Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices
Abstract
:1. Introduction
- To offer a comprehensive overview of different MCDM approaches and how they are used in sustainable engineering;
- To analyze case studies of real-world applications of MCDM methods in sustainable engineering and to highlight their outcomes;
- To identify the strengths and weaknesses of each MCDM technique in sustainable engineering and to compare and contrast them;
- To propose future research directions and discuss how MCDM methods can be further developed to enhance their effectiveness and applicability in sustainable engineering.
2. Materials and Methods
3. Primary Results
4. Detailed Review Results
4.1. Sustainable Engineering
4.2. MCDM Methods
4.3. Case Studies: Applications of MCDM Methods in Sustainable Engineering
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stojcic, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef]
- Banasik, A.; Bloemhof-Ruwaard, J.M.; Kanellopoulos, A.; Claassen, G.; Van Der Vorst, J.G. Multi-criteria decision making approaches for green supply chains: A review. Flex. Serv. Manuf. J. 2018, 30, 366–396. [Google Scholar] [CrossRef]
- Guarnieri, P.; Trojan, F. Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry. Resour. Conserv. Recycl. 2019, 141, 347–361. [Google Scholar] [CrossRef]
- Kharat, M.G.; Murthy, S.; Kamble, S.J.; Raut, R.D.; Kamble, S.S.; Kharat, M.G. Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection. Technol. Soc. 2019, 57, 20–29. [Google Scholar] [CrossRef]
- Alhama, C.C.; Igual-Antón, D. Corporate Social Responsibility Strategies in Spanish Electric Cooperatives. Analysis of Stakeholder Engagement. Sustainability 2021, 13, 6810. [Google Scholar] [CrossRef]
- Geng, Y.; Fujita, T.; Bleischwitz, R.; Chiu, A.S.; Sarkis, J. Accelerating the transition to equitable, sustainable, and livable cities: Toward post-fossil carbon societies. J. Clean. Prod. 2019, 239, 118020. [Google Scholar] [CrossRef]
- Glavič, P. Updated Principles of Sustainable Engineering. Processes 2022, 10, 870. [Google Scholar] [CrossRef]
- Durmić, E.; Herzegovina Stević, Ž.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable supplier selection using combined FUCOM—Rough SAW model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Raut, R.D.; Kharat, M.G.; Kamble, S.J.; Kumar, C.M. Sustainable evaluation and selection of potential third-party logistics (3PL) providers. Benchmarking Int. J. 2018, 25, 76–97. [Google Scholar] [CrossRef]
- Tang, M.; Liao, H. From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey. Omega 2021, 100, 102141. [Google Scholar] [CrossRef]
- Restrepo, J.M.; Morales-Pinzón, T. Urban metabolism and sustainability: Precedents, genesis and research perspectives. Resour. Conserv. Recycl. 2018, 131, 216–224. [Google Scholar] [CrossRef]
- Toli, A.M.; Murtagh, N. The Concept of Sustainability in Smart City Definitions. Front. Built Environ. 2020, 6, 77. [Google Scholar] [CrossRef]
- Iskandar, M.; Nelson, D.; Tehrani, F.M. Managing Sustainability and Resilience of the Built Environment in Developing Communities. CivilEng 2022, 3, 427–440. [Google Scholar] [CrossRef]
- Jamieson, M.V.; Lefsrud, L.; Sattari, F.; Donald, J.A. Sustainable leadership and management of complex engineering systems: A team based structured case study approach. Educ. Chem. Eng. 2021, 35, 37–46. [Google Scholar] [CrossRef]
- Marchese, D.; Reynolds, E.; Bates, M.; Morgan, H.; Clark, S.J.; Linkov, I. Resilience and sustainability: Similarities and differences in environmental management applications. Sci. Total Environ. 2018, 613–614, 1275–1283. [Google Scholar] [CrossRef]
