiny of HRES through GA and PSO technique. Int. J. Renew. Energy Technol. 2018, 9, 84. [Google Scholar] [CrossRef]
- Muleta, N.; Badar, A.Q.H. Designing of an optimal standalone hybrid renewable energy micro-grid model through different algorithms. J. Eng. Res. 2023, 11, 100011. [Google Scholar] [CrossRef]
- Sharafi, M.; ElMekkawy, T.Y. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renew. Energy 2014, 68, 67–79. [Google Scholar] [CrossRef]
- Sutikno, T.; Arsadiando, W.; Wangsupphaphol, A.; Yudhana, A.; Facta, M. A review of recent advances on hybrid energy storage system for solar photovoltaics power generation. IEEE Access 2022, 10, 42346–42364. [Google Scholar] [CrossRef]
- Faria, J.; Pombo, J.; Calado, M.; Mariano, S. Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System. Energies 2019, 12, 902. [Google Scholar] [CrossRef]
- Singh, P.; Lather, J.S. Dynamic power management and control for low voltage DC microgrid with hybrid energy storage system using hybrid bat search algorithm and artificial neural network. J. Energy Storage 2020, 32, 101974. [Google Scholar] [CrossRef]
- Mohandes, B.; Wahbah, M.; Moursi, M.S.E.; El-Fouly, T.H.M. Renewable energy Management System: Optimum design and hourly dispatch. IEEE Trans. Sustain. Energy 2021, 12, 1615–1628. [Google Scholar] [CrossRef]
- Athari, M.H.; Ardehali, M. Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller. Renew. Energy 2016, 85, 890–902. [Google Scholar] [CrossRef]
- Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system. Energy Convers. Manag. 2017, 148, 238–250. [Google Scholar] [CrossRef]
- Yahyaoui, I.; De La Peña, N.V. Energy management strategy for an autonomous hybrid power plant destined to supply controllable loads. Sensors 2022, 22, 357. [Google Scholar] [CrossRef] [PubMed]
- Tito, S.R.; Lie, T.T.; Anderson, T. Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors. Sol. Energy 2016, 136, 525–532. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, M.; Srivastava, L. Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique. Energy 2023, 269, 126756. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Han, M.; Chen, X.; Yuan, Y. Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energy Convers. Manag. 2018, 165, 8–24. [Google Scholar] [CrossRef]
- Alshammari, N.; Asumadu, J. Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustain. Cities Soc. 2020, 60, 102255. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. Iet Renew. Power Gener. 2017, 12, 72–80. [Google Scholar] [CrossRef]
- Kong, L.; Cai, G.; Xue, S.; Li, S. Modeling and coordinated control strategy of large-scale Grid-Connected Wind/Photovoltaic/Energy Storage hybrid energy conversion system. Math. Probl. Eng. 2015, 2015, 682321. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Li, W.; Jikang, L.; Hu, Z.; Li, S.; Chan, P.W. A novel probabilistic approach to optimize Stand-Alone Hybrid Wind-Photovoltaic renewable energy system. Energies 2020, 13, 4945. [Google Scholar] [CrossRef]
- Lian, J.; Zhang, Y.; Ma, C.; Yang, Y.; Chaima, E. A Review on Recent Sizing Methodologies of Hybrid Renewable Energy Systems. Energy Convers. Manag. 2019, 199, 112027. [Google Scholar] [CrossRef]
- Ganguly, P.; Kalam, A.; Zayegh, A. Solar–wind hybrid renewable energy system: Current status of research on configurations, control, and sizing methodologies. In Hybrid-Renewable Energy Systems in Microgrids; Elsevier: Amsterdam, The Netherlands, 2018; pp. 219–248. [Google Scholar] [CrossRef]
