Use of the Analytic Hierarchy Process Method in the Variety Selection Process for Sugarcane Planting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytic Hierarchy Process
- Elaborate on the problem to be solved;
- Consider the objectives and results of the problem;
- Identify the criteria that influence the behavior;
- Structure the problem in a hierarchy of different levels, criteria, sub-criteria, and alternatives;
- Parity judgment: to judge pair-by-pair the elements in the hierarchy in relation to each element in the superior level, compounding a matrix of judgment A, using the scale presented in Table 1. The quantity of judgments for the construction of a matrix A is n × (n − 1), where n is the number of elements.
- Normalization of the judgment matrices: through the sum of the elements of each column of the judgment matrix, their normalized values are obtained. After that, it is necessary to divide each element of these matrices for the summation of the values of the respective column;
- Calculus of the global priorities: it is necessary to identify a global priorities vector that can store the priority associated with each alternative in relation to the main focus;
- Logical consistency: this method calculates the consistency ratio of the judgment, being CR = CI/IR, where IR is the random consistency index obtained for a reciprocal matrix of order n, with non-negative elements and automatically generated. In order to be considered consistent, it is necessary that CR ≤ 0.10.
2.2. AHP Application
- Potential for sucrose accumulation: this is the sugarcane’s capacity that determines the agricultural production. The values vary according to the time of the year and support the steps that compound the industrialization process of the sugarcane [41];
- Ratoon sprouting: physiological processes that encompass the period from plantation to the beginning of tillering, after the second cut [42];
- Ton per hectare: mass of sugarcane produced in one hectare, where 1 ton/hectare is equivalent to 0.1 kg/m2;
- Longevity: this is the life expectancy of the cane field, that is, the number of cuts between cane field renovation cycles. As planting is one of the most important stages of sugarcane, a variety of sugarcane that has great longevity has a direct impact on production costs and economic return [43];
- Soil requirement: this consists of the nutrients required by plants for proper growth [44].
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.R.; Yang, L.T. Sugarcane agriculture and sugar industry in China. Sugar Tech 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Solomon, S. Sugarcane production and development of sugar industry in India. Sugar Tech 2016, 18, 588–602. [Google Scholar] [CrossRef]
- Gongora, A.; Villafranco, D. Sugarcane bagasse cogeneration in Belize: A review. Renew. Sustain. Energy Rev. 2018, 96, 58–63. [Google Scholar] [CrossRef]
- Rodrigues, D.; Ortiz, L. Em Direção à Sustentabilidade da Produção de Etanol de Cana de Açúcar no Brasil; Amigos da Terra Brasil: Porto Alegre, Brasil, 2006. [Google Scholar]
- IEA—Instituto de Economia Agrícola. Cana-de-Açúcar: Produção e Processamento em 2019. 2020. Available online: http://www.iea.sp.gov.br/out/TerTexto.php?codTexto=14767 (accessed on 29 May 2021).
- Rudorff, B.F.T.; de Aguiar, D.A.; da Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Adami, M.; Rudorff, B.F.T.; Freitas, R.M.; Aguiar, D.A.; Sugawara, L.M.; Mello, M.P. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 2012, 4, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.O.S.; Maciel Filho, R.; Mantelatto, P.E.; Cavalett, O.; Rossell, C.E.V.; Bonomi, A.; Leal, M.R.L.V. Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 2015, 15, 35–51. [Google Scholar] [CrossRef]
- Voultsos, I.; Katsourinis, D.; Giannopoulos, D.; Founti, M. Integrating LCA with Process Modeling for the Energetic and Environmental Assessment of a CHP Biomass Gasification Plant: A Case Study in Thessaly, Greece. Eng 2020, 1, 2. [Google Scholar] [CrossRef]
- Furtado, A.T.; Scandiffio, M.I.G.; Cortez, L.A.B. The Brazilian sugarcane innovation system. Energy Policy 2011, 39, 156–166. [Google Scholar] [CrossRef]
- Moraes, M.A.F.D.; Zilberman, D. Production of Ethanol from Sugarcane in Brazil: From State Intervention to a Free Market; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; Volume 43. [Google Scholar]
- Gilio, L.; de Moraes, M.A.F.D. Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach. Energy Econ. 2016, 58, 27–37. [Google Scholar] [CrossRef]
