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Abstract: Micrometric 2D mapping of distinct elements was performed in distinct soil grain-size
fractions of a sample using the micro-X-ray Fluorescence (µ-XRF) technique. The sample was
collected in the vicinity of São Domingos, an old mine of massive sulphide minerals located in
the Portuguese Iberian Pyrite Belt. As expected, elemental high-grade concentrations of distinct
metals and metalloids in the dependence of the existent natural geochemical anomaly were detected.
Clustering and k-means statistical analysis were developed considering Red–Green–Blue (RGB)
pixel proportions in the produced 2D micrometric image maps, allowing for the identification
of elemental spatial distributions at 2D. The results evidence how elemental composition varies
significantly at the micrometric scale per grain-size class, and how chemical elements present irregular
spatial distributions in the direct dependence of distinct mineral spatial distributions. Due to this
fact, elemental composition is more differentiated in coarser grain-size classes, whereas griding-
milled fraction does not always represent the average of all partial grain-size fractions. Despite
the complexity of the performed analysis, the achieved results evidence the suitability of µ-XRF to
characterize natural, heterogeneous, granular soils samples at the micrometric scale, being a very
promising investigation technique of high resolution.

Keywords: soil matrix; metal distribution per grain fraction; micro-X-ray elemental mapping; RGB
clustering image analysis; k-means

1. Introduction

Quantification, imaging, and data processing of micro-X-ray Fluorescence (µ-XRF)
outputs are presently an interesting but also very challenging area of investigation. To
obtain the elemental distribution of a sample, specific instrumentation that provides precise
positioning and good energy resolution must be used. Micro-XRF imaging spectrometers
rely on scanning samples along the X and Y directions, with a micro-X-ray beam irradiating
a region of interest (ROI), point by point [1]. Recent developments in µ-XRF consider
quantitative analysis using fundamental parameter-based ‘standardless’ quantification
algorithms [2,3].

The works developed by [2,4–6] evidence the suitability of this technique for various
applications within the earth sciences. Further, 2D high-resolution chemical distribution
maps can be used as qualitative multi-element maps or as semiquantitative single-element
maps through which bulk and phase-specific geochemical data sets can be established [4].

In [2], the authors discuss the accuracy and precision of these quantitative analyses
by using a simple-type calibration against a certified reference material of similar matrix
and composition. µ-XRF is a non-destructive technique and leaves samples intact for other
types of analyses, such as Raman spectroscopy or X-ray diffraction, which allow for the
characterization of molecular components [7]. The use of µ-XRF in conjunction with these
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established methods of molecular analysis allows for a more complete characterization
of grains and particles [2,8,9]. Heterogeneous samples, such as soils, are much harder to
characterize. Both single particle as well as bulk analyses must be performed on sample
specimens to ensure a full description by µ-XRF [8]. Its consideration to analyse bulk
samples of soil implies, necessarily, a clear elemental identification and the distinction
between different occurring grades [10]. Quantification of soil data by µ-XRF is still a topic
of considerable investigation interest and has been reported only in a limited number of
publications [11,12]. Recent research studies evidence how statistical and geostatistical
techniques can be applied to co-relate distinct imaging results [13] and how it is already
possible to generate 3D maps of chemical properties at the micrometric scale by combining
2D SEM-EDX data with 3D X-ray computed tomography images [14–16]. Effectiveness and
potentialities that result from the integration of results of micro-X ray and SEM techniques
are also well demonstrated by distinct researchers, even in the cases of very irregular,
porous matrixes [14–16]. In fluorescence microscopy, colocalization refers to observation
of the spatial overlap between two (or more) different fluorescent labels, each having
a separate emission wavelength. Ref. [13] discussed co-localization analysis processes
in the context of increasingly popular super-resolution imaging technique occurrence
versus correlation, although this limits image pixel-based processing techniques. Ref. [15]
developed a method to generate 3D maps of soil chemical properties at the microscale by
combining 2D SEM-EDX data with 3D X-ray computed tomography images. The spatial
correlation between the X-ray grayscale intensities and the chemical maps made it possible
to use a regression-tree model as an initial step to predict 3D chemical composition.

Bulk-sample analysis is a test method used when individual particulate samples are
not representative or are not obtained for a certain type of material. Particulate products,
such as soils, granulated powders, dusts, or foodstuffs, are usually analysed through bulk-
sampling principles [8]. The microscopic analysis of a heterogeneous matrix, such as bulk
soil samples, with µ-XRF is complex but has unique potentialities.