- Karve, G.M.; Kurundkar, K.; Vaidya, G.A. Implementation of Analytical Method and Improved Particle Swarm Optimization Method for Optimal Sizing of a Standalone PV/Wind and Battery Energy Storage Hybrid System. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology, Bombay, India, 29–31 March 2019. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Rajabipour, A.; Cada, M.; Khanali, M. Modeling, Design, and Optimization of a Cost-Effective and Reliable Hybrid Renewable Energy System Integrated with Desalination Using the Division Algorithm. Int. J. Energy Res. 2021, 45, 429–452. [Google Scholar] [CrossRef]
- Muthukumar, R.; Balamurugan, P. A Novel Power Optimized Hybrid Renewable Energy System Using Neural Computing and bee Algorithm. Automatika 2019, 60, 332–339. [Google Scholar] [CrossRef]
- Riaz, M.; Ahmad, S.; Hussain, I.; Naeem, M.; Mihet-Popa, L. Probabilistic Optimization Techniques in Smart Power System. Energies 2022, 15, 825. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Hassan, H.; Jurasz, J. Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach. Energy Convers. Manag. 2018, 173, 331–347. [Google Scholar] [CrossRef]
- Emad, D.; El-Hameed, M.A.; Yousef, M.T.; El-Fergany, A.A. Computational methods for optimal planning of hybrid renewable microgrids: A comprehensive review and challenges. Arch. Comput. Methods Eng 2020, 27, 1297–1319. [Google Scholar] [CrossRef]
- Müller, D.; Selvanathan, S.P.; Cuce, E.; Sudhakar, K. Hybrid solar, wind, and energy storage system for a sustainable campus: A simulation study. Sci. Technol. Energy Transit. 2023, 78, 13. [Google Scholar] [CrossRef]
- Ur Rehman, S.; Rehman, S.; Qazi, M.U.; Shoaib, M.; Lashin, A. Feasibility Study of Hybrid Energy System for off-Grid Rural Electrification in Southern Pakistan. Energy Explor. Exploit. 2016, 34, 468–482. [Google Scholar] [CrossRef]
- Das, B.; Hassan, R.; Tushar, M.S.H.K.; Zaman, F.; Hasan, M.; Das, P. Techno-economic and environmental assessment of a hybrid renewable energy system using multi-objective genetic algorithm: A case study for remote Island in Bangladesh. Energy Convers. Manag. 2021, 230, 113823. [Google Scholar] [CrossRef]
- Elkadeem Younes, A.; Sharshir, S.W.; Campana, P.E.; Wang, S. Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis. Appl. Energy 2021, 295, 117071. [Google Scholar] [CrossRef]
- Sambhi, S.; Sharma, H.; Bhadoria, V.S.; Kumar, P.; Chaurasia, R.; Fotis, G.; Vita, V. Technical and Economic analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant using different battery Storage Technologies for SRM IST, Delhi-NCR Campus. Sustainability 2023, 15, 3666. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Brumana, G.; Franchini, G.; Ghirardi, E.; Perdichizzi, A.G. Techno-economic optimization of hybrid power generation systems: A renewables community case study. Energy 2022, 246, 123427. [Google Scholar] [CrossRef]
- Tawfik, T.; Badr, M.A.; EYEl-Kady; Abdellatif, O.E. Optimization and energy management of hybrid standalone energy system: A case study. Renew. Energy Focus 2018, 25, 48–56. [Google Scholar] [CrossRef]
- Al-Badi, A.; Wahaibi, A.A.; Ahshan, R.; Malik, A. Techno-Economic feasibility of a Solar-Wind-Fuel cell energy system in Duqm, Oman. Energies 2022, 15, 5379. [Google Scholar] [CrossRef]
- Hoarca, I.C.; Bizon, N.; Sorlei, I.S.; Thounthong, P. Sizing design for a hybrid renewable power system using HOMER and iHOGA simulators. Energies 2023, 16, 1926. [Google Scholar] [CrossRef]