- Bordonal, R.D.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 1–23. [Google Scholar] [CrossRef]
- Jesus, G.M.K.; Jugend, D.; Paes, L.A.B.; Siqueira, R.M.; Leandrin, M.A. Barriers to the adoption of the circular economy in the Brazilian sugarcane ethanol sector. Clean Technol. Environ. Policy 2021, 1–15. [Google Scholar] [CrossRef]
- Lima, P.A.B.; Jesus, G.M.K.; Ortiz, C.R.; Frascareli, F.C.O.; Souza, F.B.; Mariano, E.B. Sustainable Development as Freedom: Trends and Opportunities for the Circular Economy in the Human Development Literature. Sustainability 2021, 13, 13407. [Google Scholar] [CrossRef]
- Jane, S.A.; Fernandes, F.A.; Silva, E.M.; Muniz, J.A.; Fernandes, T.J.; Pimentel, G.V. Adjusting the growth curve of sugarcane varieties using nonlinear models. Cienc. Rural 2020, 50. [Google Scholar] [CrossRef]
- Dal-Bianco, M.; Carneiro, M.S.; Hotta, C.T.; Chapola, R.G.; Hoffmann, H.P.; Garcia, A.A.F.; Souza, G.M. Sugarcane improvement: How far can we go? Curr. Opin. Biotechnol. 2012, 23, 265–270. [Google Scholar] [CrossRef]
- Dias, H.B.; Inman-Bamber, G.; Everingham, Y.; Sentelhas, P.C.; Bermejo, R.; Christodoulou, D. Traits for canopy development and light interception by twenty-seven Brazilian sugarcane varieties. Field Crops Res. 2020, 249, 107716. [Google Scholar] [CrossRef]
- Schwartz, B. The Paradox of Choice: Why More Is Less; Ecco Press: New York, NY, USA, 2004. [Google Scholar]
- Musshoff, O.; Hirschauer, N. A behavioral economic analysis of bounded rationality in farm financing decisions: First empirical evidence. Agric. Financ. Rev. 2011, 71, 62–83. [Google Scholar] [CrossRef]
- Ramburan, S.; Paraskevopoulos, A.; Saville, G.; Jones, M. A decision support system for sugarcane variety selection in South Africa based on genotype-by-environment analyses. Exp. Agric. 2010, 46, 243–257. [Google Scholar] [CrossRef]
- Choo, C.W. The knowing organization: How organizations use information to construct meaning, create knowledge and make decisions. Int. J. Inf. Manag. 1996, 16, 329–340. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Alemayehu, E.; Van Orshoven, J. Multi-criteria decision making methods to address rural land allocation problems: A systematic review. Int. Soil Water Conserv. Res. 2021, 9, 490–501. [Google Scholar] [CrossRef]
- Tervonen, T.; Figueira, J.R. A survey on stochastic multicriteria acceptability analysis methods. J. Multi-Criteria Decis. Anal. 2008, 15, 1–14. [Google Scholar] [CrossRef]
- Kaim, A.; Cord, A.F.; Volk, M. A review of multi-criteria optimization techniques for agricultural land use allocation. Environ. Model. Softw. 2018, 105, 79–93. [Google Scholar] [CrossRef]
- Salas-Molina, F.; Pla-Santamaria, D.; Garcia-Bernabeu, A.; Reig-Mullor, J. A compact representation of preferences in multiple criteria optimization problems. Mathematics 2019, 7, 1092. [Google Scholar] [CrossRef] [Green Version]
- Dekamin, M.; Barmaki, M.; Kanooni, A. Selecting the best environmental friendly oilseed crop by using Life Cycle Assessment, water footprint and analytic hierarchy process methods. J. Clean. Prod. 2018, 198, 1239–1250. [Google Scholar] [CrossRef]
- Dragincic, J.; Korac, N.; Blagojevic, B. Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Comput. Electron. Agric. 2015, 111, 194–202. [Google Scholar] [CrossRef]
- Costa, H.G.; Moll, R.N. Emprego do método de análise hierárquica (AHP) na seleção de variedades para o plantio de cana-de-açúcar. Gest. Prod. 1999, 6, 243–256. [Google Scholar] [CrossRef]
- Shanthy, T.R. Participatory varietal selection in sugarcane. Sugar Tech 2010, 12, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, C.R.D.; Nuernberg, J.K.; Leonardi, T.C. Multicriteria GIS-Based Approach in Priority Areas Analysis for Sustainable Urban Drainage Practices: A Case Study of Pato Branco, Brazil. Eng 2020, 1, 6. [Google Scholar] [CrossRef]
- Vargas, L.G. An overview of the analytic hierarchy process and its applications. Eur. J. Oper. Res. 1990, 48, 2–8. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Alphonce, C.B. Application of the analytic hierarchy process in agriculture in developing countries. Agric. Syst. 1997, 53, 97–112. [Google Scholar] [CrossRef]
- Zarghami, M.; Szidarovszky, F. Introduction to Multicriteria Decision Analysis. In Multicriteria Analysis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–12. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- SEADE—Fundação Sistema Estadual de Análise de Dados. Home Page. Available online: https://www.seade.gov.br/# (accessed on 15 January 2021).
