The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis Procedure
2.3. Characterization Methods
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Characteristics of Natural and Mechanical-Activated Montmorillonite
3.2. Adsorption Isotherms Study
3.3. Effect of Natural Organic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://world-nuclear.org/ (accessed on 1 July 2023).
- Bockris, J.M. Environmental Chemistry; Springer: Boston, MA, USA, 1977. [Google Scholar]
- Kornilovych, B.Y.; Sorokin, O.G.; Pavlenko, V.M.; Koshyk, Y.I. Environmental Protection Technologies in the Uranium Mining and Processing Industry; Norma: Kyiv, Ukraine, 2011. (In Ukrainian) [Google Scholar]
- Merkel, B.J.; Hasche-Berger, A. Uranium, Mining and Hydrogeology; Springer: Berlin/Heidelberg, Germany, 2008; 955p. [Google Scholar]
- Chen, Z.; Wang, S.; Hou, H.; Chen, K.; Gao, P.; Zhang, Z.; Jin, Q.; Pan, D.; Guo, Z.; Wu, W. China’s progress in radionuclide migration study over the past decade (2010–2021): Sorption, transport and radioactive colloid. Chin. Chem. Lett. 2022, 33, 3405–3412. [Google Scholar] [CrossRef]
- Taniguchi, K.; Onda, Y.; Smith, H.G.; Blake, W.; Yoshimura, K.; Yamashiki, K.; Takayuki, Y.; Saito, K. Transport and Redistribution of Radiocesium in Fukushima Fallout through Rivers. Environ. Sci. Technol. 2019, 53, 12339–12347. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, L.I.; Khan, V.E.; Panasyuk, N.I. Physicochemical Study of the Mechanism of Radionuclide Migration from the Shelter Object and Its Service Area to Groundwater. Radiochemistry 2003, 45, 293–297. [Google Scholar] [CrossRef]
- Payne, T.E.; Davis, J.A.; Ochs, M.; Olin, M.; Tweed, C.J.; Altmann, S.; Askarieh, M.M. Comparative Evaluation of Surface Complexation Models for Radionuclide Sorption by Diverse Geologic Materials. In Surface Complexation Modelling; Lützenkirchen, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 11, pp. 605–633. [Google Scholar] [CrossRef]
- Kornilovych, B.; Wireman, M.; Ubaldini, S.; Guglietta, D.; Koshik, Y.; Caruso, B.; Kovalchuk, I. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies. Metals 2018, 8, 408. [Google Scholar] [CrossRef]
- Atwood, D.A. Radionuclides in the Environment; Wiley: New York, NY, USA, 2010; 522p. [Google Scholar]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Kornilovich, B.Y.; Pshinko, G.N.; Koval’chuk, I.A. Effect of fulvic acids on sorption of U (VI) on clay minerals of soils. Radiochemistry 2001, 43, 528–531. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; Volume 1. [Google Scholar]
- Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Radionuclides (accessed on 1 July 2023).
