Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wargo, C.; Snipes, C.; Roy, A.; Kerczewski, R. UAS Industry Growth: Forecasting Impact on Regional Infrastructure, Environment, and Economy. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–5. [Google Scholar]
- Doering, C. Growing Use of Drones Poised to Transform Agriculture. USA Today 2014, 23. [Google Scholar]
- AUVSI. The Economic Impact of Unmanned Aircraft Systems Integration in the United States; Association for Unmanned Vehicle Systems International (AUVSI) Economic Report; AUVSI: Denver, CO, USA, 2013. [Google Scholar]
- Hunt, E.R.; Daughtry, C.S.T. What Good Are Unmanned Aircraft Systems for Agricultural Remote Sensing and Precision Agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the U.S.: Potential, Policy, and Hype. Remote Sens. Appl. Soc. Environ. 2015, 2, 35–43. [Google Scholar] [CrossRef]
- Rodriguez, R. Perspective: Agricultural Aerial Application with Unmanned Aircraft Systems: Current Regulatory Framework and Analysis of Operators in the United States. Trans. ASABE 2021, 64, 1475–1481. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Behrendt, K.; Ehlers, M.-H.; Dillon, C.; Gabriel, A.; Huang, I.Y.; Kumwenda, I.; Mark, T.; Meyer-Aurich, A.; Milics, G.; et al. Lessons to Be Learned in Adoption of Autonomous Equipment for Field Crops. Appl. Econ. Perspect. Policy 2022, 44, 848–864. [Google Scholar] [CrossRef]
- Reger, M.; Bauerdick, J.; Bernhardt, H. Drones in Agriculture: Current and Future Legal Status in Germany, the EU, the USA and Japan. Landtechnik 2018, 73, 62–80. [Google Scholar]
- Srivastava, S.; Gupta, S.; Dikshit, O.; Nair, S. A Review of UAV Regulations and Policies in India. In Proceedings of the UASG 2019, Roorkee, India, 6–7 April 2019; Jain, K., Khoshelham, K., Zhu, X., Tiwari, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–325. [Google Scholar]
- Ayamga, M.; Tekinerdogan, B.; Kassahun, A. Exploring the Challenges Posed by Regulations for the Use of Drones in Agriculture in the African Context. Land 2021, 10, 164. [Google Scholar] [CrossRef]
- Sheets, K.D. The Japanese Impact on Global Drone Policy and Law: Why a Laggard United States and Other Nations Should Look to Japan in the Context of Drone Usage. Ind. J. Glob. Legal Stud. 2018, 25, 513. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Mo, J. The Application of Unmanned Aircraft Systems to Plant Protection in China. Precis. Agric. 2018, 19, 278–292. [Google Scholar] [CrossRef]
- Xiongkui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent Development of Unmanned Aerial Vehicle for Plant Protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field Evaluation of an Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Spray Volume on Deposition and the Control of Pests and Disease in Wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Woldt, W.; Martin, D.; Lahteef, M.; Kruger, G.; Wright, R.; McMechan, J.; Proctor, C.; Jackson-Ziems, T. Field Evaluation of Commercially Available Small Unmanned Aircraft Crop Spray Systems. In Proceedings of the 2018 ASABE Annual International Meeting, Dearborn, MI, USA, 31 July 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; p. 1. [Google Scholar]
- Martin, D.E.; Rodriguez, R.; Woller, D.A.; Reuter, K.C.; Black, L.R.; Latheef, M.A.; Taylor, M.; López Colón, K.M. Insecticidal Management of Rangeland Grasshoppers Using a Remotely Piloted Aerial Application System. Drones 2022, 6, 239. [Google Scholar] [CrossRef]
- Chen, H.; Lan, Y.; Fritz, B.K.; Hoffmann, W.C.; Liu, S. Review of Agricultural Spraying Technologies for Plant Protection Using Unmanned Aerial Vehicle (UAV). Int. J. Agric. Biol. Eng. 2021, 14, 38–49. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Martínez-de Dios, J.R.; Popa-Lisseanu, A.G.; Gray, R.J.; Alarcón, F.; Sánchez-Bedoya, C.A.; Viguria, A.; Ibáñez, C.; Negro, J.J.; Ollero, A.; et al. Development of a Fixed-Wing Drone System for Aerial Insect Sampling. Drones 2022, 6, 189. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Osamura, K.; Toyoda, H. Remote-Controlled Monitoring of Flying Pests with an Electrostatic Insect Capturing Apparatus Carried by an Unmanned Aerial Vehicle. Agriculture 2021, 11, 176. [Google Scholar] [CrossRef]
