Investigating Metals and Metalloids in Soil at Micrometric Scale Using µ-XRF Spectroscopy—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Micro X-ray Fluorescence Multi-Point Measurements and 2D Image Mapping
2.3. Two-Dimensional Image Mapping Processing: Clustering RGB Pixel Analysis
3. Results—Elemental µ-2D Mapping Distributions
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Carvalho, P.M.D.S.; Leite, F.; Silva, A.L.M.; Pessanha, S.; Carvalho, M.L.; Veloso, J.F.; Santos, J.P. Elemental mapping of Portuguese ceramic pieces with a full-field XRF scanner based on a 2D-THCOBRA detector. Eur. Phys. J. Plus 2021, 136, 423. [Google Scholar] [CrossRef]
- Flude, S.; Haschke, M.; Storey, M.; Harvey, J. Application of benchtop micro-XRF to geological materials. Mineral. Mag. 2017, 81, 923–948. [Google Scholar] [CrossRef] [Green Version]
- Pessanha, S.; Fonseca, C.; Santos, J.P.; Carvalho, M.L.; Dias, A.A. Comparison of standard-based and standardless methods of quantification used in X-ray fluorescence analysis: Application to the exoskeleton of clams. X-ray Espectrometry 2018, 47, 108–115. [Google Scholar] [CrossRef]
- Kaskes, P.; Déhais, T.; de Graaff, S.J.; Goderis, S.; Claeys, P. Micro–X-ray Fluorescence (µXRF) Analysis of Proximal Impactites: High-Resolution Element Mapping, Digital Image Analysis, and Quantifications. In Large Meteorite Impacts and Planetary Evolution VI; Reimold, W.U., Koeberl, C., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2021; Volume 550, pp. 171–206. [Google Scholar] [CrossRef]
- Barbosa, S.; Dias, A.; Ferraz, A.; Amaro, S.; Brito, M.G.; Almeida, J.A.; Pessanha, S. The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal). Mater. Proc. 2021, 5, 23. [Google Scholar] [CrossRef]
- Barbosa, S.; Dias, A.; Durão, D.; Grilo, J.; Baptista, G.; Cagiza, J.; Pessanha, S.; Simão, J.; Almeida, J. Exploring High-Resolution Chemical Distribution Maps of Incompatible and Scarce Metals in a Nepheline Syenite from the Massif of “Serra de Monchique” (Portugal, Iberian Peninsula). Minerals 2022, 12, 1178. [Google Scholar] [CrossRef]
- Le Gac, A.; Pessanha, S.; Longelin, S.; Guerra, M.; Frade, J.C.; Lourenço, F.; Serrano, M.C.; Manso, M.; Carvalho, M.L. New development on materials and techniques used in the heraldic designs of illuminated Manueline foral charters by multi-analytical methods. Appl. Radiat. Isot. 2013, 82, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.C.; DeWitt, H.L.; Havrilla, G.J. Characterization of small particles by micro X-ray fluorescence. Spectrochim. Acta Part B 2005, 60, 1458–1467. [Google Scholar] [CrossRef]
- Pessanha, S.; Costa, M.; Oliveira, M.I.; Jorge, M.E.M.; Carvalho, M.L. Nondestructive analysis of Portuguese “dinheiros” using XRF: Overcoming patina constraints. Appl. Phys. A 2015, 119, 1173–1178. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303 Pt 1, 135006. [Google Scholar] [CrossRef]
- Colombo, F.; Bargalló, R.; Spalletti, L.A.; Enrique, P.; Queralt, I. Pumice clasts in cross stratified basalt-dominated sandstones and conglomerates. Characteristics and depositional significance: Huarenchenque Fm (Neuquén, Argentina). J. Iber. Geol. 2019, 45, 29–46. [Google Scholar] [CrossRef]
- Pacheco, M.S.M. Variability Analysis and Spatial Elemental Distribution in Soils and Sediments Using Micro-XRF—A Case Study. Master’s Thesis, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal, 2021; p. 308. Available online: https://run.unl.pt/handle/10362/113885 (accessed on 1 September 2022).