- Mihelcic, J.R.; Zimmerman, J.B. Environmental Engineering: Fundamentals, Sustainability, Design; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Sharma, N.; Tabandeh, A.; Gardoni, P. Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustain. Resilient Infrastruct. 2018, 3, 49–67. [Google Scholar] [CrossRef]
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.S.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for sustainable development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Suárez-Eiroa, B.; Fernández, E.M.; Méndez-Martínez, G.; Soto-Oñate, D. Operational principles of circular economy for sustainable development: Linking theory and practice. J. Clean. Prod. 2019, 214, 952–961. [Google Scholar] [CrossRef]
- Dogaru, L. Green Economy and Green Growth—Opportunities for Sustainable Development. Proceedings 2021, 63, 70. [Google Scholar] [CrossRef]
- Lehmann, S. Implementing the Urban Nexus approach for improved resource-efficiency of developing cities in Southeast-Asia. City Cult. Soc. 2017, 13, 46–56. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Štilić, A.; Puška, A.; Đurić, A.; Božanić, D.K. Electric Vehicles Selection Based on Brčko District Taxi Service Demands, a Multi-Criteria Approach. Urban Sci. 2022, 6, 73. [Google Scholar] [CrossRef]
- United Nations [UN]. THE 17 GOALS|Sustainable Development. United Nations, Department of Economic and Social Affairs, Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 2 May 2023).
- Bhardwaj, A.; Joshi, M.; Khosla, R.; Dubash, N.K. More priorities, more problems? Decision-making with multiple energy, development and climate objectives. Energy Res. Soc. Sci. 2019, 49, 143–157. [Google Scholar] [CrossRef]
- Tseng, M.; Tran, T.H.; Ha, H.M.; Bui, T.; Lim, M.K. Sustainable industrial and operation engineering trends and challenges Toward Industry 4.0: A data driven analysis. J. Ind. Prod. Eng. 2021, 38, 581–598. [Google Scholar] [CrossRef]
- Bohra, S.S.; Shafie-Khah, M. A comprehensive review on applications of multicriteria decision-making methods in power and energy systems. Int. J. Energy Res. 2021, 46, 4088–4118. [Google Scholar] [CrossRef]
- Cao, Q.; Esangbedo, M.O.; Bai, S.; Esangbedo, C.O. Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation. Energies 2019, 12, 2481. [Google Scholar] [CrossRef]
- Jahangiri, M.; Shamsabadi, A.A.; Mostafaeipour, A.; Rezaei, M.; Yousefi, Y.; Pomares, L.A. Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. Int. J. Hydrogen Energy 2020, 45, 13862–13875. [Google Scholar] [CrossRef]
- Lee, H.; Chang, C. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review. Energies 2020, 13, 1164. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Ilander, G.O.P.; Ferreira, J.J. MCDM/A in practice: Methodological developments and real-world applications. Manag. Decis. 2019, 57, 295–299. [Google Scholar] [CrossRef]
- Görçün, Ö.F. Evaluation of the selection of proper metro and tram vehicle for urban transportation by using a novel integrated MCDM approach. Sci. Prog. 2021, 104, 003685042095012. [Google Scholar] [CrossRef] [PubMed]
- Kiciński, M.; Solecka, K. Application of MCDA/MCDM methods for an integrated urban public transportation system—Case study, city of Cracow. Arch. Transp. 2018, 46, 71–84. [Google Scholar] [CrossRef]
- Moradi, S.; Sierpiński, G.; Masoumi, H.E. System Dynamics Modeling and Fuzzy MCDM Approach as Support for Assessment of Sustainability Management on the Example of Transport Sector Company. Energies 2022, 15, 4917. [Google Scholar] [CrossRef]