- Lima, P.A.B.; Paião Júnior, G.D.; Santos, T.L.; Furlan, M.; Battistelle, R.A.G.; Silva, G.H.R.; Ferraz, D.; Mariano, E.B. Sustainable Human Development at the Municipal Level: A Data Envelopment Analysis Index. Infrastructures 2022, 7, 12. [Google Scholar] [CrossRef]
- Sachdeva, M.; Bhatia, S.; Batta, S.K. Sucrose accumulation in sugarcane: A potential target for crop improvement. Acta Physiol. Plant. 2011, 33, 1571–1583. [Google Scholar] [CrossRef]
- Silva, M.A.; Véliz, J.G.E.; Sartori, M.M.P.; Santos, H.L. Glyphosate applied at a hormetic dose improves ripening without impairing sugarcane productivity and ratoon sprouting. Sci. Total Environ. 2022, 806, 150503. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.; Lu, G.; Zeng, R.; Que, Y. Sugarcane ratooning ability: Research status, shortcomings, and prospects. Biology 2021, 10, 1052. [Google Scholar] [CrossRef]
- Mariano, E.; Otto, R.; Montezano, Z.F.; Cantarella, H.; Trivelin, P.C. Soil nitrogen availability indices as predictors of sugarcane nitrogen requirements. Eur. J. Agron. 2017, 89, 25–37. [Google Scholar] [CrossRef]
- Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems. Agric. Water Manag. 2022, 267, 107619. [Google Scholar] [CrossRef]
- Cay, T.; Uyan, M. Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy 2013, 30, 541–548. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Chang, C.W.; Wu, C.R.; Lin, C.T.; Chen, H.C. An application of AHP and sensitivity analysis for selecting the best slicing machine. Compu. Ind. Eng. 2007, 52, 296–307. [Google Scholar] [CrossRef]
Intensity of Importance on an Absolute Scale | Definition | Explanation |
---|---|---|
1 | Equal importance | Two options contribute equally to the objective |
3 | Moderate importance of one over another | Experience and judgment strongly favor one activity over another |
5 | Essential or strong importance | Experience and judgment strongly favor one activity over another |
7 | Very strong importance | An activity is strongly favored and its dominance demonstrated in practice |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments | Applied when compromise is needed |
Criterion | Decision-Maker | Sugarcane Variety | RB867515 | RB966928 | CT9001 | RB855156 |
---|---|---|---|---|---|---|
Potential for sucrose accumulation | 1 | RB867515 | 1 | 1/9 | 1/5 | 1/3 |
RB966928 | 9 | 1 | 5 | 9 | ||
CT9001 | 5 | 1/5 | 1 | 3 | ||
RB855156 | 3 | 1/9 | 1/3 | 1 | ||
2 | RB867515 | 1 | 1/7 | 1/3 | 1/5 | |
RB966928 | 7 | 1 | 5 | 3 | ||
CT9001 | 3 | 1/5 | 1 | 1/5 | ||
RB855156 | 5 | 1/3 | 5 | 1 | ||
Ratoon sprouting | 1 | RB867515 | 1 | 1/9 | 1/5 | 1/3 |
RB966928 | 9 | 1 | 3 | 1 | ||
CT9001 | 5 | 1/3 | 1 | 1 | ||
RB855156 | 3 | 1 | 1 | 1 | ||
2 | RB867515 | 1 | 1/7 | 3 | 1/3 | |
RB966928 | 7 | 1 | 7 | 5 | ||
CT9001 | 1/3 | 1/7 | 1 | 1/5 | ||
RB855156 | 3 | 1/5 | 5 | 1 | ||
Ton per hectare | 1 | RB867515 | 1 | 1/3 | 1/5 | 1/3 |
RB966928 | 3 | 1 | 1/3 | 3 | ||
CT9001 | 5 | 3 | 1 | 5 | ||
RB855156 | 3 | 1/3 | 1/5 | 1 | ||
2 | RB867515 | 1 | 1/5 | 1/3 | 1 | |
RB966928 | 5 | 1 | 5 | 7 | ||
CT9001 | 3 | 1/5 | 1 | 3 | ||
RB855156 | 1 | 1/7 | 1/3 | 1 | ||
Longevity | 1 | RB867515 | 1 | 1/5 | 1 | 1/9 |
RB966928 | 5 | 1 | 5 | 1/7 | ||
