Next Issue
Volume 6, June
Previous Issue
Volume 5, December
 
 

CivilEng, Volume 6, Issue 1 (March 2025) – 15 articles

Cover Story (view full-size image): Digital twins are an ideal addition to traditional structural health monitoring systems, as they integrate real-time data with finite element models (FEM) for predictive maintenance. However, the computational intensity of FEM limits real-time applications, necessitating a surrogate model for efficient approximations. This study explores different machine learning (ML) models for inverse structural analysis to predict critical stresses instantly. The findings highlight the potential of ML-based surrogates to advance digital twins and reveal that ML models are robust to minor deviations in sensor measurements, common in real-world applications, and are not as ill-conditioned as traditional inverse methods. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 4009 KiB  
Article
Implementing Building Information Modeling to Enhance Smart Airport Facility Management: An AHP-SWOT Approach
by Amirhossein Javaherikhah and Hadi Sarvari
CivilEng 2025, 6(1), 15; https://doi.org/10.3390/civileng6010015 - 18 Mar 2025
Cited by 1 | Viewed by 561
Abstract
Airport facility management requires innovative and coordinated techniques due to the infrastructure’s complexity, stakeholders’ diversity, and the necessity of safety. Adopting building information management (BIM) as an advanced technology has several benefits, including increased productivity, lower cost, and higher quality of service. This [...] Read more.
Airport facility management requires innovative and coordinated techniques due to the infrastructure’s complexity, stakeholders’ diversity, and the necessity of safety. Adopting building information management (BIM) as an advanced technology has several benefits, including increased productivity, lower cost, and higher quality of service. This study seeks to determine the strategies for using BIM in airport facility management. In this vein, two questionnaires were developed to collect data based on a literature review. The first questionnaire was used to collect data for identifying and ranking the main criteria, and the second questionnaire was used to identify the practical strategies. The experts of this study answered five strengths, four weaknesses, five opportunities, and five threats using a standardized questionnaire. An integrated AHP-SWOT approach was used to identify and examine the practical strategies. Furthermore, a sensitivity analysis was used to ensure the results were correct. The findings showed that smart maintenance management, with a weight of 0.363, was the most important strength in the SWOT analysis. Resistance to change was the most important weakness, with a weight of 0.455. The increasing need for smart airports with a weight of 0.358 was the most important opportunity, while cybersecurity issues with a weight of 0.385 were the most important threat. Integrating BIM into the aviation sector can enhance efficiency and sustainability in airport facility management while addressing potential opportunities and shared hazards that extend beyond airport operations. Full article
Show Figures

Figure 1

13 pages, 10144 KiB  
Article
A Study of Residual Shear Strength in Severely Corroded Steel Girder Ends
by Yasin Mumtaz, Tetsuhiro Shimozato, Nitta Kenta and Matsui Naoki
CivilEng 2025, 6(1), 14; https://doi.org/10.3390/civileng6010014 - 10 Mar 2025
Viewed by 467
Abstract
Corrosion in steel girder ends, progressing from localized thinning of the web and the lower flange to severe perforation in severe cases, can significantly affect structural integrity. This study evaluates the effects of severe corrosion, including web–lower flange disconnection and transverse flange perforation [...] Read more.
Corrosion in steel girder ends, progressing from localized thinning of the web and the lower flange to severe perforation in severe cases, can significantly affect structural integrity. This study evaluates the effects of severe corrosion, including web–lower flange disconnection and transverse flange perforation combined with web damage, on the residual shear strength of steel girder end web panels through experimental and numerical methods. Results indicate that when only the web is affected, post-buckling strength starts to decline by corrosion damaging the plastic hinge on the tension flange, disrupting the tension field action. Conversely, in cases involving simultaneous web and lower flange damage, localized yielding at fracture points near the flange damage leads to the abrupt rotation of the tension field inclination angle, causing an earlier and more pronounced decline in post-buckling strength compared to web-only damage scenarios. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