- Chen, L.; Dong, Y. Sorption of Ni(II) to montmorillonite as a function of pH, ionic strength, foreign ions and humic substances. J. Radioanal. Nucl. Chem. 2012, 295, 2117–2123. [Google Scholar] [CrossRef]
- Wen, T.; Chen, Y.; Cai, L. Impact of environmental conditions on the sorption behavior of radiocobalt onto montmorillonite. J. Radioanal. Nucl. Chem. 2011, 290, 437–446. [Google Scholar] [CrossRef]
- Kornilovich, B.Y.; Pshinko, G.N.; Spasenova, L.N.; Kovalchuk, I.A. Influence of humic substances on the sorption interactions between lanthanides and actinides ions and clay minerals. Adsorpt. Sci. Technol. 2000, 18, 873–880. [Google Scholar] [CrossRef]
- Guimarães, V.; Bobos, I. Role of clay barrier systems in the disposal of radioactive waste. In Sorbents Materials for Controlling Environmental Pollution; Núñez-Delgado, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 20, pp. 513–541. [Google Scholar] [CrossRef]
- Florez, C.; Park, Y.H.; Valles-Rosales, D.; Lara, A.; Rivera, E. Removal of Uranium from Contaminated Water by Clay Ceramics in Flow-Through Columns. Water 2017, 9, 761. [Google Scholar] [CrossRef]
- Yang, G. Sorption and reduction of hexavalent uranium by natural and modified silicate minerals: A review. Environ. Chem. Lett. 2023, 21, 2441–2470. [Google Scholar] [CrossRef]
- Allard, T.; Calas, G. Radiation effects on clay mineral properties. Appl. Clay Sci. 2009, 43, 143–149. [Google Scholar] [CrossRef]
- Bergaya, F.; Theng, B.K.; Lagaly, G. Modified Clays and Clay Minerals. In Handbook of Clay Science; Elsevier: London, UK, 2006; 1246p. [Google Scholar]
- Samsonenko, M.; Zakutevskyy, O.; Khalameida, S.; Charmas, B.; Skubiszewska-Zięba, J. Influence of mechanochemical and microwave modification on ion-exchange properties of tin dioxide with respect to uranyl ions. Adsorption 2019, 25, 451–457. [Google Scholar] [CrossRef]
- Zakutevskyy, O.; Khalameida, S.; Sydorchuk, V.; Kovtun, M. The Effect of Hydrothermal, Microwave, and Mechanochemical Treatments of Tin Phosphate on Sorption of Some Cations. Materials 2023, 16, 4788. [Google Scholar] [CrossRef] [PubMed]
- Kornilovych, B.Y. Structure and Surface Properties of Mechanochemically Activated Silicates and Carbonates; Naukova Dumka: Kyiv, Ukraine, 1994; 127p. (In Russian) [Google Scholar]
- Sydorchuk, V.; Vasylechko, V.; Khyzhun, O.; Gryshchouk, G.; Khalameida, S.; Vasylechko, L. Effect of high-energy milling on the structure, some physicochemical and photocatalytic properties of clinoptilolite. Appl. Catal. A Gen. 2020, 610, 117930. [Google Scholar] [CrossRef]
- Tole, I.; Delogu, F.; Qoku, E.; Habermehl-Cwirzen, K.; Cwirzen, A. Enhancement of the pozzolanic activity of natural clays by mechanochemical activation. Constr. Build Mater. 2022, 352, 128739. [Google Scholar] [CrossRef]
- Dellisanti, F.; Valdré, G. Study of structural properties of ion treated and mechanically deformed commercial bentonite. Appl. Clay Sci. 2005, 28, 233–244. [Google Scholar] [CrossRef]
- Baki, V.A.; Ke, X.; Heath, A.; Calabria-Holley, J.; Terzi, C.; Sirin, M. The impact of mechanochemical activation on the phyicochemical properties and pozzolanic reactivity of kaolinite, muscovite and montmorillonite. Cem. Concr. Res. 2022, 162, 106962. [Google Scholar] [CrossRef]
- Tole, I.; Habermehl-Cwirzen, K.; Cwirzen, A. Mechanochemical activation of natural clay minerals: An alternative to produce sustainable cementitious binders—Review. Mineral. Petrol. 2019, 113, 449–462. [Google Scholar] [CrossRef]