- Belmili, H.; Haddadi, M.; Bacha, S.; Almi, M.; Bendib, B. Sizing stand-alone photovoltaic–wind hybrid system: Techno-economic analysis and optimization. Renew. Sustain. Energy Rev. 2014, 30, 821–832. [Google Scholar] [CrossRef]
- Fadaeenejad, M.; Radzi, M.A.M.; AbKadir, M.Z.A.; Hizam, H. Assessment of hybrid renewable power sources for rural electrification in Malaysia. Renew. Sustain. Energy Rev. 2014, 30, 299–305. [Google Scholar] [CrossRef]
- Ranaboldo, M.; Domenech, B.; Reyes, G.A.; Ferrer-Martí, L.; Moreno, R.P.; García-Villoria, A. Off-grid Community Electrification Projects Based on Wind and Solar Energies: A Case Study in Nicaragua. Sol. Energy 2015, 117, 268–281. [Google Scholar] [CrossRef]
- Baker, D.K. Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data. J. Sol. Energy Eng. 2018, 140, 011006. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Hybridized off-grid fuel cell/wind/solar PV /battery for energy generation in a small household: A multi-criteria perspective. Int. J. Hydrogen Energy 2022, 47, 6437–6452. [Google Scholar] [CrossRef]
- Hossen, D.; Shezan, S.A. Optimization and Assessment of a Hybrid Solar-Wind-Biomass Renewable Energy System for Kiribati Island. Int. J. Eng. Trends Technol. 2019, 9, 58–64. [Google Scholar] [CrossRef]
- Mazzeo, D.; Baglivo, C.; Matera, N.; De Luca, P.; Congedo, P.M.; Oliveti, G. Energy and economic dataset of the worldwide optimal photovoltaic-wind hybrid renewable energy systems. Data Brief 2020, 33, 106476. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, R. A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [Google Scholar] [CrossRef]
- Rathore, A.; Patidar, N.P. Reliability assessment using probabilistic modelling of pumped storage hydro plant with PV-Wind based standalone microgrid. Int. J. Electr. Power Energy Syst. 2019, 106, 17–32. [Google Scholar] [CrossRef]
- Saiprasad, N.; Kalam, A.; Zayegh, A. Comparative Study of Optimization of HRES Using HOMER and iHOGA Software. J. Sci. Ind. Res. 2018, 77, 677–683. [Google Scholar]
- Dubey, M.; Kumar, V.; Kaur, M.; Dao, T.P. A Systematic Review on Harmony Search Algorithm: Theory, Literature, and Applications. Math. Probl. Eng. 2021, 2021, 5594267. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Dong, S.; Yao, C. An Improved Grey-Wolf Optimization Algorithm Based on Circle Map. J. Physics Conf. Ser. 2020, 1682, 012020. [Google Scholar] [CrossRef]
- Gupta, A.; Srivastava, S. Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms for Distance Optimization. Procedia Comput. Sci. 2020, 173, 245–253. [Google Scholar] [CrossRef]
- Shen, D.; Ming, W.; Ren, X.; Xie, Z.; Zhang, Y.; Liu, X. A Cuckoo Search Algorithm Using Improved Beta Distributing and its Application in the Process of edm. Crystals 2021, 11, 916. [Google Scholar] [CrossRef]
- Kavadias, K.A.; Triantafyllou, P. Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools. Energies 2021, 14, 8268. [Google Scholar] [CrossRef]
- Ramli, M.S.; Wahid, S.S.A.; Hassan, K.K. A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen. AIP Conf. Proc. 2017, 1875, 030013. [Google Scholar] [CrossRef]