35 pages, 760 KiB  
Article
A Comparison of Three Theories for Vibration Analysis for Shell Models
by Maria Anna De Rosa, Isaac Elishakoff and Maria Lippiello
CivilEng 2025, 6(1), 13; https://doi.org/10.3390/civileng6010013 - 3 Mar 2025
Viewed by 535
Abstract
Shells are significant structural components that are extensively utilized in numerous engineering fields, including architectural and infrastructural projects. These components are employed in the construction of domes, water tanks, stadiums and auditoriums, hangars, and cooling towers. Significant research efforts have been dedicated to [...] Read more.
Shells are significant structural components that are extensively utilized in numerous engineering fields, including architectural and infrastructural projects. These components are employed in the construction of domes, water tanks, stadiums and auditoriums, hangars, and cooling towers. Significant research efforts have been dedicated to the analysis of vibrations and dynamic behaviors of shells, due to their distinctive capacity to efficiently bear loads through their geometry rather than mass. Additionally, a vast array of shell theories and computational methods have been proposed and developed by researchers. This paper represents a continuation of research initiated begun in a 2009 paper by Elishakoff, wherein the suggestion was made to disregard an energetic term in the dynamic analysis of Timoshenko–Ehrenfest beams, wherein the suggestion was made to disregard an energetic term in the dynamic analysis of Timoshenko–Ehrenfest beams. The resulting reduced theory was found to be both more straightforward and more reliable than the complete, classical approach. While the original idea was heuristically justified, a more sound variationally consistent theory was proposed in the papers of De Rosa et al. concerning the dynamic analysis of the Timoshenko-Ehrenfest beams and later extended to the case of the Uflyand-Mindlin plates. In accordance with the proposal put forth in those works, we initially delineate the classical shell theory and subsequently propose two alternative hypotheses that give rise to two distinct aspects of the energy terms. By employing the variational approach, we derive two novel boundary problems, which are direct generalizations of those previously considered. Both theories can be readily specialized for beams and plates, and the theory can also be specialized for the case of cylindrical shells. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

19 pages, 8319 KiB  
Article
Investigating the Effects of Nano-Materials on the Mechanical and Durability Properties of Self-Consolidating Concrete
by Hossein Khosravi, Mahmood Reza Toloue-Hassanpour and Mojtaba Lezgy-Nazargah
CivilEng 2025, 6(1), 12; https://doi.org/10.3390/civileng6010012 - 1 Mar 2025
Viewed by 688
Abstract
The rapid progression in concrete technology and the emphasis on improving the mechanical characteristics and durability of concrete, as well as the need for skilled workers, were key factors that led to the fabrication of self-consolidating concrete (SCC). The primary advantage of SCC [...] Read more.
The rapid progression in concrete technology and the emphasis on improving the mechanical characteristics and durability of concrete, as well as the need for skilled workers, were key factors that led to the fabrication of self-consolidating concrete (SCC). The primary advantage of SCC is the elimination of vibrations during construction. This experimental study investigates the effect of nano-silica, nano-clay, and micro-silica with ratios of 2% and 4% on the properties of SCC. To reach this aim, rheological tests (flow slump, V-shape funnel, U-shaped box, and L-shaped box tests), mechanical tests (compressive strength, tensile strength, and flexural strength test), and durability tests (freezing, abrasion, and permeability tests) were carried out. The results demonstrated that the mechanical characteristics and durability of the concrete were enhanced by increasing the nano-silica content up to 4% of the cement weight. Also, the increase in the nano-clay content produced suitable results for SCC in terms of mechanical and durability aspects. However, as the nano-material ratio increases, the amount of superplasticizer also increased to ensure the proper workability of the SCC. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