CT9001 | 1 | 1/5 | 1 | 1/9 | ||
RB855156 | 9 | 7 | 9 | 1 | ||
2 | RB867515 | 1 | 1/5 | 3 | 1/5 | |
RB966928 | 5 | 1 | 7 | 3 | ||
CT9001 | 1/3 | 1/7 | 1 | 1/3 | ||
RB855156 | 5 | 1/3 | 3 | 1 | ||
Soil requirement | 1 | RB867515 | 1 | 1/5 | 1/5 | 1/9 |
RB966928 | 5 | 1 | 1/3 | 1/5 | ||
CT9001 | 5 | 3 | 1 | 1 | ||
RB855156 | 9 | 5 | 1 | 1 | ||
2 | RB867515 | 1 | 1/7 | 1/5 | 1/3 | |
RB966928 | 7 | 1 | 5 | 7 | ||
CT9001 | 5 | 1/5 | 1 | 3 | ||
RB855156 | 3 | 1/7 | 1/3 | 1 |
Decision-Maker | Sugarcane Variety | Potential for Sucrose Accumulation | Ratoon Sprouting | Ton per Hectare | Longevity | Soil Requirement |
---|---|---|---|---|---|---|
1 | RB867515 | 0.047321 | 0.059865 | 0.076463 | 0.057550 | 0.049690 |
RB966928 | 0.660862 | 0.446506 | 0.244503 | 0.212166 | 0.144201 | |
CT9001 | 0.199117 | 0.226610 | 0.543046 | 0.057550 | 0.350881 | |
RB855156 | 0.092700 | 0.267019 | 0.135988 | 0.372734 | 0.455229 | |
2 | RB867515 | 0.05385091 | 0.099166143 | 0.088053939 | 0.104356652 | 0.050389565 |
RB966928 | 0.551807627 | 0.638159813 | 0.6302765 | 0.567573554 | 0.638159813 | |
CT9001 | 0.101457857 | 0.050389565 | 0.200719575 | 0.062934631 | 0.21228448 | |
RB855156 | 0.292883606 | 0.21228448 | 0.080949986 | 0.265135162 | 0.099166143 |
Decision-Maker | Sugarcane Variety | Potential for Sucrose Accumulation | Ratoon Sprouting | Ton per Hectare | Longevity | Soil Requirement |
---|---|---|---|---|---|---|
1 | Potential for sucrose accumulation | 1 | 1/9 | 1/5 | 1/7 | 1/3 |
Ratoon sprouting | 9 | 1 | 5 | 5 | 7 | |
Ton per hectare | 5 | 1/5 | 1 | 1/3 | 3 | |
Longevity | 7 | 1/5 | 3 | 1 | 5 | |
Soil requirement | 3 | 1/7 | 1/3 | 1/5 | 1 | |
2 | Potential for sucrose accumulation | 1 | 1/7 | 1/7 | 1/3 | 1/5 |
Ratoon sprouting | 7 | 1 | 3 | 7 | 9 | |
Ton per hectare | 7 | 1/3 | 1 | 5 | 5 | |
Longevity | 3 | 1/7 | 1/5 | 1 | 3 | |
Soil requirement | 5 | 1/9 | 1/5 | 1/3 | 1 |
Variety | Decision-Maker 1 | Decision-Maker 2 |
---|---|---|
RB867515 | 5.8477466% | 9.1871988% |
RB966928 | 35.7146925% | 62.6347183% |
CT9001 | 24.3115487% | 10.6052233% |
RB855156 | 34.1260123% | 17.5728596% |
Variety | Aggregated Results |
---|---|
RB867515 | 7.9622971% |
RB966928 | 49.2800982% |
CT9001 | 15.1858805% |
RB855156 | 27.5717243% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavon, L.L.P.; Lima, P.A.B.; Crepaldi, A.F.; Mariano, E.B. Use of the Analytic Hierarchy Process Method in the Variety Selection Process for Sugarcane Planting. Eng 2023, 4, 602-614. https://doi.org/10.3390/eng4010036
Schiavon LLP, Lima PAB, Crepaldi AF, Mariano EB. Use of the Analytic Hierarchy Process Method in the Variety Selection Process for Sugarcane Planting. Eng. 2023; 4(1):602-614. https://doi.org/10.3390/eng4010036
Chicago/Turabian StyleSchiavon, Luiza L. P., Pedro A. B. Lima, Antonio F. Crepaldi, and Enzo B. Mariano. 2023. "Use of the Analytic Hierarchy Process Method in the Variety Selection Process for Sugarcane Planting" Eng 4, no. 1: 602-614. https://doi.org/10.3390/eng4010036
APA StyleSchiavon, L. L. P., Lima, P. A. B., Crepaldi, A. F., & Mariano, E. B. (2023). Use of the Analytic Hierarchy Process Method in the Variety Selection Process for Sugarcane Planting. Eng, 4(1), 602-614. https://doi.org/10.3390/eng4010036