- Long, Q.; Zhu, R.; Das, K.; Sørensen, P.E. Interfacing energy management with supervisory control for hybrid power plants. In Proceedings of the 20th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants (WIW 2021), Hybrid Conference, Berlin, Germany, 29–30 September 2021. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.I.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Wu, K.; Hua, Z. A multi-agent-based energy-coordination control system for grid-connected large-scale wind–photovoltaic energy storage power-generation units. Sol. Energy 2014, 107, 245–259. [Google Scholar] [CrossRef]
- Karami, N.; Moubayed, N.; Outbib, R. Energy management for a PEMFC–PV hybrid system. Energy Convers. Manag. 2014, 82, 154–168. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; García, P.L.; Fernández, L.M.S.; Jurado, F. Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system. Renew. Energy 2015, 74, 326–336. [Google Scholar] [CrossRef]
- Behzadi, M.S.; Niasati, M. Comparative performance analysis of a hybrid PV/FC/battery stand-alone system using different power management strategies and sizing approaches. Int. J. Hydrogen Energy 2015, 40, 538–548. [Google Scholar] [CrossRef]
- García, P.L.; Garcia, C.A.; Fernández, L.M.S.; Llorens, F.; Jurado, F. ANFIS-Based control of a Grid-Connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE Trans. Ind. Inform. 2014, 10, 1107–1117. [Google Scholar] [CrossRef]
- Agrawal, D.; Sharma, R.; Ramteke, M.; Kodamana, H. Hierarchical two-tier optimization framework for the optimal operation of a network of hybrid renewable energy systems. Chem. Eng. Res. Des. 2021, 175, 37–50. [Google Scholar] [CrossRef]
- Hashemi, M.; Zarif, M.H. A novel two-stage distributed structure for reactive power control. Eng. Sci. Technol. Int. J. 2020, 23, 168–188. [Google Scholar] [CrossRef]
- Shibl, M.; Ismail, L.; Massoud, A.M. An Intelligent Two-Stage energy dispatch Management System for hybrid power plants: Impact of machine learning deployment. IEEE Access 2023, 11, 13091–13102. [Google Scholar] [CrossRef]
- He, Y.; Guo, S.; Dong, P.; Zhang, Y.; Huang, J.; Zhou, J. A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113476. [Google Scholar] [CrossRef]
- Zhu, J.; Yuan, Y.; Wang, W. Multi-stage active management of renewable-rich power distribution network to promote the renewable energy consumption and mitigate the system uncertainty. Int. J. Electr. Power Energy Syst. 2019, 111, 436–446. [Google Scholar] [CrossRef]
- Forough, A.B.; Roshandel, R. Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization. Energy 2018, 150, 617–630. [Google Scholar] [CrossRef]
- Bonkile, M.P.; Ramadesigan, V. Power management control strategy using physics-based battery models in standalone PV-battery hybrid systems. J. Energy Storage 2019, 23, 258–268. [Google Scholar] [CrossRef]
- Kosmadakis, I.; Elmasides, C. Towards performance enhancement of hybrid power supply systems based on renewable energy sources. Energy Procedia 2019, 157, 977–991. [Google Scholar] [CrossRef]
- Rullo, P.; Braccia, L.; Luppi, P.; Zumoffen, D.; Feroldi, D. Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems. Renew. Energy 2019, 140, 436–451. [Google Scholar] [CrossRef]
- Eriksson, E.; Gray, E.M. Optimization of renewable hybrid energy systems—A multi-objective approach. Renew. Energy 2019, 133, 971–999. [Google Scholar] [CrossRef]
- Yan, J.; Menghwar, M.; Asghar, E.; Panjwani, M.K.; Liu, Y. Real-time energy management for a smart-community microgrid with battery swapping and renewables. Appl. Energy 2019, 238, 180–194. [Google Scholar] [CrossRef]