14 pages, 7272 KiB  
Article
Earthwork Traceability Management System Using Compaction History and Dump Truck Sensing Data
by Atsushi Takao, Nobuyoshi Yabuki, Yoshikazu Otsuka and Takashi Hirai
CivilEng 2025, 6(1), 11; https://doi.org/10.3390/civileng6010011 - 28 Feb 2025
Viewed by 372
Abstract
The productivity of the construction industry is about half that of the manufacturing industry, and the labor shortage in the construction industry is serious; therefore, improving productivity using information and communication technology (ICT) is an urgent issue. In addition, in civil engineering works, [...] Read more.
The productivity of the construction industry is about half that of the manufacturing industry, and the labor shortage in the construction industry is serious; therefore, improving productivity using information and communication technology (ICT) is an urgent issue. In addition, in civil engineering works, the number of projects that handle multiple types of soil and sand is increasing due to the recycling of construction waste soil; thus, traceability management is important to ensure quality. This paper presents a system that uses sensing on soil-transporting dump trucks and ICT to record which soil was piled up where with the aim of improving the efficiency of traceability management in earthwork construction. This system automatically creates traceability data by linking sensing data and data from the compaction management system via an application. This eliminates the need to record and manage the earthwork location, which was previously required manually to create traceability data, and reduces the labor and manpower required for traceability management. The created traceability data are automatically assigned attribute information such as the construction date and soil information; consequently, they can be used to check the construction history in the future. Full article
(This article belongs to the Section Urban, Economy, Management and Transportation Engineering)
Show Figures

Figure 1

14 pages, 5836 KiB  
Article
Using 3D-Printed Formwork to Enable Controlled Crack Creation in Concrete Specimens
by Johannes Solass, Silvin Schapfel and Alexander Stolz
CivilEng 2025, 6(1), 10; https://doi.org/10.3390/civileng6010010 - 20 Feb 2025
Viewed by 424
Abstract
The employment of automated non-destructive testing (NDT) methods for crack characterization in concrete, needs calibration and benchmarking in a controlled environment. This requires test specimen with comparable and ideally reproducible cracks. To this end, in this paper a method is presented that aims [...] Read more.
The employment of automated non-destructive testing (NDT) methods for crack characterization in concrete, needs calibration and benchmarking in a controlled environment. This requires test specimen with comparable and ideally reproducible cracks. To this end, in this paper a method is presented that aims to mimic cracked concrete specimens with a high degree of control over the resulting crack parameters width, depth and length for material testing and calibration of automated (NDT) methods. The method comprises 3D-printing of formwork with integrated crack patterns. The obtained crack width accuracy is tested by comparing printed cracks and resulting cracks in the concrete with the desired width from the print file. This procedure enables the realization of crack widths ≥ 0.2 mm with a deviation in the range of 25% between desired and resulting crack width. Further, the proposed methodology is independent of intrinsic material properties which enables this accuracy. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

14 pages, 13898 KiB  
Article
Vinipel Curing: A Sustainable Approach to Enhanced Concrete Durability and Strength
by Joeel Bolaño, Joyce De la Iglesia, Michel Murillo, Daniel Abudinen, Fausto A. Canales and Heidis Cano
CivilEng 2025, 6(1), 9; https://doi.org/10.3390/civileng6010009 - 13 Feb 2025
Viewed by 682
Abstract
Currently, the demand for environmental sustainability options in the construction industry is increasing, especially those related to the correct use of water. The aim of this work is to study different sustainable alternatives that minimize the use of water in cured hydraulic concrete, [...] Read more.
Currently, the demand for environmental sustainability options in the construction industry is increasing, especially those related to the correct use of water. The aim of this work is to study different sustainable alternatives that minimize the use of water in cured hydraulic concrete, analyzing the effect of curing on hydration, microstructure, and compressive strength of hydraulic concrete exposed to different curing techniques: Manual Curing, Standard Curing, Vinipel, and Uncured. An experimental study was conducted using 180 cylindrical hydraulic concrete specimens, which were compression-tested at 7, 28, and 56 days. A Scanning Electron Microscope equipped with an Energy Dispersive X-ray Spectrometer analysis was carried out to examine the microstructural and compositional changes under the different curing techniques. The results indicate that the Vinipel technique is the best alternative, showing a compressive strength of 35 MPa after 56 days of curing. In general, Vinipel > Standard Curing > Manual Curing > Uncured is the order of strength from highest to lowest. The formation of hydration products was observed in all curing techniques. The presence of ettringite, complementing by abundant portlandite in Vinipel, shows the dominance of an important product in the strength of concrete. The best strength capacity under load and the lowest percentages of vacuum are likely to be favorable for the durability of the processes. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