The present work is an introductory study in which 2D image clustering analysis
based on µ-XRF XY scanning maps of a soil sample was performed. The case study, a soil
sample denominated as SD1, was collected at the former mine of São Domingos in Mértola,
Portugal (Figure 1). São Domingos Mine is located at the Iberian Pyrite Belt (IPB). It is a
world-renowned massive sulphide ore deposit, mainly exploited for its copper contents.
High concentrations of As, Zn, and Pb area also found. Its exploitation started prior to
the Roman occupation period, mainly for Au, Ag, and Pb. Due to the mine’s extensive
exploitation over the centuries, the area is filled with very heterogeneous mining waste.
Natural gossan (iron caps) deposits and natural local mineralogy results in the generation
of heterogeneous soils with high contents of several heavy metals and metalloids. At
this mining site, the geology is dominated by greywackes and quartzwackes, quartzites,
phyllites, schists, forming the “Baixo Alentejo” Flysch Group, turbidites, and a volcano–
sedimentary complex. The lithostratigraphic units range mainly from the Devonian to the
Carboniferous periods [17,18]. Due to its mining context and its local geology, the most
common elements found in the soils around the mining area are, mainly, Al, Si, S, Ti, Mn,
Cr, Fe, Cu, Zn, As, Ga, Pb, Sb, and Hg [19,20].
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Figure 1. Location of São Domingos mine and location of the collected SD1 sample. Left figure is 
adapted from [17]. 

2. Materials and Methods 
2.1. Sampling and Sample Preparation 

The soil sample was collected with the aid of a small shovel, scooping the surface soil 
to a depth of about 10 to 20 cm. About 1.50 kg of material was collected, stored, and 
labelled adequately. SD1 consists of a reddish-brown soil with small to large particles 
(Figure 2). The sample was sieved into four classes of grain size, ≥2 to <3 mm, <2 mm to 
≥500 µm, <500 µm to ≥250 µm, and <250 µm. A ground and milled bulk sample (TM, 
“Total Milled”) was also prepared. Depending on the availability of the material, and 
using a manual benchtop press, two to five pellets were made from all the granulometry-
size fractions and TM. Table 1 shows the number of pellets analysed by category. These 
pellets were analysed with a benchtop micro-XRF spectrometer, M4 TORNADO by 
Bruker (Billerica, MA, USA). 

 
Figure 2. Pellet of an original SD1 sample of grain size fraction “<2 mm to ≥500 µm” (image source: 
Bruker’s M4 TORNADO camera). 

  

Figure 1. Location of São Domingos mine and location of the collected SD1 sample. Left figure is
adapted from [17].

2. Materials and Methods
2.1. Sampling and Sample Preparation

The soil sample was collected with the aid of a small shovel, scooping the surface soil
to a depth of about 10 to 20 cm. About 1.50 kg of material was collected, stored, and labelled
adequately. SD1 consists of a reddish-brown soil with small to large particles (Figure 2).
The sample was sieved into four classes of grain size, ≥2 to <3 mm, <2 mm to ≥500 µm,
<500 µm to ≥250 µm, and <250 µm. A ground and milled bulk sample (TM, “Total Milled”)
was also prepared. Depending on the availability of the material, and using a manual
benchtop press, two to five pellets were made from all the granulometry-size fractions and
TM. Table 1 shows the number of pellets analysed by category. These pellets were analysed
with a benchtop micro-XRF spectrometer, M4 TORNADO by Bruker (Billerica, MA, USA).
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Table 1. Number of pellets by category.

Categories/Fraction Number of Pellets (SD1)

TM 2
≥2 mm to <3 mm 2

<2 mm to ≥500 µm 5
<500 µm to ≥250 µm 3

<250 µm 3

2.2. Micro X-ray Fluorescence Multi-Point Measurements and 2D Image Mapping

The micro-X-ray fluorescence technique is applied by means of the energy dispersive
spectrometer M4 TORNADO by Bruker. This instrument consists of a low-power X-ray
tube with a Rh anode, which was operated in this case study at 50 kV and 300 uA. Placed
after the X-ray tube, a poly-capillary lens focuses the beam to a spot size that can go
down to 25 µm for Mo-Kα. This way, by selecting an area in the sample, point-by-point
measurements can be performed and images of elemental distributions within the sample
are generated.