- Vaccari, M.; Mancuso, G.; Riccardi, J.; Cantù, M.; Pannocchia, G. A Sequential Linear Programming algorithm for economic optimization of Hybrid Renewable Energy Systems. J. Process Control 2019, 74, 189–201. [Google Scholar] [CrossRef]
- Padrón, I.; Avila, D.; Marichal, G.; Rodríguez, J.Á.S. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- Brka, A.; Kothapalli, G.; Al-Abdeli, Y.M. Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation. Int. J. Hydrogen Energy 2015, 40, 9907–9916. [Google Scholar] [CrossRef]
- Cano, M.H.; Kelouwani, S.; Agbossou, K.; Dubé, Y. Power management system for off-grid hydrogen production based on uncertainty. Int. J. Hydrogen Energy 2015, 40, 7260–7272. [Google Scholar] [CrossRef]
- Ju, C.; Wang, P.; Goel, L.; Xu, Y. A Two-Layer energy management system for microgrids with hybrid energy storage considering degradation costs. IEEE Trans. Smart Grid 2018, 9, 6047–6057. [Google Scholar] [CrossRef]
- Hamdi, M.; Salmawy, H.A.E.; Ragab, R. Optimum configuration of a dispatchable hybrid renewable energy plant using artificial neural networks: Case study of Ras Ghareb, Egypt. AIMS Energy 2023, 11, 171–196. [Google Scholar] [CrossRef]
- Cozzolino, R.; Tribioli, L.; Bella, G. Power management of a hybrid renewable system for artificial islands: A case study. Energy 2016, 106, 774–789. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Nazari, M.A. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach. J. Energy Storage 2022, 53, 104983. [Google Scholar] [CrossRef]
- Li, Q.; Loy-Benitez, J.; Nam, K.; Hwangbo, S.; Rashidi, J.; Yoo, C. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. Energy 2019, 178, 277–292. [Google Scholar] [CrossRef]
- Nogueira, C.E.C.; Vidotto, M.L.; Niedzialkoski, R.K.; De Souza, S.N.M.; Chaves, L.I.; Edwiges, T.; Santos, D.B.D.; Werncke, I. Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil. Renew. Sustain. Energy Rev. 2014, 29, 151–157. [Google Scholar] [CrossRef]
- Lamedica, R.; Santini, E.; Ruvio, A.; Palagi, L.; Rossetta, I. A MILP methodology to optimize sizing of PV-Wind renewable energy systems. Energy 2018, 165, 385–398. [Google Scholar] [CrossRef]
- Rouholamini, M.; Mohammadian, M. Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage. Renew. Energy 2016, 96, 354–365. [Google Scholar] [CrossRef]
- García-Triviño, P.; Fernández-Ramírez, L.M.; Mena, A.J.G.; Llorens-Iborra, F.; García-Vázquez, C.A.; Jurado, F. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications. Int. J. Hydrogen Energy 2016, 41, 23132–23144. [Google Scholar] [CrossRef]
- Valverde, L.; Lucena, F.J.P.; Guerra, J.; Rosa, F. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage. Energy Convers. Manag. 2016, 113, 290–311. [Google Scholar] [CrossRef]
- Ciupageanu, D.; Barelli, L.; Lazaroiu, G. Real-time stochastic power management strategies in hybrid renewable energy systems: A review of key applications and perspectives. Electr. Power Syst. Res. 2020, 187, 106497. [Google Scholar] [CrossRef]
- Das, B.; Tushar, M.S.H.K.; Hassan, R. Techno-economic optimisation of stand-alone hybrid renewable energy systems for concurrently meeting electric and heating demand. Sustain. Cities Soc. 2021, 68, 102763. [Google Scholar] [CrossRef]
- Priyanka, T.J.; Atre, S.; Billal, M.M.; Arani, M. Techno-economic analysis of a renewable-based hybrid energy system for utility and transportation facilities in a remote community of Northern Alberta. Clean. Energy Syst. 2023, 6, 100073. [Google Scholar] [CrossRef]