16 pages, 8291 KiB  
Article
Comparison of High-Resolution Digital Elevation Models for Customizing Hydrological Analysis of Urban Basins: Considerations, Opportunities, and Implications for Stormwater System Design
by Walter Avila-Ruiz, Carlos Salazar-Briones, José Mizael Ruiz-Gibert, Marcelo A. Lomelí-Banda and Juan Alejandro Saiz-Rodríguez
CivilEng 2025, 6(1), 8; https://doi.org/10.3390/civileng6010008 - 8 Feb 2025
Viewed by 1072
Abstract
Topographical data are essential for hydrological analysis and can be gathered through on-site surveys, UAVs, or remote sensing methods such as Digital Elevation Models (DEMs). These tools are crucial in hydrological studies for accurately modeling basin morphology and surface stream network patterns. Two [...] Read more.
Topographical data are essential for hydrological analysis and can be gathered through on-site surveys, UAVs, or remote sensing methods such as Digital Elevation Models (DEMs). These tools are crucial in hydrological studies for accurately modeling basin morphology and surface stream network patterns. Two different DEMs with resolutions of 0.13 m and 5 m were used, as well as tools which carry out urban basin delineation by analyzing their morphometric parameters to process the hydrography of the study area, using three Geographic Information Systems (GIS): ArcGIS, GlobalMapper, and SAGA GIS. Each piece of software uses different algorithms for the pre-processing of DEMs in the calculation of morphometric parameters of the study area. The results showed variations in the quantity of delineated stream networks between the different GIS tools used, even when using the same DEM. Similarly, the morphometric parameters varied between GIS tools and DEMs, which tells us that the tools and topographic data used are important. The stream network generated using ArcGIS and the DEM obtained with UAV offered a more precise description of surface flow behavior in the study area. Concerning ArcGIS, it can be observed that between the resolutions of the INEGI DEM and the UAV DEM, the delimited area of micro-basin 1 presented a minimum difference of 0.03 km2. In contrast, micro-basin 2 had a more significant difference of 0.16 km2. These discrepancies in results are attributed to the different algorithms used by each piece of software and the resolution of each DEM. Although some studies claim to have obtained the same results using different software and algorithms, in this research, different results were obtained, and emphasize the importance of establishing procedural standards, as they can significantly impact the design of stormwater drainage systems. These comparisons will allow decision-makers to consider these aspects to standardize the tools and topographic data used in urban hydrological analyses. Full article
Show Figures

Graphical abstract

23 pages, 6036 KiB  
Article
Fatigue Assessment of Rib–Deck Welded Joints in Orthotropic Steel Bridge Decks Under Traffic Loading
by Bruno Villoria, Sudath C. Siriwardane and Jasna Bogunovic Jakobsen
CivilEng 2025, 6(1), 7; https://doi.org/10.3390/civileng6010007 - 2 Feb 2025
Viewed by 1092
Abstract
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD [...] Read more.
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD welded joints, considering the different crack mechanisms based on the equivalent structural stress method and its extension to multiaxial non-proportional fatigue, which is the path-dependent maximum stress range (PDMR) cycle counting algorithm. The method is validated for uniaxial loading by using experimental data from the literature. Additionally, non-proportional fatigue damage at RD welded joints of a suspension bridge girder is investigated under simulated random traffic loading. The analyses reveal the limitations of the nominal stress approach to account for complex stress field variations. The PDMR method, more suited to capture the stress path dependency of non-proportional fatigue damage than the hot spot and critical plane-based methods, predicts higher fatigue damage. A comprehensive fatigue test campaign of full-scale RD welded joints is necessary to better understand their fatigue behaviour under multiaxial loading. Until more experimental data are available, the PDMR method is recommended for fatigue verifications of welded RD joints as it yields safer predictions. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