In the case study, the pellets were analysed making use of an AlTiCu 100/50/25 µm
filter composition. For elements emitting radiations from 5 to 35 keV, it is adequate to
use filters that can lessen the effect of the Bremsstrahlung radiation that contribute to
background radiation [21]. Therefore, for SD1, the two filters mentioned above were
used due to the presence of elements with an atomic number (Z) superior to 21, i.e., from
Titanium (Ti) to Yttrium (Y), which were identified in a primary analysis without filters.

The measurements were taken under 20 mbar vacuum conditions (to improve detec-
tion limits), with a step size of 15 µm and 10 ms acquisition per spectrum rendering for, on
average, 1 h 30 min to ensure high-resolution 2D maps for each element.

Data treatment of micro-2D mapping was performed using the M4 TORNADO inbuilt
software MQuant.

That is to say, only one pellet for each of the sample categories—TM, ≥2 mm to <3 mm,
<2 mm to ≥500 µm, <500 µm to ≥250 µm, <250 µm—was chosen for 2D map surveys due
to the big amount of data obtained.

2.3. Two-Dimensional Image Mapping Processing: Clustering RGB Pixel Analysis

µ-XRF 2D mapping outputs consisted of 2D image files. Possibilities related with the
processing of these image files are mainly related with pixel quantification and statistical
analysis of its distributions. In this case study, each image refers to a certain element spatial
distribution for which its occurrence and concentration are locally represented by a certain
intensity of a certain RGB (Red, Green, Blue) colour. The highest elemental concentrations
are represented by the highest RGB light colour proportions (Figure 3).
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Pixel proportion quantifications per distinct RGB colour intensity were established
with R©Countcolors Package [22–25]). This package was developed originally with the aim
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of quantifying the area of white-nose syndrome infection of bat wings [25]. R©Countcolors
Package allows users to quantify regions of an image by distinct colours. It is an R package
that counts colours within specified colour ranges in image files and provides a masked
version of the image with targeted pixels changed to a different selected colour by the
utilizer. This package integrates techniques from image processing without using any
machine learning, adaptive thresholding, or object-based detection, which make it reliable
and easy to use but limited in terms of application.

The principle of the image processing analysis consisted of considering each RGB
colour in three dimensions, where each colour is defined by its coordinates in R (red), G
(green), and B (blue) axes. The range of each RGB colour is, thus, interpreted in a 3D space
(Figure 4a). The quantitative RGB pixel analysis performed for each 2D image begins with
the verification of the level of similarity of colour intensities according to its respective
RGB code. Each RGB code represents a certain RGB cluster (and, thus, a certain colour
intensity). RGB pixels per cluster are counted by samples of 10,000 pixels from the 2D image.
For each RGB code representing a certain cluster, its respective frequencies are calculated
(Figure 4b,c). Figure 4 presents an exemplification of the pixel-counting frequencies for
six distinct colour clusters representing the concentrations of the element Fe. The pixels of
more light-colour clusters represent the locations with highest concentrations on Fe. The
number of clusters and the number of the sampling pixels are established by the user.
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Figure 4. RGB clustering analysis of a µ-XRF 2D map (element: Fe; pellet of a bulk sample). (a) RGB
counting colours in three dimensions (sample size n = 10,000 pixels); (b) Pixel classification in
6 clusters; (c) RGB pixel proportions for each cluster.

One of the main objectives of this case study was to estimate the areas that are as-
sociated with a certain range of RGB pixels. The light-colour ranges that are associated
with the highest colour intensities represent the highest elemental concentrations. In the
adopted methodology, after selecting the colour clusters that are the most representative
for a certain element occurrence, its respective areas are estimated. The images processed
always integrate degrees of intensity of a unique colour, which relates to a certain element
to be identified. The element occurrence is represented by the light-coloured clusters in each
colour image. In [5], following the principles described in [23–25], the authors defined an
analysis methodology based on two options: one that considers upper and lower limits for
each colour range and where a box-shaped border is drawn around the region of that range
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(rectangular range) and a second option that considers the selection of a certain central
colour and a search radius around it, were a “sphere” for the considered colour range is
drawn (spherical range). Due to the possibilities of applying distinct criteria, estimated area
calculations are referenced in terms of percentages of minimum and maximum probable
areas (Figure 5). In fact, the calculated areas have distinct possibilities, directly dependent
on the number of colour clusters and the search criteria, which are, in turn, user defined.
Due to these distinct possibilities, it is more correct to suggest a range of probable estimated
areas than to present only a specific estimated area. For this, the adopted methodology
integrates the possibility of considering the search criteria to one, two, or three colour
clusters simultaneously (Figure 5). When two or three colour clusters are to be considered,
a search radius is applied to each colour. For minimum area calculations, it is advisable to
consider “one colour cluster” with spherical or rectangular search criteria or “two colour
clusters” procedures. To calculate possible maximum estimated areas, it is advisable to
simultaneously consider “three colour clusters” for the estimations.
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Figure 5. Methodology applied to estimate minimum and maximum probable elemental occurrence
in a µ-XRF 2D map (example of element Fe in a bulk pellet sample).