- Aaron, J.S.; Taylor, A.B.; Chew, T.-L. Image co-localization—Co-occurrence versus correlation. J. Cell Sci. 2018, 131, jcs211847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmann, M.; Borowski, N.; Leißner, T.; Heinig, T.; Reuter, M.A.; Friedrich, B.; Peuker, U.A. Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-ray Computer Tomography and SEM-Based Image Analysis. Minerals 2020, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Hapca, S.; Baveye, P.C.; Wilson, C.; Lark, R.M.; Otten, W. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-ray CT Images. Predictive Mapping of 3D Soil Chemical Composition at Micro-Scale. PLoS ONE 2015, 10, e0137205. [Google Scholar] [CrossRef] [Green Version]
- Werner, F.; Mueller, C.W.; Thieme, J.; Gianoncelli, A.; Rivard, C.; Höschen, C.; Prietzel, J. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth. Nat. Sci. Rep. 2017, 7, 3203. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Valero, A.M.; Pérez-López, R.; Matos, J.; Capitán, M.A.; Nieto, J.M.; Sáez, R.; Delgado, J.; Caraballo, M. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environ. Geol. 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Oliveira, J.T.; Silva, J.B.; de Carvalho, D.; Van Den Boogaard, M.; Ribeiro, A. Notícia Explicativa da Folha 46-D Mértola. Departamento de Geologia, INETI, Lisboa. 2007. Available online: https://geoportal.lneg.pt/pt/dados_abertos/cartografia_geologica/cgp50k/46-D (accessed on 1 September 2022).
- Santos, E.; Ferreira, M.; Abreu, M.M. Contribuição de Cistus Ladanifer L. e Cistus Salviifolius L. na Recuperação de Áreas Mineiras da Faixa Piritosa Ibérica. Rev. De Ciências Agrárias 2011, 34, 21–31. Available online: http://hdl.handle.net/10400.5/5002 (accessed on 1 September 2022).
- Tavares, M.T.; Abreu, M.M.; Vairinho, M.M.; Sousa, A.J.; Quental, L. Comportamento geoquímico de alguns elementos vestigiais na envolvente das Minas de S. Domingos, Alentejo: Áreas da Tapada e do Telheiro. Rev. De Ciências Agrárias 2009, 32, 182–194. Available online: http://hdl.handle.net/10400.9/736 (accessed on 1 September 2022).
- Pessanha, S.; Samouco, A.; Adão, R.; Carvalho, M.L.; Santos, J.P.; Amaro, P. Detection limits evaluation of a portable energy dispersive X-ray fluorescence setup using different filter combinations. X-ray Spectrom. 2017, 46, 102–106. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 1 September 2022).
- Weller, H. Package ‘Countcolors’. 2019, p. 10. Available online: https://cran.r-project.org/web/packages/countcolors/countcolors.pdf (accessed on 1 September 2022).
- Weller, H. Introduction to Countcolors Package. 2019. Available online: https://cran.r-project.org/web/packages/countcolors/vignettes/Introduction.html (accessed on 1 September 2022).
- Weller, H. Countcolors Package. 2019. Available online: https://rdocumentation.org/packages/countcolors/versions/0.9.1 (accessed on 1 September 2022).
- Batista, M.J.; Matos, J.X.; Figueiredo, M.O.; de Oliveira, D.P.S.; Silva, T.; Santana, H.; Quental, L. Fingerprints for Mining Products and Wastes of the S. Domingos, Aljustrel and Neves Corvo Mines: A Sustainable Perspective. In Proceeding of the VIII Congresso Ibérico de Geoquímico/XVII Semana de Geoquímica, Castelo Branco, Portugal, 24–28 September 2011; p. 6. [Google Scholar]
- Matos, J.X.; Pereira, Z.; Oliveira, V.; Oliveira, J.T. The Geological setting of the São Domingos pyrite orebody, Iberian Pyrite Belt. In Proceedings of the VII National Geology Congress, Estremoz, Portugal, 29 June–13 July 2006; pp. 283–286. [Google Scholar]
- Matos, J.X.; Pereira, Z.; Batista, M.J.; de Oliveira, D.P.S. São Domingos Mining Site—Iberian Pyrite Belt. In Proceedings of the 9th International Symposium on Environmental Geochemistry, Aveiro, Portugal, 15–22 July 2012; pp. 7–12. [Google Scholar]