- Wang, C.; Le, T.; Chang, K.; Dang, T. Measuring Road Transport Sustainability Using MCDM-Based Entropy Objective Weighting Method. Symmetry 2022, 14, 1033. [Google Scholar] [CrossRef]
- Ali, Y.; Pervez, H.; Khan, J. Selection of the Most Feasible Wastewater Treatment Technology in Pakistan Using Multi-Criteria Decision-Making (MCDM). Water Conserv. Sci. Eng. 2020, 5, 199–213. [Google Scholar] [CrossRef]
- Gichamo, T.; Gökçekuş, H.; Ozsahin, D.U.; Gelete, G.; Uzun, B. Ranking of Natural Wastewater Treatment Techniques by Multi-criteria Decision Making (MCDM) Methods. In Professional Practice in Earth Sciences; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 87–100. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Brainy, J.V.; Sulaiman, R.; Ferrara, M.; Ahmadian, A.; Kang, D. An integrated decision making approach for selecting a sustainable waste water treatment technology. Chemosphere 2022, 301, 134568. [Google Scholar] [CrossRef]
- Radmehr, A.; Bozorg-Haddad, O.; Loáiciga, H.A. Developing Strategies for Agricultural Water Management of Large Irrigation and Drainage Networks with Fuzzy MCDM. Water Resour. Manag. 2022, 36, 4885–4912. [Google Scholar] [CrossRef]
- Zolfaghary, P.; Zakerinia, M.; Kazemi, H. A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS). Agric. Water Manag. 2021, 243, 106490. [Google Scholar] [CrossRef]
- Chalekaee, A.; Turskis, Z.; Khanzadi, M.; Amiri, G.G.; Keršulienė, V. A New Hybrid MCDM Model with Grey Numbers for the Construction Delay Change Response Problem. Sustainability 2019, 11, 776. [Google Scholar] [CrossRef]
- Haruna, A.; Shafiq, N.; Montasir, O. Building information modelling application for developing sustainable building (Multi criteria decision making approach). Ain Shams Eng. J. 2021, 12, 293–302. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Gnanavelbabu, A.; Prabhuraj, B.L. A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches. J. Adv. Manag. Res. 2019, 16, 234–259. [Google Scholar] [CrossRef]
- Matić, B.; Jovanovic, S.; Das, D.K.; Zavadskas, E.K.; Stević, Ž.; Sremac, S.; Marinković, M. A New Hybrid MCDM Model: Sustainable Supplier Selection in a Construction Company. Symmetry 2019, 11, 353. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Pourhossein, M.; Yazdani, M.; Zavadskas, E.K. Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alex. Eng. J. 2017, 57, 357–365. [Google Scholar] [CrossRef]
- Chandra, M.; Shahab, F.; Kek, V.; Rajak, S. Selection for additive manufacturing using hybrid MCDM technique considering sustainable concepts. Rapid Prototyp. J. 2022, 28, 1297–1311. [Google Scholar] [CrossRef]
- Marhavilas, P.K.; Filippidis, M.; Koulinas, G.K.; Koulouriotis, D.E. A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry. Sustainability 2020, 12, 993. [Google Scholar] [CrossRef]
- Nguyen, T.H.O.; Nguyen, P.H.; Pham, H.T.; Nguyen, T.; Nguyen, D.K.; Tran, T.; Le, H.; Phung, H. A Novel Integrating Data Envelopment Analysis and Spherical Fuzzy MCDM Approach for Sustainable Supplier Selection in Steel Industry. Mathematics 2022, 10, 1897. [Google Scholar] [CrossRef]
- Nguyen, V.T. Sustainable Energy Source Selection for Industrial Complex in Vietnam: A Fuzzy MCMD Approach. IEEE Access 2022, 10, 50692–50701. [Google Scholar] [CrossRef]
- Van Thanh, N.; Lan, N.P.H. A New Hybrid Triple Bottom Line Metrics and Fuzzy MCDM Model: Sustainable Supplier Selection in the Food-Processing Industry. Axioms 2022, 11, 57. [Google Scholar] [CrossRef]