- Ramadan, A.R.; Esawi, A.M.K.; Gawad, A.A. Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B). Appl. Clay Sci. 2010, 47, 196–202. [Google Scholar] [CrossRef]
- Vdović, N.; Jurina, I.; Škapin, S.D.; Sondi, I. The surface properties of clay minerals modified by intensive dry milling—Revisited. Appl. Clay Sci. 2010, 48, 575–580. [Google Scholar] [CrossRef]
- Hongo, T.; Yoshino, S.; Yamazaki, A.; Yamasaki, A.; Satokawa, S. Mechanochemical treatment of vermiculite in vibration milling and its effect on lead (II) adsorption ability. Appl. Clay Sci. 2012, 70, 74–78. [Google Scholar] [CrossRef]
- Kim, H.N.; Kim, J.W.; Kim, M.S.; Lee, B.H.; Kim, J.C. Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill. Minerals 2019, 9, 668. [Google Scholar] [CrossRef]
- Pálková, H.; Barlog, M.; Madejová, J.; Šimon, E.; Zimowska, M. Structural changes in mechanochemically treated smectites investigated by infrared spectroscopy. In Book of Abstracts of the 8th Workshop of Slovak Clay Group, Clay Minerals and Selected Industrial Minerals in Material Science, Applications and Environmental Technology, Habovka, Slovakia, September 6–8, 2021; Pálková, H., Šimonová, T., Eds.; 845 36 Slovak Clay Group: Bratislava, Slovenska, 2021; pp. 42–43. [Google Scholar]
- Tsuzuki, T. Mechanochemical synthesis of metal oxide nanoparticles. Commun. Chem. 2021, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Al Bazedi, G.A.; Al-Rawajfeh, A.E.; Abdel-Fatah, M.A.; Alrbaihat, M.R.; AlShamaileh, E. Synthesis of nanomaterials by mechanochemistry. In Handbook of Greener Synthesis of Nanomaterials and Compounds; Kharisov, B., Kharissova, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 405–418. [Google Scholar] [CrossRef]
- Atun, G.; Bilgin, B.; Mardinli, A. Sorption of cesium on montmorillonite and effects of salt concentration. J. Radioanal. Nucl. Chem. 1996, 211, 435–442. [Google Scholar] [CrossRef]
- Kim, S.J. Sorption mechanism of U(VI) on a reference montmorillonite: Binding to the internal and external surfaces. J. Radioanal. Nucl. Chem. 2001, 250, 55–62. [Google Scholar] [CrossRef]
- Jun, B.-M.; Lee, H.-K.; Park, S.; Kim, T.-J. Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep. Purif. Technol. 2022, 278, 119675. [Google Scholar] [CrossRef]
- Sun, W.; Li, J.; Li, H.; Jin, B.; Li, Z.; Zhang, T.; Zhu, X. Mechanistic insights into ball milling enhanced montmorillonite modification with tetramethylammonium for adsorption of gaseous toluene. Chemosphere 2022, 296, 133962. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, T.; Li, J.; Zhu, X. Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si–OH and interlayer under synergistic modification with H2O2 and tetramethylammonium bromide. Chemosphere 2023, 321, 138114. [Google Scholar] [CrossRef]
- Novikau, R.; Lujaniene, G. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. J. Environ. Manag. 2022, 309, 114685. [Google Scholar] [CrossRef]
- Mucsi, G. A review on mechanical activation and mechanicalalloying in stirred media mill. Chem. Eng. Res. Des. 2019, 148, 460–474. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; Mineral. Soc.: London, UK, 1980; 496p. [Google Scholar]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Lützenkirchen, J.; Preočanin, T.; Kovačević, D.; Tomišić, V.; Lövgren, L.; Kallay, N. Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 2012, 85, 391–417. [Google Scholar] [CrossRef]