This methodology allows one to accomplish a semi-quantitative analysis of the µ-XRF
2D mapping images. Uncertainty is mostly associated with the clustering classification and
search criteria, which are user defined. The described methodology has already been ap-
plied to granular mining waste samples [5] and to a syenite nepheline rock sample in order
to identify incompatible and scarce metals at the micrometric scale [5]. Results evidence
the potentiality of this methodology to interpret elemental µ-XRF 2D mapping images of
materials with heterogenous granular textures, such as soils and mining wastes, being also
quite promising in elemental and mineral identification of distinct rock matrix [5,6].

3. Results—Elemental µ-2D Mapping Distributions

Through multi-point measurement analysis, it was possible to identify, in sample
SD1, the following elements per size fraction class: aluminium (Al), silicon (Si), potassium
(K), calcium (Ca), titanium (Ti), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc
(Zn), gallium (Ga), arsenic (As), rubidium (Rb), strontium (Sr), and yttrium (Y). Figure 6
presents the results achieved for the methodology applied for the case of the element Fe.
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Estimations of minimum and maximum probable Fe occurrence in µ-XRF 2D maps are
presented. Analogous results are presented for the elements Ca, Mn, Cu, Zn, and As in
Appendix A.
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As can be observed, the difference in spatial distribution patterns and the estimated
minimum and maximum elemental quantities is clear according to grain-size fractions. Fur-
ther, patterns of TM (ground and milled) are more similar to grain-size fraction “<250 µm”.
This behavioural pattern can be observed in most of the analysed elements (Appendix A).
Quantities per element are estimated in percentage (%) of the total mapped area and
vary according to grinding, milling, and grain-size fraction (Figure 6, Appendix A and
Figure 7). Bulk milled samples do not always represent the average between the distinct
size fractions. In fact, for some elements, coarser gain-size fractions, such as “≥2 mm
to <3 mm” and “<2 mm to ≥500 µm”, tend to be present in distinct estimated quantities
(Figure 6, Appendix A and Figure 7). These two facts are indicative of the occurrence of
some elements in the direct dependence of the mineralogy and, in turn, in the dependence
of its more representative granulometry. Table 2 includes a summary of the minimum
and maximum elemental occurrence in the µ-XRF 2D map (percentage of area, %) of the
elements Al, Si, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Sr, and Y.

Elements presented in higher estimated percentages evidence the influence of the
local geology in the soil’s constitution [17,26–28]. Figure 8 presents some of the most
representative results considering maximum estimated percentages of elemental occurrence
area (%). The elements presented in this Figure, Si, Al, Cu, Zn, Ca, K, Ti, Fe, As, Ga, and Mn,
are grouped according to their respective percentage of occurrence area (%). The results
reflect not only the natural composition of soil (Si, Al, Ca, K, Ti) but also the presence of
natural geochemical anomalies, which are related to the existence of massive sulphide
ore deposit minerals, increasing the percentages of occurrence of Cu, Zn, Fe, As, Ga, and
Mn among other elements. Apart from Si and Al, the elements Cu, Zn, Ca, K, Ti, Fe, As,
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Ga, and Mn present specific spatial distribution patterns. For the case of Fe, As, Ga, and
Mn, the dependence on coarser minerals is quite evident. Spatial overlap of the elements
according to mineralogy is also possible to observe. In this context, the spatial overlap of Fe,
As, and Ga is an example and is a consequence of the local geochemistry and mineralogy,
which includes iron oxides and sulphides [17,26–28]. Simultaneously, the presence of As
and Fe can be explained by the existence of arsenic-bearing sulfides, such as arsenopyrite
or sulfosalts. The presence of Ga in the soil is usually connected with the occurrence of
silty minerals. Ga tends to be sorbed by Fe(III) and Mn(III) oxides [29,30] and occurs as an
impurity in iron oxides, hydroxides, and sphalerite minerals, which can explain the spatial
correspondence between Fe and Ga in the SD1 sample.
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Table 2. Synthesis of estimated minimum and maximum elemental occurrence (percentage of area %)
for Al, Si, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Ga, As, Sr, and Y.