- Nirbheram, J.S.; Mahesh, A.; Bhimaraju, A. Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy. Renew. Energy 2023, 212, 1–16. [Google Scholar] [CrossRef]
- Abdelhak, B.J.; Essounbouli, N.; Hamzaoui, A.; Hnaien, F.; Yalaoui, F. Optimum sizing of hybrid PV/wind/battery using Fuzzy-Adaptive Genetic Algorithm in real and average battery service life. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014. [Google Scholar] [CrossRef]
- Fetanat, A.; Khorasaninejad, E. Size optimization for hybrid photovoltaic-wind energy system using ant colony optimization for continuous domains-based integer programming. Appl. Soft. Comput. 2015, 31, 196–209. [Google Scholar] [CrossRef]
- Ahmadi, S.; Abdi, S. Application of the hybrid big bang-big crunch algorithm for optimal sizing of a stand-alone hybrid pv/wind/battery system. Sol. Energy 2016, 134, 366–374. [Google Scholar] [CrossRef]
- Sanajaoba, S.; Fernandez, E. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System. Renew. Energy 2016, 96, 1–10. [Google Scholar] [CrossRef]
- Peng, W.; Maleki, A.; Rosen, M.A.; Azarikhah, P. Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis comparison of approaches. Desalination 2018, 442, 16–31. [Google Scholar] [CrossRef]
- Khan, A.; Javaid, N. Jaya learning-based optimization for optimal sizing of stand-alone photovoltaic, wind turbine, and battery systems. Engineering 2020, 6, 812–826. [Google Scholar] [CrossRef]
- Javed, M.; Jurasz, J.; Ahmed, S.; Mikulik, J. Performance comparison of heuristic algorithms for optimization of hybrid off-grid renewable energy systems. Energy 2020, 210, 118599. [Google Scholar] [CrossRef]
- Guneser, M.T.; Elbaz, A.; Seker, C. Hybrid optimization methods application on sizing and solving the economic dispatch problems of hybrid renewable power systems. In Applications of Nature-Inspired Computing in Renewable Energy Systems; IGI Global: Hershey, PA, USA, 2022; pp. 136–165. [Google Scholar]
- Jahannoosh, M.; Nowdeh, S.A.; Naderipour, A.; Kamyab, H.; Faraji Davoudkhani, I.; Jaromír Klemeš, J. New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability. J. Clean. Prod. 2021, 278, 123406. [Google Scholar] [CrossRef]
- Tahani, M.; Babayan, N.; Pouyaei, A. Optimization of pv/wind/battery stand-alone system, using hybrid fpa/sa algorithm and cfd simulation, case study: Tehran. Energy Convers Manag. 2015, 106, 644–659. [Google Scholar] [CrossRef]
- Ma, G.; Guchao, X.; Chen, Y.; Rong, J. Multi-objective optimal configuration method for a standalone wind-solar-battery hybrid power system. IET Renew Power Gener 2016, 11, 194–202. [Google Scholar] [CrossRef]
- Senthil, K.J.; Charles, R.S.; Srinivasan, D.; Venkatesh, P. Hybrid renewable energy-based distribution system for seasonal load variations. Int. J. Energy Res. 2018, 42, 1066–1087. [Google Scholar] [CrossRef]
- Radosavljević, J.; Arsić, N.; Milovanović, M.; Ktena, A. Optimal placement and sizing of renewable distributed generation using hybrid metaheuristic algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 499–510. [Google Scholar] [CrossRef]
- Aliabadi, M.J.; Radmehr, M. Optimization of hybrid renewable energy system in radial distribution networks considering uncertainty using meta-heuristic crow search algorithm. Appl. Soft. Comput. 2021, 107, 107384. [Google Scholar] [CrossRef]
- Abuelrub, A.; Khamees, M.; Ababneh, J.; Al-Masri, H. Hybrid energy system design using greedy particle swarm and biogeography-based optimisation. IET Renew. Power Gener. 2020, 14, 1657–1667. [Google Scholar] [CrossRef]