- Balaei, B.; Wilkinson, S.; Potangaroa, R.; Hassani, N.; Alavi-Shoshtari, M. Developing a Framework for Measuring Water Supply Resilience. Nat. Hazards Rev. 2018, 19, 04018013. [Google Scholar] [CrossRef]
- Bhat, S.; Antony, J.; Gijo, E.; Cudney, E.A. Lean Six Sigma for the healthcare sector: A multiple case study analysis from the Indian context. Int. J. Qual. Reliab. Manag. 2019, 37, 90–111. [Google Scholar] [CrossRef]
- Yontar, E. Assessment of the logistics activities with a structural model on the basis of improvement of sustainability performance. Environ. Sci. Pollut. Res. 2022, 29, 68904–68922. [Google Scholar] [CrossRef]
- Fritz, M.M.; Rauter, R.; Baumgartner, R.J.; Dentchev, N. A supply chain perspective of stakeholder identification as a tool for responsible policy and decision-making. Environ. Sci. Policy 2018, 81, 63–76. [Google Scholar] [CrossRef]
- Reed, M.; Vella, S.; Challies, E.; De Vente, J.; Frewer, L.; Hohenwallner-Ries, D.; Huber, T.B.; Neumann, R.K.; Oughton, E.; Del Ceno, J.S.; et al. A theory of participation: What makes stakeholder and public engagement in environmental management work? Restor. Ecol. 2018, 26, S7–S17. [Google Scholar] [CrossRef]
- Sharpe, L.M.; Harwell, M.C.; Jackson, C.A. Integrated stakeholder prioritization criteria for environmental management. J. Environ. Manag. 2021, 282, 111719. [Google Scholar] [CrossRef]
- Chai, N.; Zhou, W. A novel hybrid MCDM approach for selecting sustainable alternative aviation fuels in supply chain management. Fuel 2022, 327, 125180. [Google Scholar] [CrossRef]
- Chung, H.; Chang, K. A Novel General Data Envelopment Analysis Based Approach for MCDM Issues of Hydrogen Energy under a Fuzzy Environment. Systems 2022, 10, 176. [Google Scholar] [CrossRef]
- Le, M.D.; Nhieu, N. An Offshore Wind–Wave Energy Station Location Analysis by a Novel Behavioral Dual-Side Spherical Fuzzy Approach: The Case Study of Vietnam. Appl. Sci. 2022, 12, 5201. [Google Scholar] [CrossRef]
- Wang, C.; Dang, T.; Nguyen, N.; Chou, C.; Hsu, H.; Dang, L. Evaluating Global Container Shipping Companies: A Novel Approach to Investigating Both Qualitative and Quantitative Criteria for Sustainable Development. Axioms 2022, 11, 610. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Deng, J.; Su, C.; Gao, Z. Analysis of Factors Influencing Miners’ Unsafe Behaviors in Intelligent Mines using a Novel Hybrid MCDM Model. Int. J. Environ. Res. Public Health 2022, 19, 7368. [Google Scholar] [CrossRef]
- Štilić, A.; Njeguš, A. Primena metoda višekriterijumske analize u odabiru kandidata za rad u turističkoj privredi. In Sinteza 2019—International Scientific Conference on Information Technology and Data Related Research; Singidunum University: Belgrad, Serbia, 2019. [Google Scholar] [CrossRef]
- Tuljak-Suban, D.; Bajec, P. Integration of AHP and GTMA to Make a Reliable Decision in Complex Decision-Making Problems: Application of the Logistics Provider Selection Problem as a Case Study. Symmetry 2020, 12, 766. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Garg, H. Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int. J. Intell. Syst. 2018, 33, 1234–1263. [Google Scholar] [CrossRef]