- Payne, T.E.; Brendler, V.; Comarmond, M.J.; Nebelung, C. Assessment of surface area normalisation for interpreting distribution coefficients (Kd) for uranium sorption. J. Environ. Radioact. 2011, 102, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Jiang, Y.; Zhao, L.; Li, F.; Xue, B.; Sun, M.; Zhang, X. Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite. Colloids Surf. A Physicochem. Eng. 2010, 356, 1–9. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. Res. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Valera-Zaragoza, M.; Agüero-Valdez, D.; Lopez-Medina, M.; Dehesa-Blas, S.; Navarro-Mtz, K.A.; Avalos-Borja, M.; Juarez-Arellano, E.A. Controlled modification of sodium montmorillonite clay by a planetary ball-mill as a versatile tool to tune its properties. Adv. Powder Technol. 2021, 32, 591–599. [Google Scholar] [CrossRef]
- Giovanni, C.; Mohammadtaghi, V. Nonthermal Mechanochemical Destruction of POPs. In Rersistent Organic Pollutants (POPs); Rashed, M., Ed.; IntechOpen: London, UK, 2022; 172p. [Google Scholar]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
Sample | S, m2/g | V, cm3/g | r, nm | Distribution of Pore Sizes, nm | ||||
---|---|---|---|---|---|---|---|---|
BJH dV (r) | DFT dV (r) | |||||||
r1 | r2 | r1 | r2 | r3 | ||||
MMT | 89.1 | 0.078 | 1.753 | 1.98 | - | 1.41 | 2.75 | - |
0.5 h MCA MMT | 117.4 | 0.140 | 2.377 | 2.142 | - | 1.17 | 2.44 | 0.64 |
1 h MCA MMT | 93.4 | 0.131 | 2.811 | 2.142 | - | 1.25 | 2.64 | 0.64 |
2 h MCA MMT | 146.8 | 0.161 | 2.187 | 1.92 | - | 1.13 | 2.64 | 0.67 |
4 h MCA MMT | 99.1 | 0.155 | 3.128 | 1.90 | 15.10 | 1.21 | 2.54 | 0.64 |
Sample | Radio- Nuclide | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qm, µmol/g | KL, L/µmol | R2 | 1/n | KF, L/µmol | R2 | ||
MMT | U(VI) | 86.2 | 6.44 | 0.995 | 0.748 | 9.53 | 0.980 |
0.5 h MCA MMT | 77.5 | 21.50 | 0.967 | 1.078 | 19.53 | 0.765 | |
1 h MCA MMT | 105.3 | 15.83 | 0.983 | 0.324 | 8.49 | 0.917 | |
2 h MCA MMT | 123.5 | 81.00 | 0.996 | 0.317 | 10.49 | 0.914 | |
4 h MCA MMT | 53.5 | 46.75 | 0.999 | 0.191 | 6.13 | 0.953 | |
MMT | Sr(II) | 526.3 | 3.17 | 0.996 | 0.984 | 16.60 | 0.960 |
0.5 h MCA MMT | 500.0 | 4.00 | 0.994 | 0.984 | 16.55 | 0.967 | |
1 h MCA MMT | 454.6 | 7.33 | 0.999 | 0.710 | 15.60 | 0.956 | |
2 h MCA MMT | 588.2 | 5.67 | 0.999 | 0.905 | 19.09 | 0.845 | |
4 h MCA MMT | 500.0 | 2.50 | 0.946 | 1.055 | 15.50 | 0.986 | |
MMT | Cs(I) | 714.3 | 0.93 | 0.979 | 0.799 | 13.52 | 0.998 |
0.5 h MCA MMT | 384.6 | 5.20 | 0.975 | 0.570 | 14.20 | 0.998 | |
1 h MCA MMT | 526.3 | 1.90 | 0.969 | 0.729 | 14.01 | 0.999 | |
2 h MCA MMT | 416.7 | 6.00 | 0.967 | 0.550 | 14.75 | 0.998 | |
4 h MCA MMT | 588.2 | 1.06 | 0.969 | 0.834 | 13.32 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalchuk, I.; Zakutevskyy, O.; Sydorchuk, V.; Diyuk, O.; Lakhnik, A. The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution. Eng 2023, 4, 2812-2825. https://doi.org/10.3390/eng4040158
Kovalchuk I, Zakutevskyy O, Sydorchuk V, Diyuk O, Lakhnik A. The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution. Eng. 2023; 4(4):2812-2825. https://doi.org/10.3390/eng4040158
Chicago/Turabian StyleKovalchuk, Iryna, Oleg Zakutevskyy, Volodymyr Sydorchuk, Olena Diyuk, and Andrey Lakhnik. 2023. "The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution" Eng 4, no. 4: 2812-2825. https://doi.org/10.3390/eng4040158
APA StyleKovalchuk, I., Zakutevskyy, O., Sydorchuk, V., Diyuk, O., & Lakhnik, A. (2023). The Effect of High-Energy Ball Milling of Montmorillonite for Adsorptive Removal of Cesium, Strontium, and Uranium Ions from Aqueous Solution. Eng, 4(4), 2812-2825. https://doi.org/10.3390/eng4040158