17 pages, 4724 KiB  
Review
A Comparative Impact Assessment of Hail Damage to Tile and Built-Up Roofing Systems: A Comprehensive Review
by Gayatri Thakre, Vinayak Kaushal and Mohammad Najafi
CivilEng 2025, 6(1), 6; https://doi.org/10.3390/civileng6010006 - 30 Jan 2025
Viewed by 934
Abstract
Hail causes damage to property, including roofs, automobiles, and crops, with an average annual loss of USD 850 million. In residential structures in the southern U.S., tile roofing systems are common due to their resistance to the impact of hail and their long [...] Read more.
Hail causes damage to property, including roofs, automobiles, and crops, with an average annual loss of USD 850 million. In residential structures in the southern U.S., tile roofing systems are common due to their resistance to the impact of hail and their long service life. Commercial low-slope roof systems are equally prone to hail-strike damages as steep residential roof systems. The objective of this paper is to present a literature review, inspection protocol, and case studies on a comparative assessment of the hail threshold for built-up roof (BUR) and tile roof (TR) systems. More than 90 published papers determining the hail impact assessment of different roofing systems from 1969 through 2024 were studied and analyzed. This study develops a comparative hail damage assessment study between BUR and TR systems and provides detailed statistical data and hail thresholds for various built-up roof composition systems. In addition, the different failure modes and their causes, the characteristics of hail impacts, and the variables influencing the impact resistance of these roofing systems were examined using field studies. To better understand the effects, it is recommended that an intelligent model be developed to predict the hail resistance threshold of various configurations of BUR and TR systems with critical variables. Full article
Show Figures

Graphical abstract

22 pages, 751 KiB  
Article
Perceived Critical Success Factors for Implementing Building Information Modelling in Construction Small- and Medium-Sized Enterprises
by Ihab Gheni Hussien, Zahraa Saeed Rasheed, Parsa Asaadsamani and Hadi Sarvari
CivilEng 2025, 6(1), 5; https://doi.org/10.3390/civileng6010005 - 20 Jan 2025
Cited by 3 | Viewed by 1206
Abstract
Building information modelling (BIM) is an emerging technology in the building sector. As with any emerging technology, the identification of critical success factors (CSFs) for BIM is essential. On the other hand, small- and medium-sized enterprises (SMEs) consistently play a vital role in [...] Read more.
Building information modelling (BIM) is an emerging technology in the building sector. As with any emerging technology, the identification of critical success factors (CSFs) for BIM is essential. On the other hand, small- and medium-sized enterprises (SMEs) consistently play a vital role in the construction industry. Therefore, it is essential to determine the critical success elements for the effective implementation of BIM in these companies. Hence, this study aims to determine the CSFs for implementing BIM in SMEs in the developing country of Iran. To accomplish this, three rounds of the Delphi technique were carried out with the participation of fifteen BIM professionals from SMEs based in Iran. According to the Delphi survey findings, a total of 27 CSFs were identified for the effective utilisation of BIM in SMEs. Subsequently, to assess the CSFs, a questionnaire utilising a five-point Likert scale measurement was designed. Then, it was distributed among specialists in construction SMEs in Iran. The questionnaire included twenty-seven factors categorised into four primary groups: technical, managerial, financial, and legal. A total of 56 questionnaires were gathered and examined. The findings indicate that the CSFs highlighted for implementing BIM in SMEs are above the average level. Furthermore, the CSFs with a high impact on successful BIM implementation in construction SMEs in Iran were determined. Four high-impact CSFs are (1) the employer’s demand; (2) understanding the advantages and practicality of implementing BIM; (3) awareness of and ensuring a return on investment; and (4) efficient and suitable legislation. The findings of this study can serve as a valuable resource for stakeholders, providing them with a useful tool to enhance decision-making about the implementation of BIM in SMEs, especially in developing countries. Full article
(This article belongs to the Section Urban, Economy, Management and Transportation Engineering)
Show Figures