- Tavana, M.; Hajipour, V. A practical review and taxonomy of fuzzy expert systems: Methods and applications. Benchmarking Int. J. 2019, 27, 81–136. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process: The Organization and Prioritization of Complexity; Rws Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Jayawardena, T.S.S.; Jayawardena, C.S. Analytical Network Process in Decision Making. In Advances in Knowledge Acquisition, Transfer and Management Book Series; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 180–196. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Centre: Geneva, Switzerland, 1972. [Google Scholar]
- Sang, X.; Yu, X.; Chang, C.; Liu, X. Electric bus charging station site selection based on the combined DEMATEL and PROMETHEE-PT framework. Comput. Ind. Eng. 2022, 168, 108116. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rezaei, J. Bayesian best-worst method: A probabilistic group decision making model. Omega 2020, 96, 102075. [Google Scholar] [CrossRef]
- Duckstein, L.; Opricovic, S. Multiobjective optimization in river basin development. Water Resour. Res. 1980, 16, 14–20. [Google Scholar] [CrossRef]
- Deng, J. Introduction to Grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Brito-Parada, P.R. A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renew. Sustain. Energy Rev. 2020, 127, 109891. [Google Scholar] [CrossRef]
- Ghaleb, A.M.; Kaid, H.; Al-Samhan, A.M.; Mian, S.H.; Hidri, L. Assessment and Comparison of Various MCDM Approaches in the Selection of Manufacturing Process. Adv. Mater. Sci. Eng. 2020, 2020, 4039253. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Memon, M.A.; Prokop, M.; Kim, K. An AHP/TOPSIS-Based Approach for an Optimal Site Selection of a Commercial Opening Utilizing GeoSpatial Data. In Proceedings of the International Conference on Big Data and Smart Computing, Busan, Republic of Korea, 19–22 February 2020. [Google Scholar] [CrossRef]
- Gül, S.; Aydoğdu, A. Novel distance and entropy definitions for linear Diophantine fuzzy sets and an extension of TOPSIS (LDF-TOPSIS). Expert Syst. 2022, 40, e13104. [Google Scholar] [CrossRef]
- Kokaraki, N.; Hopfe, C.J.; Robinson, E.P.; Nikolaidou, E. Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation. Renew. Sustain. Energy Rev. 2019, 112, 991–1007. [Google Scholar] [CrossRef]
- Salim, F.S.; Bakar, Z.A.; Noor, N.M.M.; Mohemad, R.; Sabri, I.A.A. Aesthetic user interfaces ranking using fuzzy analytic hierarchy process (FAHP) approach. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2023. [Google Scholar] [CrossRef]
- Asakereh, A.; Soleymani, M.; Ardebili, S.M.S. Multi-criteria evaluation of renewable energy technologies for electricity generation: A case study in Khuzestan province, Iran. Sustain. Energy Technol. Assess. 2022, 52, 102220. [Google Scholar] [CrossRef]
- Bilgili, F.; Zarali, F.; Ilgün, M.F.; Dumrul, C.; Dumrul, Y. The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method. Renew. Energy 2022, 189, 1443–1458. [Google Scholar] [CrossRef]
- Yazdani, H.; Baneshi, M.; Yaghoubi, M. Techno-economic and environmental design of hybrid energy systems using multi-objective optimization and multi-criteria decision making methods. Energy Convers. Manag. 2023, 282, 116873. [Google Scholar] [CrossRef]
- Alhakami, W. Computational Study of Security Risk Evaluation in Energy Management and Control Systems Based on a Fuzzy MCDM Method. Processes 2023, 11, 1366. [Google Scholar] [CrossRef]
- Favi, C.; Marconi, M.; Mandolini, M.; Germani, M. Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework. Appl. Energy 2022, 312, 118671. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, M.C.; Ray, A. Strategic sourcing model for green supply chain management: An insight into automobile manufacturing units in India. Benchmarking Int. J. 2021, 29, 3097–3132. [Google Scholar] [CrossRef]