- Négrel, P.; Ladenberger, A.; Reimann, C.; Birke, M.; Sadeghi, M. Distribution of Rb, Ga and Cs in agricultural land soils at European continental scale (GEMAS): Implications for weathering conditions and provenance. Chem. Geol. 2018, 479, 188–203. [Google Scholar] [CrossRef]
- Połedniok, J. Speciation of scandium and gallium in soil. Chemosphere 2008, 73, 572–579. [Google Scholar] [CrossRef]
- Hafez, I.T.; Sorrentino, G.; Faka, M.; Cuenca-García, C.; Makarona, C.; Charalambous, A.; Nys, K.; Hermon, S. Geochemical survey of soil samples from the archaeological site Dromolaxia-Vyzakia (Cyprus) by means of micro-XRF and statistical approaches. J. Archaeol. Sci. Rep. 2017, 11, 447–462. [Google Scholar] [CrossRef]
- Kim, J.J.; Ling, F.T.; Plattenberger, D.A.; Clarens, A.F.; Lanzirotti, A.; Newville, M.; Peters, C.A. SMART mineral mapping: Synchrotron-based machine learning approach for 2D characterization with coupled micro XRF-XRD. Comput. Geosci. 2021, 156, 104898. [Google Scholar] [CrossRef]
- Li, Q.; Hu, X.; Hao, J.; Chen, W.; Cai, P.; Huang, Q. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF. Chemosphere 2020, 249, 126143. [Google Scholar] [CrossRef] [PubMed]
Categories/Fraction | Number of Pellets (SD1) |
---|---|
TM | 2 |
≥2 mm to <3 mm | 2 |
<2 mm to ≥500 μm | 5 |
<500 μm to ≥250 μm | 3 |
<250 μm | 3 |
Sample Fraction |
TM (ground and milled) |
Grain Size ≥2 mm to <3 mm |
Grain Size <250 μm | |||
---|---|---|---|---|---|---|
Element | Minimum probable | Maximum probable | Minimum probable | Maximum probable | Minimum probable | Maximum probable |
Al | 6.6–7.8 | 18.3–27.8 | 8.5–9.8 | 20.3–29.7 | 11.5–13.2 | 26.4–37.0 |
Si | 3.8–4.4 | 5.4–5.5 | 14.8–19.1 | 24.5–24.9 | 26.1–32.1 | 41.6–42.2 |
K | 5.8–7.8 | 35.8–44.7 | 2.3–2.8 | 10.4–13.3 | 5.4–8.8 | 35.9–44.2 |
Ca | 2.0–3.6 | 7.3–9.4 | 12.3–16.3 | 34.1–38.6 | 3.1–4.3 | 10.1–12.3 |
Ti | 2.1–4.6 | 3.3–3.5 | 7.3–9.6 | 10.0–14.0 | 5.9–6.2 | 5.6–6.9 |
Mn | 2.4–12.7 | 19.8–21.5 | 0.9–1.4 | 1.7–1.8 | 1.9–9.3 | 13.5–14.8 |
Fe | 10.2–12.5 | 21.5–36.3 | 5.8–6.5 | 7.0–11.1 | 5.4–7.4 | 20.0–57.8 |
Ni | 3.2–7.5 | 15.3–24.4 | 3.8–8.8 | 17.7–27.9 | 9.3–16.0 | 28.0–39.3 |
Cu | 0.8–1.7 | 17.0–24.7 | 1.9–4.5 | 24.4–24.5 | 2.2–3.6 | 13.5–14.8 |
Zn | 11.2–12.9 | 49.4–59.7 | 11.0–19.6 | 30.9–37.4 | 7.0–18.1 | 33.2–41.9 |
Ga | 4.8–9.4 | 10.6–16.2 | 3.0–4.4 | 4.7–6.8 | 7.0–15.7 | 17.4–24.2 |
As | 9.5–12.1 | 13.7–19.0 | 4.0–4.4 | 4.6–4.9 | 3.3–4.7 | 5.0–5.8 |
Sr | 13.8–19.6 | 42.8–49.5 | 22.2–27.3 | 41.9–45.4 | 28.0–36.1 | 54.0–54.1 |
Y | 3.4–4.4 | 5.6–7.3 | 7.6–9.4 | 11.1–13.3 | 7.8–9.6 | 11.6–13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, S.; Dias, A.; Pacheco, M.; Pessanha, S.; Almeida, J.A. Investigating Metals and Metalloids in Soil at Micrometric Scale Using µ-XRF Spectroscopy—A Case Study. Eng 2023, 4, 136-150. https://doi.org/10.3390/eng4010008
Barbosa S, Dias A, Pacheco M, Pessanha S, Almeida JA. Investigating Metals and Metalloids in Soil at Micrometric Scale Using µ-XRF Spectroscopy—A Case Study. Eng. 2023; 4(1):136-150. https://doi.org/10.3390/eng4010008
Chicago/Turabian StyleBarbosa, Sofia, António Dias, Marta Pacheco, Sofia Pessanha, and J. António Almeida. 2023. "Investigating Metals and Metalloids in Soil at Micrometric Scale Using µ-XRF Spectroscopy—A Case Study" Eng 4, no. 1: 136-150. https://doi.org/10.3390/eng4010008
APA StyleBarbosa, S., Dias, A., Pacheco, M., Pessanha, S., & Almeida, J. A. (2023). Investigating Metals and Metalloids in Soil at Micrometric Scale Using µ-XRF Spectroscopy—A Case Study. Eng, 4(1), 136-150. https://doi.org/10.3390/eng4010008