Sample
Fraction

TM
(ground and milled)

Grain Size
≥2 mm to <3 mm

Grain Size
<250 µm

Element Minimum
probable

Maximum
probable

Minimum
probable

Maximum
probable

Minimum
probable

Maximum
probable

Al 6.6–7.8 18.3–27.8 8.5–9.8 20.3–29.7 11.5–13.2 26.4–37.0
Si 3.8–4.4 5.4–5.5 14.8–19.1 24.5–24.9 26.1–32.1 41.6–42.2
K 5.8–7.8 35.8–44.7 2.3–2.8 10.4–13.3 5.4–8.8 35.9–44.2
Ca 2.0–3.6 7.3–9.4 12.3–16.3 34.1–38.6 3.1–4.3 10.1–12.3
Ti 2.1–4.6 3.3–3.5 7.3–9.6 10.0–14.0 5.9–6.2 5.6–6.9

Mn 2.4–12.7 19.8–21.5 0.9–1.4 1.7–1.8 1.9–9.3 13.5–14.8
Fe 10.2–12.5 21.5–36.3 5.8–6.5 7.0–11.1 5.4–7.4 20.0–57.8
Ni 3.2–7.5 15.3–24.4 3.8–8.8 17.7–27.9 9.3–16.0 28.0–39.3
Cu 0.8–1.7 17.0–24.7 1.9–4.5 24.4–24.5 2.2–3.6 13.5–14.8
Zn 11.2–12.9 49.4–59.7 11.0–19.6 30.9–37.4 7.0–18.1 33.2–41.9
Ga 4.8–9.4 10.6–16.2 3.0–4.4 4.7–6.8 7.0–15.7 17.4–24.2
As 9.5–12.1 13.7–19.0 4.0–4.4 4.6–4.9 3.3–4.7 5.0–5.8
Sr 13.8–19.6 42.8–49.5 22.2–27.3 41.9–45.4 28.0–36.1 54.0–54.1
Y 3.4–4.4 5.6–7.3 7.6–9.4 11.1–13.3 7.8–9.6 11.6–13.9Eng 2023, 4, FOR PEER REVIEW 10 
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4. Discussion and Conclusions

Elemental 2D spatial mapping through micro-XRF spectroscopy is a promising tech-
nique in the detailed study of granular heterogeneous samples, such as soils and mining
wastes [31–33]. In this exploratory study, a clustering image analysis methodology was
applied to detect elemental distribution at micrometric scale according to distinct colour
intensities. The results present accurate information on the elemental distribution per grain
fraction, offering clues of its geochemical occurrence (manly primary in coarse grain-size
fraction and secondary in finer fractions). Results are more regular and similar between
distinct fraction samples and milled samples when the element occurs at lower granulome-
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tries. The results showed that the elemental spatial patterns per grain-size fraction are
not always coincident or similar to grinding and milled spatial pattern samples, showing
that, for some cases, elemental distribution is dependent on specific mineralogy, which can
have its own grain-size distribution pattern according to geochemical characteristics of
the site. Some metals show distinctive percentages of occurrence according to grain-size
fraction. Metal occurrence in milled fractions do not always correspond to the average
of the grain-size fractions. Certain elements tend to be present in higher quantities in
coarse fractions, mainly 2–3 mm, while other elements tend to present in smaller-size grain
fractions (<250 µm). This will be dependent on the mineralogy and specific geochemical
behaviour, especially mobility, of the elements. For sure, mobility and geochemical source
of the element (primary or secondary) will dictate elemental specific spatial patterns at the
micrometric scale.

In general, minimum and maximum elemental estimations from 2D maps show a
tendency of greater discrepancies in results when the element is more abundant and
widespread in the matrix. This is the example of element Si, K, Zn, Sr, and finer gain-size
fractions of Fe. Major discrepancies in measurements are due to the higher difficulty in
fixing the characteristic degree of colour intensity that marks the occurrence of the element,
and distance between the distinct intensity colour degrees, which may make clustering
classification difficult. In this context, the joint interpretation of 2D images to estimate
3D grades is currently an emerging research area [13,14,31–33] that will represent a quite
interesting investigation upgrade.

The exploration of applicable data image analysis techniques able to identify elemental
spatial overlaps in µ-XRF 2D map surveys and the estimation of grain-size distributions
per element or per groups of elements are two promising areas for forward investigation in
granular and heterogeneous samples, such as in the case of soil samples.
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