Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
Abstract
1. Introduction
2. Literature Review
3. Experimental Study
4. Analytical Approach—Proposed Model
- The tension shift effect (if shear cracking precedes flexural yielding);
- The shear deformation;
- The slippage of longitudinal rebars.
- -
- for VR/Pf ≤ 0.85
- -
- for VR/Pf > 0.85
5. Numerical Analysis Approach—Opensees
5.1. Force-Based Beam-Column Element (FBE)
5.2. Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI)
6. Comparison of Proposed Model with Numerical and Experimental Results
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
P | Axial load or applied horizontal load (in Load–Displacement curves) |
d | Total lateral displacement at the top (in Load–Displacement curves) |
φ | Section curvature (in general) |
φy | Yield curvature |
φu | Ultimate curvature at failure |
db | Rebar diameter |
dfl,y | Flexural displacement at yielding |
dy | Displacement at yielding (general) |
dpl | Plastic part of displacement |
dsh,y | Shear displacement at yielding |
dtot | Total displacement at failure |
du | Ultimate displacement at failure |
LV | Shear span (length) of the wall |
Lpl | Plastic hinge length |
Lpz | Plastic zone length |
My | Bending moment at yielding |
Mmax | Maximum bending moment (capacity) |
Pf | Flexural capacity (in load terms) |
V | Shear force |
VR | Shear resistance (capacity) |
Vw | Shear resistance attributed to shear reinforcement |
fc | Concrete compressive strength |
fy | Steel yield stress |
fu | Steel ultimate (failure) stress |
εsh | Steel hardening strain |
εsu | Steel ultimate strain |
ρtot | Total longitudinal reinforcement ratio |
ρw | Transverse (shear) reinforcement ratio |
Ac | Concrete cross-sectional area |
x | Neutral axis depth (compression zone depth) |
z | Lever arm |
N | Axial compressive force |
μΔpl | Ductility factor in plastic range |
θ | Inclination angle of diagonal struts (outside plastic region) |
εm1, εm2 | Mean axial strain in plastic/upper part of wall |
εs1, εs2 | Shear reinforcement strain in lower/upper wall zone |
λsh, μsh | Empirical parameters for estimating shear deformation |
A, B | Empirical adjustment factors (dependent on VR/Pf) |
γel | Material factor for shear: 1.15 (primary), 1.00 (secondary) |
References
- Cardenas, A.E.; Magura, D.D. Strength of high-rise shear walls—Rectangular cross section. ACI Spec. Publ. 1972, 36, 119–150. [Google Scholar] [CrossRef]
- Cardenas, A.E.; Russell, H.G.; Corley, W.G. Strength of low-rise structural walls. ACI Spec. Publ. 1980, 63, 221–241. [Google Scholar] [CrossRef]
- Oesterle, R.G.; Fiorato, A.E.; Aristizabal-Ochoa, J.D.; Corley, W.G. Hysteretic response of reinforced concrete structural walls. ACI Spec. Publ. 1980, 63, 243–273. [Google Scholar] [CrossRef]
- Oesterle, R.G.; Aristizabal-Ochoa, J.D.; Shiu, K.N.; Corley, W.G. Web crushing of reinforced concrete structural walls. ACI J. 1984, 81, 231–241. [Google Scholar] [CrossRef]
- Cotsovos, D.M.; Pavlovic, M.N. Numerical investigation of RC structural walls subjected to cyclic loading. Comput. Concr. 2005, 2, 215–238. [Google Scholar] [CrossRef]
- Massone, L.M.; Orakcal, K.; Wallace, J.W. Shear-Flexure Interaction for Structural Walls. ACI Spec. Publ. 2006, SP-236, 127–150. [Google Scholar] [CrossRef]
- Massone, L.M.; Ulloa, M.A. Shear response estimate for squat reinforced concrete walls via a single panel model. Earthq. Struct. 2014, 7, 647–665. [Google Scholar] [CrossRef]
- Nagender, T.; Parulekar, Y.M.; Rao, G.A. Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls. Earthq. Struct. 2019, 16, 41–54. [Google Scholar] [CrossRef]
- Grammatikou, S.; Biskinis, D.; Fardis, M.N. Flexural rotation capacity models fitted to test results using differ-ent statistical approaches. Struct. Concr. 2018, 19, 608–624. [Google Scholar] [CrossRef]
- Gusella, F.; Bartoli, G. An analytical assessment of the length of plastification of partially restrained RC beams. Eng. Struct. 2025, 322, 119107. [Google Scholar] [CrossRef]
- Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- European Committee for Standardization. Eurocode 8. Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings (EN 1998-3); European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Priestley, M.J.N.; Verma, R.; Xiao, Y. Seismic shear strength of reinforced concrete columns. J. Struct. Eng. ASCE 1994, 120, 2310–2329. [Google Scholar] [CrossRef]
- Kowalsky, M.J.; Priestley, M.J.N. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. ACI Struct. J. 2000, 97, 388–396. [Google Scholar] [CrossRef]
- Panagiotakos, T.B.; Fardis, M.N. Deformations of Reinforced Concrete Members at Yielding and Ultimate. ACI Struct. J. 2001, 98, 135–148. [Google Scholar] [CrossRef]
- Biskinis, D.E.; Roupakias, G.K.; Fardis, M.N. Degradation of shear strength of reinforced concrete members with inelastic cyclic displacements. ACI Struct. J. 2004, 101, 773–783. [Google Scholar] [CrossRef]
- Biskinis, D.; Fardis, M.N. Deformations at Flexural Yielding of Members with Continuous or Lap-Spliced Bars. Struct. Concr. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Biskinis, D.; Fardis, M.N. Flexure-Controlled Ultimate Deformations of Members with Continuous or Lap-Spliced Bars. Struct. Concr. 2010, 11, 93–108. [Google Scholar] [CrossRef]
- Krolicki, J.; Maffei, J.; Calvi, G.M. Shear strength of reinforced concrete walls subjected to cyclic loading. J. Earthq. Eng. 2011, 15, 30–71. [Google Scholar] [CrossRef]
- Grammatikou, S.; Biskinis, D.; Fardis, M.N. Strength, Deformation Capacity and Failure Modes of RC Walls Under Cyclic Loading. Bull. Earthq. Eng. 2015, 13, 3277–3300. [Google Scholar] [CrossRef]
- Grammatikou, S.; Biskinis, D.; Fardis, M.N. Ultimate Strain Criteria for RC Members in Monotonic or Cyclic Flexure. J. Struct. Eng. ASCE 2016, 142, 04016046. [Google Scholar] [CrossRef]
- Greifenhagen, C.; Lestuzzi, P. Static Cyclic Tests on Lightly Reinforced Concrete Shear Walls. Eng. Struct. 2005, 27, 1703–1712. [Google Scholar] [CrossRef]
- Kuang, J.S.; Ho, Y.B. Seismic Behaviour and Ductility of Squat Reinforced Concrete Shear Walls with Nonseismic Detailing. ACI Struct. J. 2008, 105, 225–231. [Google Scholar] [CrossRef]
- Altin, S.; Anil, Ö.; Kopraman, Y.; Kara, M.E. Hysteretic Behaviour of RC Shear Walls Strengthened with CFRP Strips. Compos. Part B Eng. 2013, 44, 321–329. [Google Scholar] [CrossRef]
- Altin, S.; Kopraman, Y.; Baran, M. Strengthening of RC Walls Using Externally Bonding of Steel Strips. Eng. Struct. 2013, 49, 686–695. [Google Scholar] [CrossRef]
- Alarcon, C.; Hube, M.A.; De la Llera, J.C. Effect of Axial Loads in the Seismic Behaviour of Reinforced Concrete Walls with Unconfined Wall Boundaries. Eng. Struct. 2014, 73, 13–23. [Google Scholar] [CrossRef]
- Li, B.; Pan, Z.; Xiang, W. Experimental Evaluation of Seismic Performance of Squat RC Structural Walls with Limited Ductility Reinforcing Details. J. Earthq. Eng. 2015, 19, 313–331. [Google Scholar] [CrossRef]
- Yuksel, S.B. Behaviour of Reinforced Concrete Walls with Mesh Reinforcement Subjected to Cyclic Loading. In Proceedings of the Fifth International Symposium on Innovative Technologies in Engineering and Science, Baku, Azerbaijan, 29 September–1 October 2017. [Google Scholar]
- Yuksel, S.B. Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric. Struct. Eng. Mech. 2019, 70, 133–141. [Google Scholar] [CrossRef]
- Christidis, K.I. Buckling of Steel Reinforcing Bars in Medium-Rise Reinforced Concrete Shear Walls. ACI Struct. J. 2019, 116, 195–206. [Google Scholar] [CrossRef]
- Christidis, K.I.; Karagiannaki, D. Evaluation of flexural and shear deformations in medium rise RC shear walls. J. Build. Eng. 2021, 42, 102470. [Google Scholar] [CrossRef]
- Olabi, M.N.; Caglar, N.; Arslan, M.E.; Ozturk, H.; Demir, A.; Dok, G.; Aykanat, B. Response of nonconforming RC shear walls with smooth bars under quasi-static cyclic loading. Bull. Earthq. Eng. 2022, 20, 6683–6704. [Google Scholar] [CrossRef]