- Saeidi, P.; Mardani, A.; Mishra, A.R.; Cajas, V.E.C.; Carvajal, M.G. Evaluate sustainable human resource management in the manufacturing companies using an extended Pythagorean fuzzy SWARA-TOPSIS method. J. Clean. Prod. 2022, 370, 133380. [Google Scholar] [CrossRef]
- Batwara, A.; Sharma, V.; Makkar, M.; Giallanza, A. An Empirical Investigation of Green Product Design and Development Strategies for Eco Industries Using Kano Model and Fuzzy AHP. Sustainability 2022, 14, 8735. [Google Scholar] [CrossRef]
- Feng, C.; Huang, Y.; Chen, X. Sustainable Design for Transforming Sustainability Requirements to Design Parameters Based on Multi-criteria Decision-Making Methodology. In Mechanisms and Machine Science; Springer Nature: Dordrecht, The Netherlands, 2022; pp. 933–959. [Google Scholar] [CrossRef]
- Hameed, A.; Sultan, M.T.H.; Raj, S.A.; Baghdadi, M.A.; Shahzad, M. Sustainable Product Development Using FMEA ECQFD TRIZ and Fuzzy TOPSIS. Sustainability 2022, 14, 14345. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M. Sustainable Supplier Selection and Order Allocation Using an Integrated ROG-Based Type-2 Fuzzy Decision-Making Approach. Mathematics 2023, 11, 2014. [Google Scholar] [CrossRef]
- Oladunni, O.J.; Mpofu, K.; Olanrewaju, O.A. Greenhouse gas emissions and its driving forces in the transport sector of South Africa. Energy Rep. 2022, 8, 2052–2061. [Google Scholar] [CrossRef]
- Kokkinos, K.; Nathanail, E.; Gerogiannis, V.C.; Moustakas, K.; Karayannis, V. Hydrogen storage station location selection in sustainable freight transportation via intuitionistic hesitant decision support system. Energy 2022, 260, 125008. [Google Scholar] [CrossRef]
- Saraji, M.K.; Streimikiene, D.; Čiegis, R. A novel Pythagorean fuzzy-SWARA-TOPSIS framework for evaluating the EU progress towards sustainable energy development. Environ. Monit. Assess. 2021, 194, 42. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, C. A multi-criteria decision-making framework for electric vehicle supplier selection of government agencies and public bodies in China. Environ. Sci. Pollut. Res. 2022, 30, 10540–10559. [Google Scholar] [CrossRef]
- Peng, X.; Huang, H.; Luo, Z. Fuzzy dynamic MCDM method based on PRSRV for financial risk evaluation of new energy vehicle industry. Appl. Soft Comput. 2023, 136, 110115. [Google Scholar] [CrossRef]
- Goyal, S.; Agarwal, S.; Singh, N.; Mathur, T.; Mathur, N. Analysis of Hybrid MCDM Methods for the Performance Assessment and Ranking Public Transport Sector: A Case Study. Sustainability 2022, 14, 15110. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y. Comprehensive Sustainable Assessment and Prioritization of Different Railway Projects Based on a Hybrid MCDM Model. Sustainability 2022, 14, 12065. [Google Scholar] [CrossRef]
- Markatos, D.N.; Pantelakis, S.G. Implementation of a Holistic MCDM-Based Approach to Assess and Compare Aircraft, under the Prism of Sustainable Aviation. Aerospace 2023, 10, 240. [Google Scholar] [CrossRef]
- Chen, F.; Li, Y.; Feng, Q.; Dong, Z.; Qian, Y.; Yan, Y.; Ho, M.S.; Ma, Q.; Zhang, D.; Jin, Y. Road safety performance rating through PSI-PRIDIT: A planning tool for designing policies and identifying best practices for EAS countries. Socio-Econ. Plan. Sci. 2022, 85, 101438. [Google Scholar] [CrossRef]
- Khan, S.; Kabir, G.; Billah, M.; Dutta, S. An integrated framework for bridge infrastructure resilience analysis against seismic hazard. Sustain. Resilient Infrastruct. 2022, 8 (Suppl. 1), 5–25. [Google Scholar] [CrossRef]