Configuration | Advantage | Disadvantage | Application |
---|---|---|---|
DC-coupled |
|
|
|
AC-coupled |
|
|
|
Hybrid |
|
|
|
Techniques | Advantage | Disadvantage |
---|---|---|
Classical |
|
|
Artificial |
|
|
Hybrid |
|
|
Software | Input | Output | Limitations | Availability |
---|---|---|---|---|
HOMER |
|
|
| Free access www.homerenergy.com (accessed on 15 Decmeber 2023) |
HYBRID2 |
|
|
| Free access https://www.umass.edu/windenergy/research/topics/tools/software/hybrid2 (accessed on 7 Februaryr2024) |
HYBRIDS |
|
| - | |
IHOGA |
|
|
| The EDU version is free, while the PRO version is priced www.ihoga.unizar.es/en/ (accessed on 7 February 2024) |
RETScreen |
|
|
| Free access www.retscreen.net (accessed on 22 Decmeber 2023) |
TRNSYS |
|
|
| Priced www.trnsys.com (accessed on 20 Decmeber 2023) |
Software | Energy Resources | Objective of the Study | Reference | |||
---|---|---|---|---|---|---|
Wind | Solar | Battery | Other | |||
HOMER | ✓ | ✓ | ✓ | Cost-effective configuration of HRES | Muller et al. [92] | |
✓ | ✓ | FC | Evaluate technical and financial performance | Al-Badi et al. [100] | ||
✓ | ✓ | ✓ | Sizing design of HRES | Hoarca et al. [101] | ||
HYBRID2 | ✓ | ✓ | ✓ | Sizing method of standalone RES based on techno-economic analysis and object-oriented programming | Belmili et al. [102] | |
IHOGA | ✓ | ✓ | Optimal sizing of RES | Fadaeenejad et al. [103] | ||
✓ | ✓ | ✓ | Sizing design of HRES | Hoarca et al. [101] | ||
HOMER PRO | ✓ | ✓ | Minimize LCOE, life cycle cost | Ranaboldo et al. [104] | ||
HOMER | ✓ | ✓ | ✓ | Energy production, net present cost, and levelized cost of electricity | Baker [105] | |
HOMER | ✓ | ✓ | ✓ | Hydrogen | Total net present cost | Babatunde et al. [106] |
RETScreen | ✓ | ✓ | ✓ | Biomass | Feasibility study based on economics and the environment | Hossen and Shezan [107] |
TRNSYS | ✓ | ✓ | Optimal sizing of wind–PV-based hybrid system | Anoune et al. [17] | ||
✓ | ✓ | ✓ | Energy performance of the system | Mazzeo et al. [108] |
Techniques/Tools | Advantage | Disadvantage | Reference |
---|---|---|---|
Iterative |
|
| Chauhan and Saini [109] |
Probabilistic |
|
| Ganguly et al. [84]; Lian et al. [83] |
Analytical |
|
| Lian et al. [83] |
Graphical |
|
| Rathore and Patidar [110] |
LP |
|
| Saiprasad et al. [111] |
GA |
|
| Iweh et al. [35]; Riaz et al. [88] |
PSO |
|
| Dubey et al. [112]; Gad et al. [113]; Wang et al. [114]; Gupta and Srivastava [115] |
ACO |
|
| Gupta and Srivastava [115] |
CS |
|
| Shen et al. [116] |
SA |
|
| Iweh et al. [35] |
HS |
|
| Dubey et al. [112] |
GWO |
|
| Wang et al. [114] |
HOMER |
|
| Saiprasad et al. [111]; Kavadias et al. [117] |
iHOGA |
|
| Saiprasad et al. [111] |
RETScreen |
|
| Ramli et al. [118] |
Control Method | Advantage | Disadvantage |
---|---|---|
Centralized |
|
|
Distributed |
|
|
Hybrid |
|
|
Management Strategy | Design Constraint | Control Algorithm | Advantages | Disadvantages |
---|---|---|---|---|
Power requirements |
|
|
|
|
Technical-oriented |
|
|
|
|
Economic-oriented |
|
|
|
|
Techno-economic-oriented |
|
|
|
|
Anagement Strategies | Control Algorithm/ Approach | Energy System | Design Constraints | Objectives | Reference |
---|---|---|---|---|---|
Power requirement | Flowchart | Wind/solar/FC | Power balance, SOC, H2 stock | Ensure demand sizing | Cozzolino et al. [143] |