Figure 1

15 pages, 8212 KiB  
Article
Impact of Aggregate Characteristics on Frictional Performance of Asphalt-Based High Friction Surface Treatments
by Alireza Roshan and Magdy Abdelrahman
CivilEng 2025, 6(1), 4; https://doi.org/10.3390/civileng6010004 - 14 Jan 2025
Cited by 1 | Viewed by 955
Abstract
High Friction Surface Treatments (HFST) are recognized for their effectiveness in enhancing skid resistance and reducing road accidents. While Epoxy-based HFSTs are widely applied, they present limitations such as compatibility issues with existing pavements, high installation and removal costs, and durability concerns tied [...] Read more.
High Friction Surface Treatments (HFST) are recognized for their effectiveness in enhancing skid resistance and reducing road accidents. While Epoxy-based HFSTs are widely applied, they present limitations such as compatibility issues with existing pavements, high installation and removal costs, and durability concerns tied to substrate quality. As an alternative to traditional Epoxy-based HFSTs, this study investigated the effects of aggregate gradation as designated by agencies on the performance of asphalt-based HFST. Various aggregate types were assessed to evaluate friction performance and the impact of polishing cycles on non-Epoxy HFST. It was found that adjustments in aggregate size and gradation may be necessary when transitioning to asphalt-based HFSTs, given the different nature of asphalt as more temperature susceptible compared to Epoxy. Various asphalt binder grades were considered in this study. A series of tests, including the British Pendulum Test (BPT), Dynamic Friction Tester (DFT), Circular Track Meter (CTM), Micro-Deval (MD), and Aggregate Imaging Measurement System (AIMS), were conducted to measure Coefficient of Friction (COF), Mean Profile Depth (MPD), texture, and angularity before and after polishing cycles. The results showed that the COF in asphalt-based slabs decreased more significantly than in Epoxy-based slabs as polishing cycles increased for HFST and medium gradations. However, in coarse gradation, the COF of slabs using asphalt-based binder matched or even surpassed that of Epoxy after polishing. Notably, the PG88-16 binder for Calcined Bauxite (CB) had the smallest reduction in COF after 140K polishing cycles, with only a 19% decrease compared to a 23% reduction for Epoxy. Full article
(This article belongs to the Section Urban, Economy, Management and Transportation Engineering)
Show Figures

Figure 1

36 pages, 2997 KiB  
Review
A Review of Health Monitoring and Model Updating of Vibration Dissipation Systems in Structures
by Neda Godarzi and Farzad Hejazi
CivilEng 2025, 6(1), 3; https://doi.org/10.3390/civileng6010003 - 13 Jan 2025
Viewed by 1300
Abstract
Given that numerous countries are located near active fault zones, this review paper assesses the seismic structural functionality of buildings subjected to dynamic loads. Earthquake-prone countries have implemented structural health monitoring (SHM) systems on base-isolated structures, focusing on modal parameters such as frequencies, [...] Read more.
Given that numerous countries are located near active fault zones, this review paper assesses the seismic structural functionality of buildings subjected to dynamic loads. Earthquake-prone countries have implemented structural health monitoring (SHM) systems on base-isolated structures, focusing on modal parameters such as frequencies, mode shapes, and damping ratios related to isolation systems. However, many studies have investigated the dissipating energy capacity of isolation systems, particularly rubber bearings with different damping ratios, and demonstrated that changes in these parameters affect the seismic performance of structures. The main objective of this review is to evaluate the performance of damage detection computational tools and examine the impact of damage on structural functionality. This literature review’s strength lies in its comprehensive coverage of prominent studies on SHM and model updating for structures equipped with dampers. This is crucial for enhancing the safety and resilience of structures, particularly in mitigating dynamic loads like seismic forces. By consolidating key research findings, this review identifies technological advancements, best practices, and gaps in knowledge, enabling future innovation in structural health monitoring and design optimization. Various identification techniques, including modal analysis, model updating, non-destructive testing (NDT), and SHM, have been employed to extract modal parameters. The review highlights the most operational methods, such as Frequency Domain Decomposition (FDD) and Stochastic Subspace Identification (SSI). The review also summarizes damage identification methodologies for base-isolated systems, providing useful insights into the development of robust, trustworthy, and effective techniques for both researchers and engineers. Additionally, the review highlights the evolution of SHM and model updating techniques, distinguishing groundbreaking advancements from established methods. This distinction clarifies the trajectory of innovation while addressing the limitations of traditional techniques. Ultimately, the review promotes innovative solutions that enhance accuracy, reliability, and adaptability in modern engineering practices. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