- Badi, I.; Alosta, A.; Elmansouri, O.; Abdulshahed, A.M.; Elsharief, S. An application of a novel grey-CODAS method to the selection of hub airport in North Africa. Decis. Mak. 2023, 6, 18–33. [Google Scholar] [CrossRef]
- Dang, T.; Nguyen, N.; Nguyen, V.T.; Dang, L. A Two-Stage Multi-Criteria Supplier Selection Model for Sustainable Automotive Supply Chain under Uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Awadh, M.A. Assessing the Quality of Sustainable Airline Services Utilizing the Multicriteria Decision-Making Approach. Sustainability 2023, 15, 7044. [Google Scholar] [CrossRef]
- Chaisar, M.; Garg, S.K. Selection of Sewage Treatment Technology using Analytic Hierarchy Process. Mater. Today Proc. 2021, 56, 3433–3440. [Google Scholar] [CrossRef]
- Demircan, B.G.; Yetilmezsoy, K. A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies. Sustainability 2023, 15, 6526. [Google Scholar] [CrossRef]
- Dewalkar, S.V.; Shastri, S.S. Integrated Life Cycle Assessment and Life Cycle Cost Assessment based fuzzy multi-criteria decision-making approach for selection of appropriate wastewater treatment system. J. Water Process Eng. 2022, 45, 102476. [Google Scholar] [CrossRef]
- Garcia-Garcia, G. Using Multi-Criteria Decision-Making to optimise solid waste management. Curr. Opin. Green Sustain. Chem. 2022, 37, 100650. [Google Scholar] [CrossRef]
- Kabirifar, K.; Ashour, M.; Yazdani, M.; Mahdiyar, A.; Malekjafarian, M. Cybernetic-parsimonious MCDM modeling with application to the adoption of Circular Economy in waste management. Appl. Soft Comput. 2023, 139, 110186. [Google Scholar] [CrossRef]
- Van Thanh, N. Optimal Waste-to-Energy Strategy Assisted by Fuzzy MCDM Model for Sustainable Solid Waste Management. Sustainability 2022, 14, 6565. [Google Scholar] [CrossRef]
- Yang, J.; Qiao, L.; Li, C. Fuzzy Comprehensive Evaluation Method for Geological Environment Quality of Typical Heavy Metal Mines. Pol. J. Environ. Stud. 2023, 32, 1877–1886. [Google Scholar] [CrossRef]
- Kum, G.; Sönmez, M.; Kargın, A. An Alternative Process for Determining Erosion Risk: The Fuzzy Method. Coğrafya Derg. 2022, 44, 219–229. [Google Scholar] [CrossRef]
- Baumann, M.; Weil, M.; Peters, J.F.; Chibeles-Martins, N.; Moniz, A.B. A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications. Renew. Sustain. Energy Rev. 2019, 107, 516–534. [Google Scholar] [CrossRef]
- Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data 2019, 6, 44. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Freudenreich, B.; Lüdeke-Freund, F.; Schaltegger, S. A stakeholder theory perspective on business models: Value creation for sustainability. J. Bus. Ethics 2020, 166, 3–18. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Ind. Mark. Manag. 2021, 92, 178–189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štilić, A.; Puška, A. Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices. Eng 2023, 4, 1536-1549. https://doi.org/10.3390/eng4020088
Štilić A, Puška A. Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices. Eng. 2023; 4(2):1536-1549. https://doi.org/10.3390/eng4020088
Chicago/Turabian StyleŠtilić, Anđelka, and Adis Puška. 2023. "Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices" Eng 4, no. 2: 1536-1549. https://doi.org/10.3390/eng4020088
APA StyleŠtilić, A., & Puška, A. (2023). Integrating Multi-Criteria Decision-Making Methods with Sustainable Engineering: A Comprehensive Review of Current Practices. Eng, 4(2), 1536-1549. https://doi.org/10.3390/eng4020088