Flowchart | Wind/solar/H2 | Power balance, SOC, H2 stock | Ensure demand | Zhang et al. [144] | |
Flowchart | Wind/solar/battery | Power balance, SOC | Ensure demand | Bade et al. [40] | |
Technical | ANN | Wind/solar/battery | Power balance, SOC, battery degradation | Redue LPSP, ensure demand | Q. Li et al. [145] |
Flowchart | Wind/solar/battery | Power balance, SOC | Ensure demand, quality of service | Long et al. [39] | |
PMC/multi-objective approach | Wind/solar/battery/FC | Power balance, SOC, battery degradation, H2 | Increase reliability, ensure demand | Eriksson and Gray [135] | |
PSO Recurrent neural network | Wind/solar/battery/FC | Power balance, SOC, battery degradation, H2 | Reduce LPSP, ensure demand | Yan et al. [137] | |
Flowchart Multi-stage machine learning | Wind/solar/battery/FC | Power balance, SOC, battery degradation, H2 | Ensure demand, reliability | Shibl et al. [128] | |
Economical | Linear programing and simulation | Wind/solar/battery | Power demand, SOC, cost | Reduce system cost | Nogueira et al. [146] |
MLIP | Wind/solar | Power demand, SOC, cost | Reduce total operating cost | Lamedica et al. [147] | |
FL | Wind/solar/battery/FC | Power demand, SOC, cost, H2 | Ensure demand | Rouholamini and Mohammadian [148] | |
Flowchart, supervisory hierarchical control system | Wind/solar/battery/auxiliary | Power demand, SOC, cost | Ensure demand, increase revenue | Long et al. [39] | |
Techno-economic | FL | Wind/solar | Power balance, cost | Increase reliability and reduced loss | García-Triviño et al. [149] |
PSO | Wind/solar/battery/FC | Power demand, SOC, cost, H2, battery and electrolyzer degradation | Ensure demand, minimize operating and maintenance cost, increase reliability and performance | Valverde et al. [150] | |
Lyapunov technique, simultaneous perturbation stochastic approximation | Wind/solar/battery | Power demand, SOC, cost, battery degradation | Increase reliability and performance | Ciupageanu et al. [151] | |
GA | Wind/solar/battery/thermal load | Cost | Cost reduction and sustainability | Das et al. [152] | |
ANN, MATLAB | Wind/solar/battery/electrolyzer/ FC/ | LCOE | Reduce LCOE, reduce power curtail | Hamdi et al. [142] | |
HOMER | Wind/solar/battery/electrolyzer/ FC/thermal load | Power demand, SOC, cost, battery/FC/electrolyzer degradation, | Ensure demand, cost of energy | Priyanka et al. [153] | |
Improve search space reduction | Wind/solar/battery | power demand, SOC, cost | Ensure demand, reduce levelized cost of energy | Nirbheram et al. [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bade, S.O.; Meenakshisundaram, A.; Tomomewo, O.S. Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review. Eng 2024, 5, 677-719. https://doi.org/10.3390/eng5020038
Bade SO, Meenakshisundaram A, Tomomewo OS. Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review. Eng. 2024; 5(2):677-719. https://doi.org/10.3390/eng5020038
Chicago/Turabian StyleBade, Shree O., Ajan Meenakshisundaram, and Olusegun S. Tomomewo. 2024. "Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review" Eng 5, no. 2: 677-719. https://doi.org/10.3390/eng5020038
APA StyleBade, S. O., Meenakshisundaram, A., & Tomomewo, O. S. (2024). Current Status, Sizing Methodologies, Optimization Techniques, and Energy Management and Control Strategies for Co-Located Utility-Scale Wind–Solar-Based Hybrid Power Plants: A Review. Eng, 5(2), 677-719. https://doi.org/10.3390/eng5020038