- Liang, K.; Su, R.K.L. Experimental and theoretical study on seismic behavior of non-seismically designed shear walls with moderate shear span-to-length ratios. J. Build. Eng. 2023, 76, 107213. [Google Scholar] [CrossRef]
- Jin, L.; Miao, L.; Chen, F.; Du, X. Shear failure of geometrically similar RC shear walls: Mesoscopic modellings and analysis. Structures 2023, 51, 1109–1122. [Google Scholar] [CrossRef]
- Zhang, Β.; Jin, L.; Zhao, O.; Chen, F.; Du, X. CFRP-strengthened shear walls: Seismic testing, structural behavior and size effect. Thin-Walled Struct. 2025, 213, 113277. [Google Scholar] [CrossRef]
- Christidis, K.I. Behaviour and Strengthening of Nonconforming Reinforced Concrete Shear Walls. Ph.D. Dissertation, National Technical University of Greece, Athens, Greece, 2017. (In Greek). [Google Scholar]
- Christidis, K.I.; Trezos, K.G. Experimental Investigation of Existing Non-Conforming RC Shear Walls. Eng. Struct. 2017, 140, 26–38. [Google Scholar] [CrossRef]
- Park, P.; Priestley, M.J.N.; Gill, W.D. Ductility of square-confined concrete columns. J. Struct. Div. ASCE 1982, 108, 929–950. [Google Scholar] [CrossRef]
- Chang, G.A.; Mander, J.B. Seismic Energy Basic Fatigue Damage Analysis of Bridge Columns: Part I—Evaluation of Seismic Capacity; Technical Report NCEER-94-0006; State University of New York at Buffalo: Buffalo, NY, USA, 1994. [Google Scholar]
- Dhakal, R.; Maekawa, K. Path-Dependent Cyclic Stress-Strain Relationship of Reinforcing Bar Including Buckling. Eng. Struct. 2002, 24, 1383–1396. [Google Scholar] [CrossRef]
- Beyer, K.; Dazio, A.; Priestley, M.J.N. Shear deformations of slender reinforced concrete walls under seismic loading. ACI Struct. J. 2011, 108, 167–177. [Google Scholar] [CrossRef]
- OpenSees. Available online: http://opensees.berkeley.edu (accessed on 15 May 2025).
- Zeris, C.A.; Mahin, S.A. Behaviour of Reinforced Concrete Structures Subjected to Uniaxial Excitation. J. Struct. Eng. ASCE 1991, 117, 804–820. [Google Scholar] [CrossRef]
- Coleman, J.; Spacone, E. Localization Issues in Force-Based Frame Elements. J. Struct. Eng. ASCE 2001, 127, 1257–1265. [Google Scholar] [CrossRef]
- Vulcano, A.; Bertero, V.V.; Colotti, V. Analytical Modeling of R/C Shear Walls. In Proceedings of the 9th World Conference on Earthquake Engineering (9WCEE), Tokyo-Kyoto, Japan, 2–9 August 1988. [Google Scholar]
- Orakcal, K.; Massone, L.M.; Wallace, J.W. Analytical Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled—Shear-Flexural Responses; PEER Report 2006/2007; Pacific Earthquake Engineering Research Center, College of Engineering, University of California: Berkeley, CA, USA, 2006. [Google Scholar]
Specimen (Wall) | Concrete Compression Strength fc (MPa) (CV%) | Yield/Failure Stress fy/fu (MPa) (CV%) | Hardening/Failure Strain esh/esu (‰) | Stirrups Yield/Failure Stress fy/fu (MPa) (CV%) | Longitudinal Reinforcement Ratio ρtot a (‰) | Transverse (Shear) Reinforcement Ratio ρw b (‰) |
---|---|---|---|---|---|---|
W7 | 31.12 (3.33) | D10:604/705 (2.25/2.51) D8:588/681 (2.58/2.51) | D10:26.2/100.2 D8:28.1/88.2 | 588/681 (2.58/2.51) | 14.33 | 6.69 |
W9 | 31.12 (3.33) | 580/670 (3.34/2.55) | 26.3/107.9 | 588/681 (2.58/2.51) | 12.06 | 2.01 |
W11 | 31.12 (3.33) | 580/670 (3.34/2.55) | 26.3/107.9 | 568/654 (9.23/7.24) | 12.06 | 1.13 |
W13 | 25.37 (1,50) | 580/670 (3.34/2.55) | 26.3/107.9 | 568/654 (9.23/7.24) | 12.06 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christidis, K.I. Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls. CivilEng 2025, 6, 34. https://doi.org/10.3390/civileng6030034
Christidis KI. Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls. CivilEng. 2025; 6(3):34. https://doi.org/10.3390/civileng6030034
Chicago/Turabian StyleChristidis, Konstantinos I. 2025. "Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls" CivilEng 6, no. 3: 34. https://doi.org/10.3390/civileng6030034
APA StyleChristidis, K. I. (2025). Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls. CivilEng, 6(3), 34. https://doi.org/10.3390/civileng6030034