- Rodriguez III, R.; Leary, J.J.K.; Jenkins, D.M. Herbicide Ballistic Technology for Unmanned Aircraft Systems. Robotics 2022, 11, 22. [Google Scholar] [CrossRef]
- Lawrence, B.; Mundorff, K.; Keith, E. The Impact of UAS Aerial Ignition on Prescribed Fire: A Case Study in Multiple Ecoregions of Texas and Louisiana. Fire Ecol. 2022, 19, 11. [Google Scholar] [CrossRef]
- Perroy, R.L.; Meier, P.; Collier, E.; Hughes, M.A.; Brill, E.; Sullivan, T.; Baur, T.; Buchmann, N.; Keith, L.M. Aerial Branch Sampling to Detect Forest Pathogens. Drones 2022, 6, 275. [Google Scholar] [CrossRef]
- Krisanski, S.; Taskhiri, M.S.; Montgomery, J.; Turner, P. Design and Testing of a Novel Unoccupied Aircraft System for the Collection of Forest Canopy Samples. Forests 2022, 13, 153. [Google Scholar] [CrossRef]
- Charron, G.; Robichaud-Courteau, T.; La Vigne, H.; Weintraub, S.; Hill, A.; Justice, D.; Bélanger, N.; Lussier Desbiens, A. The DeLeaves: A UAV Device for Efficient Tree Canopy Sampling. J. Unmanned Veh. Syst. 2020, 8, 245–264. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Savkin, A.V.; Zhang, J. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones 2022, 6, 29. [Google Scholar] [CrossRef]
- Singh, A.P.; Yerudkar, A.; Mariani, V.; Iannelli, L.; Glielmo, L. A Bibliometric Review of the Use of Unmanned Aerial Vehicles in Precision Agriculture and Precision Viticulture for Sensing Applications. Remote Sens. 2022, 14, 1604. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Raparelli, E.; Bajocco, S. A Bibliometric Analysis on the Use of Unmanned Aerial Vehicles in Agricultural and Forestry Studies. Int. J. Remote Sens. 2019, 40, 9070–9083. [Google Scholar] [CrossRef]
- Skare, M.; Riberio Soriano, D. How Globalization Is Changing Digital Technology Adoption: An International Perspective. J. Innov. Knowl. 2021, 6, 222–233. [Google Scholar] [CrossRef]
- Jain, R.; Arora, A.; Raju, S.S. A Novel Adoption Index of Selected Agricultural Technologies: Linkages with Infrastructure and Productivity. Agric. Econ. Res. Rev. 2009, 22, 109–120. [Google Scholar]
- FAA Data Downloads: Air Operators. Available online: av-info.gov/dd_sublevel.asp?Folder=\AIROPERATORS (accessed on 24 November 2022).
- National Agricultural Statistics Service. Farms and Land in Farms 2021 Summary; United States Department of Agriculture: Washington, DC, USA, 2022.
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- United States House of Representatives. FAA Modernization and Reform Act of 2012; United States House of Representatives: Washington, DC, USA, 2012.
- Federal Aviation Administration. Weak Processes Have Led to a Backlog of Flight Standards Certification Applications; Federal Aviation Administration: Washington, DC, USA, 2014.
Variable | Sum of Squares | Degrees of Freedom | F | p | η2 |
---|---|---|---|---|---|
Number of Farms | 127.218 | 1 | 62.768 | <0.001 | 0.57 |
Manned Agricultural Aircraft Operators | 9.521 | 1 | 4.698 | 0.03 | 0.09 |
Residual | 95.26 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, R., III. Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng 2023, 4, 977-983. https://doi.org/10.3390/eng4010058
Rodriguez R III. Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng. 2023; 4(1):977-983. https://doi.org/10.3390/eng4010058
Chicago/Turabian StyleRodriguez, Roberto, III. 2023. "Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector" Eng 4, no. 1: 977-983. https://doi.org/10.3390/eng4010058
APA StyleRodriguez, R., III. (2023). Measuring the Adoption of Drones: A Case Study of the United States Agricultural Aircraft Sector. Eng, 4(1), 977-983. https://doi.org/10.3390/eng4010058