30 pages, 6641 KiB  
Article
Application of Machine Learning for Real-Time Structural Integrity Assessment of Bridges
by Sanduni Jayasinghe, Mojtaba Mahmoodian, Azadeh Alavi, Amir Sidiq, Zhiyan Sun, Farham Shahrivar, Sujeeva Setunge and John Thangarajah
CivilEng 2025, 6(1), 2; https://doi.org/10.3390/civileng6010002 - 7 Jan 2025
Cited by 2 | Viewed by 1435
Abstract
The concept of digital twins (DT)s enhances traditional structural health monitoring (SHM) by integrating real-time data with digital models for predictive maintenance and decision-making whilst combined with finite element modelling (FEM). However, the computational demand of FE modelling necessitates surrogate models for real-time [...] Read more.
The concept of digital twins (DT)s enhances traditional structural health monitoring (SHM) by integrating real-time data with digital models for predictive maintenance and decision-making whilst combined with finite element modelling (FEM). However, the computational demand of FE modelling necessitates surrogate models for real-time performance, alongside the requirement of inverse structural analysis to infer overall behaviour via the measured structural response of a structure. A FEM-based machine learning (ML) model is an ideal option in this context, as it can be trained to perform those calculations instantly based on FE-based training data. However, the performance of the surrogate model depends on the ML model architecture. In this light, the current study investigates three distinct ML models to surrogate FE modelling for DTs. It was identified that all models demonstrated a strong performance, with the tree-based models outperforming the performance of the neural network (NN) model. The highest accuracy of the surrogate model was identified in the random forest (RF) model with an error of 0.000350, whilst the lowest inference time was observed with the trained XGBoost algorithm, which was at approximately 1 millisecond. By leveraging the capabilities of ML, FEM, and DTs, this study presents an ideal solution for implementing real-time DTs to advance the functionalities of current SHM systems. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

21 pages, 2766 KiB  
Article
A Quantitative Approach to Evaluating Multi-Event Resilience in Oil Pipeline Incidents
by Labiba N. Asha, Nita Yodo and Ying Huang
CivilEng 2025, 6(1), 1; https://doi.org/10.3390/civileng6010001 - 28 Dec 2024
Viewed by 863
Abstract
This study introduces a quantitative approach to evaluating the resilience of oil pipeline systems against various natural and physical disruptions. Resilience is increasingly essential in critical infrastructure to ensure continuous operations and minimize disruption impacts. However, existing quantitative methods often need specific time-dependent [...] Read more.
This study introduces a quantitative approach to evaluating the resilience of oil pipeline systems against various natural and physical disruptions. Resilience is increasingly essential in critical infrastructure to ensure continuous operations and minimize disruption impacts. However, existing quantitative methods often need specific time-dependent data, making measuring resilience in pipeline infrastructure challenging. To address this gap, this paper proposed a comprehensive framework by integrating the existing incident database with key features of assessing failure probabilities based on historical events and developing multi-event resilience indicators based on system performance under various disruptions. The methodology employs event tree analysis to quantify the probabilities of multiple failure scenarios and their impact on pipeline operations and recovery efforts. The practical application of the proposed approach was demonstrated using real-world oil pipeline incident data from across the United States, covering the period from 2010 to 2022. The focus was on multiple event scenarios involving pipeline disruptions, followed by shutdowns, examining how these events collectively impact pipeline resilience. The results indicate that corrosion failure, equipment failure, and natural hazard damage significantly impact oil pipeline resilience. Corrosion and equipment failures affect resilience primarily due to their frequency, while natural hazard damage, despite its lower occurrence rate, is more unpredictable and often requires more frequent shutdowns. Understanding these failure causes and their impacts is essential for enhancing the resilience and sustainable operation of oil pipeline systems. Full article
(This article belongs to the Collection Recent Advances and Development in Civil Engineering)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop