Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review
Abstract
:1. Introduction
2. Materials, Methods, and Content Analysis
Title-abs-key ((“high volume fly ash*”) AND (“binder” *) OR (“cement” *) OR (“mortar”*) AND (“strength”*) OR (“performance”*) AND (“durability”*)) and (limit-to (subjarea, “engi”) or limit-to (subjarea, “mate”) or limit-to (subjarea, “envi”) or limit-to (subjarea, “ener”) or limit-to (subjarea, “eart”)).
3. Results
3.1. High-Volume Fly Ash Binder Strength
3.1.1. The Split Tensile Strength
3.1.2. Flexural Strength Test
3.1.3. Compressive Strength
3.1.4. Effect of w/b Ratio on Strength
3.1.5. Effect of Blending FA with More Reactive Pozzolans on Strength
3.1.6. Chemical Activation of HVFA Binders to Enhance Strength
3.2. Durability of High-Volume Fly Ash Binders
3.2.1. Water Absorption, Permeability, and Sorptivity
3.2.2. Resistivity
3.2.3. Durability of HVFA Binders in Corrosive Environments
3.2.4. Chloride Permeability
Charge (Coulomb) | Permeability of Chloride Ion |
---|---|
>4000 | Permeability is High |
2000–4000 | Permeability is Moderate |
1000–2000 | Permeability is Low |
100–1000 | Permeability is Very Low |
<100 | Negligible Permeability |
3.2.5. Microstructural Analysis
4. Discussion
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mehta, A.; Siddique, R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr. Build. Mater. 2017, 146, 136–143. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, W.H.; Mehthel, M.; Villette, T.; Vidal, O.S.; Nasser, W.N.; Li, V.C. Engineered cementitious composites (ECC) with a high volume of volcanic ash: Rheological, mechanical, and micro performance. Cem. Concr. Compos. 2023, 139, 105051. [Google Scholar] [CrossRef]
- Juenger, G.; Winnefeld, F.; Provis, J.L.; Ideker, J. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. 1—Introduction to geopolymers. In Geopolymers; Provis, J.L., Van Deventer, J.S.J., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2009; pp. 1–11. [Google Scholar]
- Lloyd, R.R.; Provis, J.L.; van Deventer, J.S.J. Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. J. Mater. Sci. 2009, 44, 620–631. [Google Scholar]
- Shi, C.; Pavel, K.; Roy, D. Alkali-Activated Cements and Concretes. 2003. Available online: https://api.semanticscholar.org/CorpusID:136449923 (accessed on 25 November 2023).
- Yu, J.; Leung, C.K.Y. Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash. J. Mater. Civ. Eng. 2017, 29, 05017003. [Google Scholar] [CrossRef]
- Yu, J.; Li, G.; Leung, C.K.Y. Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio. Constr. Build. Mater. 2018, 161, 509–518. [Google Scholar] [CrossRef]
- Yu, J.; Mishra, D.K.; Wu, C.; Leung, C.K.Y. Very high volume fly ash green concrete for applications in India. Waste Manag. Res. 2018, 36, 520–526. [Google Scholar] [CrossRef]
- Promentilla, M.A.B.; Sugiyama, T.; Hitomi, T.; Takeda, N. Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomography. Cem. Concr. Res. 2009, 39, 548–557. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, H. Mix proportion of fly ash concrete based on stable paste to aggregate ratio, Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban). J. Liaoning Tech. Univ. (Nat. Sci. Ed.) 2012, 31, 370–373. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863502921&partnerID=40&md5=0dde9035fb05b346f24fe998038e172c (accessed on 25 November 2023).
- Vaishnavi, M.; Kanta Rao, M. Durability of High Volume Flyash Concrete; Matsagar, V., Ed.; Springer: New Delhi, India, 2015; pp. 1823–1835. [Google Scholar] [CrossRef]
- Herath, C.; Gunasekara, C.; Law, D.W.; Setunge, S. Permeation and Carbonation of Nano-HVFA Composites: Long-Term Studies. J. Mater. Civ. Eng. 2023, 35. [Google Scholar] [CrossRef]
- Sugandhini, H.K.; Nayak, G.; Shetty, K.K.; Kudva, L.P. Behavior of a high-volume fly ash fiber-reinforced cement composite toward magnesium sulfate: A long-term study. Innov. Infrastruct. Solut. 2023, 8, 328. [Google Scholar] [CrossRef]
- Provis, J.L.; Fernández-Jiménez, A.; Kamseu, E.; Leonelli, C.; Palomo, A. Binder chemistry—Low-calcium alkali-activated materials. RILEM State Art Rep. 2014, 13, 93–123. [Google Scholar] [CrossRef]
- Donatello, S.; Kuenzel, C.; Palomo, A.; Fernández-Jiménez, A. High temperature resistance of a very high volume fly ash cement paste. Cem. Concr. Compos. 2014, 45, 234–242. [Google Scholar] [CrossRef]
- Hemalatha, T.; Ramaswamy, A. A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete. J. Clean. Prod. 2017, 147, 546–559. [Google Scholar] [CrossRef]
- Swathi, V.; Asadi, S.S. An experimental investigation on mechanical, durability and Microstructural Properties of high-volume fly ash based concrete. J. Build. Pathol. Rehabil. 2022, 7, 36. [Google Scholar] [CrossRef]
- Swathi, V.; Asadi, S.S.; Poluraju, P. An integrated methodology for structural performance of high-volume fly ash concrete beams using hybrid fibers. Mater. Today Proc. 2020, 27, 1630–1635. [Google Scholar] [CrossRef]
- American Society for Testing and Materials, Building Standards. Available online: https://www.astm.org/products-services/standards-and-publications/standards/building-standards.html (accessed on 25 November 2023).
- Myadaraboina, H.; Law, D.; Patanikuni, I. Very high volume fly ash concrete utilizing microash and hydrated lime, with silica fume. Adv. Cem. Res. 2022, 34, 388–398. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.W.; Setunge, S. Design of ternary blend high-volume fly ash concrete mixes using hydrated lime. In Proceedings of the 6th International Conference on Durability of Concrete Structures, ICDCS 2018, Leeds, UK, 18–20 July 2018; pp. 127–134. [Google Scholar]
- Alaka, H.A.; Oyedele, L.O. High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer. J. Build. Eng. 2016, 8, 81–90. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, B. A review of durability properties of SCC with high volume fly Ash. Int. J. Civ. Eng. Technol. 2018, 9, 1023–1038. [Google Scholar]
- Babu, T.S.R.; Neeraja, D. A experimental study of natural admixture effect on conventional concrete and high volume class F flyash blended concrete. Case Stud. Constr. Mater. 2017, 6, 43–62. [Google Scholar] [CrossRef]
- Ortega, J.M.; Branco, F.G.; Pereira, L. Long-Term Behavior Related to Water Ingress in Mortars Which Combine Expanded and Natural Cork Lightweight Aggregates and Eco-Friendly Cements. Buildings 2023, 13, 1651. [Google Scholar] [CrossRef]
- Maurya, S.K.; Kothiyal, N.C. Effect of graphene oxide and functionalized carbon nanotubes on mechanical and durability properties of high-volume fly-ash cement nanocomposite. Eur. J. Environ. Civ. Eng. 2023, 28, 859–875. [Google Scholar] [CrossRef]
- Baert, G.; Poppe, A.-M.; De Belie, N. Strength and durability of high-volume fly ash concrete. Struct. Concr. 2008, 9, 101–108. [Google Scholar] [CrossRef]
- Kan, L.; Shi, R.; Zhu, J. Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC). Constr. Build. Mater. 2019, 209, 476–484. [Google Scholar] [CrossRef]
- Assi, L.N.; Deaver, E.E.; ElBatanouny, M.K.; Ziehl, P. Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr. Build. Mater. 2016, 112, 807–815. [Google Scholar] [CrossRef]
- Jayalin, D.; Vellingiri, N.; Janaki Raman, S. Experimental research on durability properties of high-volume fly ash concrete with polypropylene fibre. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1039–1042. [Google Scholar]
- Turk, K.; Nehdi, M.L. Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC. Constr. Build. Mater. 2018, 164, 185–192. [Google Scholar] [CrossRef]
- Ye, H.; Huang, L. Shrinkage Characteristics of Alkali-Activated High-Volume Fly-Ash Pastes Incorporating Silica Fume. J. Mater. Civ. Eng. 2020, 32, 04020307. [Google Scholar] [CrossRef]
- Henry, M.; Yamashita, H.; Nishimura, T.; Kato, Y. Properties and mechanical-environmental efficiency of concrete combining recycled rubber with waste materials. Int. J. Sustain. Eng. 2012, 5, 66–75. [Google Scholar] [CrossRef]
- Babalu, R.; Anil, A.; Sudarshan, K.; Amol, P. Compressive strength, flexural strength, and durability of high-volume fly ash concrete. Innov. Infrastruct. Solut. 2023, 8, 154. [Google Scholar] [CrossRef]
- Kumar, P.; Kaushik, S.K. Interfacial transition zone in HSC—Effect of fly ash and micro silica. Indian Concr. J. 2005, 79, 19–24. [Google Scholar]
- Bilodeau, A.; Mohan Malhotra, V. High-volume fly ash system: Concrete solution for sustainable development. ACI Struct. J. 2000, 97, 41–48. [Google Scholar]
- Naik, T.R.; Ramme, B.W.; Kraus, R.N.; Siddique, R. Long-term performance of high-volume fly ash concrete pavements. ACI Mater. J. 2003, 100, 150–155. [Google Scholar]
- Bouzoubaâ, N.; Bilodeau, A.; Sivasundaram, V.; Chakraborty, A.K. Mechanical properties and durability characteristics of high- volume fly ash concrete made with ordinary portland cement and blended portland fly ash cement. Am. Concr. Inst. ACI Spec. Publ. 2007, SP-242, 303–320. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907163749&partnerID=40&md5=e4ed213d8a9c7183b3c92abf0c395de5 (accessed on 25 November 2023).
- Yang, E.-H.; Yang, Y.; Li, V.C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater. J. 2007, 104, 620–628. [Google Scholar]
- Kumar, B.; Sinha, S.; Chakravarty, H. Effect of nano iron oxide on strength and durability characteristics of high-volume fly ash concrete for pavement construction. Int. J. Recent Technol. Eng. 2019, 8, 4365–4373. [Google Scholar] [CrossRef]
- Yu, J.; Mishra, D.K.; Hu, C.; Leung, C.K.Y.; Shah, S.P. Mechanical, environmental and economic performance of sustainable Grade 45 concrete with ultrahigh-volume Limestone-Calcined Clay (LCC). Resour. Conserv. Recycl. 2021, 175, 105846. [Google Scholar] [CrossRef]
- Herath, C.; Law, D.W.; Gunasekara, C.; Setunge, S. Sulphate and acid resistance of HVFA concrete incorporating nano silica. Constr. Build. Mater. 2023, 392, 132004. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Yang, Y.; Yao, Y. Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: Fly ash, slag, silica fume and cement. Constr. Build. Mater. 2014, 68, 192–198. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Yang, T.; Liu, C.; Zhang, Z. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials. Constr. Build. Mater. 2018, 175, 411–421. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Wong, Y.L. Study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000, 30, 447–455. [Google Scholar] [CrossRef]
- Hossain, M.M.; Karim, M.R.; Elahi, M.M.A.; Zain, M.F.M. Water absorption and sorptivity of alkali-activated ternary blended composite binder. J. Build. Eng. 2020, 31, 101370. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Y.Z.; Yao, Y. Effect of high volumes of fly ash on flowability and drying shrinkage of engineered cementitious composites. Mater. Sci. Forum 2011, 675–677, 61–64. [Google Scholar] [CrossRef]
- Xi, X.; Jiang, S.; Yin, C.; Wu, Z. Experimental investigation on cement-based foam developed to prevent spontaneous combustion of coal by plugging air leakage. Fuel 2021, 301, 121091. [Google Scholar] [CrossRef]
- Lam, L.; Wong, Y.L.; Poon, C.S. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem. Concr. Res. 2000, 30, 747–756. [Google Scholar] [CrossRef]
- Palla, R.; Karade, S.R.; Mishra, G.; Sharma, U.; Singh, L.P. High strength sustainable concrete using silica nanoparticles. Constr. Build. Mater. 2017, 138, 285–295. [Google Scholar] [CrossRef]
- Wallah, S.E.; Rangan, B.V. Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties; Research Report GC2; Faculty of Engineering, Curtin University of Technology: Perth, Australia, 2006. [Google Scholar]
- Bouzoubaâ, N.; Zhang, M.H.; Malhotra, V.M. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem. Concr. Res. 2001, 31, 1393–1402. [Google Scholar] [CrossRef]
- Velandia, D.; Lynsdale, C.; Provis, J.L.; Ramirez, F. Activated hybrid cementitious system, a green alternative for concrete production. Am. Concr. Inst. ACI Spec. Publ. 2017, SP 320, 1–10. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043367483&partnerID=40&md5=1cc77f6d38b03c733083620d0bc052db (accessed on 25 November 2023).
- Donatello, S.; Palomo, A.; Fernández-Jiménez, A. Durability of very high-volume fly ash cement pastes and mortars in aggressive solutions. Cem. Concr. Compos. 2013, 38, 12–20. [Google Scholar] [CrossRef]
- Samhitha, K.V.; Reddy, V.S.; Rao, M.V.S.; Shrihari, S. Performance evaluation of high-strength high-volume fly ash concrete. Int. J. Recent Technol. Eng. 2019, 8, 5990–5994. [Google Scholar] [CrossRef]
- Doven, A.G.; Pekrioglu, A. Material properties of high-volume fly ash cement paste structural fill. J. Mater. Civ. Eng. 2005, 17, 686–693. [Google Scholar] [CrossRef]
- Mohammed, T.; Aguayo, F.; Nodehi, M.; Ozbakkaloglu, T. Engineering properties of structural lightweight concrete containing expanded shale and clay with high volume class F and class C fly ash. Struct. Concr. 2023, 24, 4029–4046. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, S.K.; Chang, C.S.; Chen, H.J. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 2013, 46, 71–78. [Google Scholar] [CrossRef]
- Liu, J.; Li, A.; Yang, Y.; Wang, X.; Yang, F. Dry-wet cyclic sulfate attack mechanism of high-volume fly ash self-compacting concrete. Sustainability 2022, 14, 13052. [Google Scholar] [CrossRef]
- Feng, Q.-G.; Yang, Y.; Yang, L.-F.; Chen, Z.; Zhu, H.-Y. Durability of high-volume fly ash concrete with low water binder. Wuhan Ligong Daxue Xuebao/J. Wuhan Univ. Technol. 2009, 31, 148–150+154. [Google Scholar]
- Flegar, M.; Ram, K.; Serdar, M.; Bosnar, K.; Scrivener, K. Durability Challenges of Low-Grade Calcined Clay Opposed to High-Volume Fly Ash in General Purpose Concrete. Adv. Civ. Eng. Mater. 2023, 12, 237–250. [Google Scholar] [CrossRef]
- Gu, P.; Beaudoin, J.J.; Zhang, M.-H.; Malhotra, V.M. Performance of steel reinforcement in Portland cement and high-volume fly ash concretes exposed to chloride solution. ACI Mater. J. 1999, 96, 551–558. [Google Scholar]
- He, Z.-H.; Du, S.-G.; He, L.-L. Compressive strengths of high volume fly ash concrete containing rice husk ash. J. Adv. Microsc. Res. 2016, 11, 72–76. [Google Scholar] [CrossRef]
- Supit, S.; Shaikh, F. Durability properties of high-volume fly ash concrete containing nano-silica. Mater. Struct. 2015, 48, 2431–2445. [Google Scholar] [CrossRef]
- Bürge, T.A. High strength lightweight concrete with condensed silica fume. In American Concrete Institute, ACI Special Publication; American Concrete Institute: Farmington Hills, MI, USA, 1983; pp. 731–745. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114486182&partnerID=40&md5=fdfb43b43846819e8146152fab89ae36 (accessed on 25 November 2023).
- Kumar, B.; Sinha, S.; Chakravarty, H. Study of Effect of Nano-Silica on Strength and Durability Characteristics of High-Volume Fly Ash Concrete for Pavement Construction. Civ. Eng. J. 2019, 5, 1341–1352. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Supit, S.W.M. Compressive strength and durability of high-volume fly ash concrete reinforced with calcium carbonate nanoparticles. Fill. Reinf. Adv. Nanocomposites 2015, 275–307. [Google Scholar] [CrossRef]
- Solikin, M.; Setunge, S.; Patnaikuni, I. The influence of lime water as mixing water on the compressive strength development of high volume ultra fine fly ash mortar. In Proceedings of the ISEC 2011—6th International Structural Engineering and Construction Conference: Modern Methods and Advances in Structural Engineering and Construction, Zurich, Switzerland, 21–26 June 2011; pp. 1169–1174. Available online: https://rpsonline.com.sg/proceedings/9789810879204/html/978-981-08-7920-4_S3-M027.xml (accessed on 25 November 2023). [CrossRef]
- Fu, C.; Ling, Y.; Ye, H.; Jin, X. Chloride resistance and binding capacity of cementitious materials containing high volumes of fly ash and slag. Mag. Concr. Res. 2021, 73, 55–68. [Google Scholar] [CrossRef]
- Li, G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Jiang, Q.; Sun, G. In-situ monitoring of early-age electrical resistivity change process of cement-based materials. Dongnan Daxue Xuebao (Ziran Kexue Ban)/J. Southeast Univ. (Nat. Sci. Ed.) 2012, 42, 378–382. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Supit, S.W.M. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 2014, 70, 309–321. [Google Scholar] [CrossRef]
- El-Chabib, H.; Ibrahim, A. The performance of high-strength flowable concrete made with binary, ternary, or quaternary binder in hot climate. Constr. Build. Mater. 2013, 47, 245–253. [Google Scholar] [CrossRef]
- Jia, Y.; Aruhan, B.; Yan, P. Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period. Mag. Concr. Res. 2012, 64, 143–150. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Maghfouri, M.; Alimohammadi, V.; Asadi, I.; Roychand, R. The acid and chloride permeability resistance of masonry cement plaster mortar incorporating high-volume fly ash content. J. Build. Eng. 2024, 86, 108783. [Google Scholar] [CrossRef]
- Rashad, A.M.; Khalil, M.H.; El-Nashar, M.H. Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate. Innov. Infrastruct. Solut. 2021, 6, 156. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Chemical Activation of Lime-Slag Blends. In SP-153: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete Proceedings Fifth International Conference Milwauk; American Concrete Institute: Farmington Hills, MI, USA, 1995; Available online: https://api.semanticscholar.org/CorpusID:138690716 (accessed on 25 November 2023).
- Kumar, P.; Singh, N. Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume fly ash-self compacting concrete. J. Build. Eng. 2020, 32, 101491. [Google Scholar] [CrossRef]
- Malhotra, V.M. High-performance HVFA concrete: A solution to the infrastructural needs of India. Indian Concr. J. 2002, 76, 103–107. [Google Scholar]
- Van den Heede, P.; Gruyaert, E.; De Belie, N. Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability. Cem. Concr. Compos. 2010, 32, 749–756. [Google Scholar] [CrossRef]
- Joseph, G.; Ramamurthy, K. Influence of fly ash on strength and sorption characteristics of cold-bonded fly ash aggregate concrete. Constr. Build. Mater. 2009, 23, 1862–1870. [Google Scholar] [CrossRef]
- Supit, S.; Shaikh, A. Correction to: Durability properties of high-volume fly ash concrete containing nano-silica. Mater. Struct./Mater. Et Constr. 2021, 54, 237. [Google Scholar] [CrossRef]
- Rahmat, S.; Tangtermsirikul, S.; Saengsoy, W. Properties of Pastes and Mortars Containing Ammonia Contaminated Fly Ash. Master’s Thesis, Thammasat University, Bangkok, Thailand, 2021. [Google Scholar]
- Han, J.; Fang, H.; Wang, K. Design and control shrinkage behavior of high-strength self-consolidating concrete using shrinkage-reducing admixture and super-absorbent polymer. J. Sustain. Cem. Based Mater. 2014, 3, 182–190. [Google Scholar] [CrossRef]
- Gu, C.; Yao, J.; Yang, Y.; Huang, J.; Ma, L.; Ni, T.; Liu, J. The relationship of compressive strength and chemically bound water content of high-volume fly ash-cement mortar. Materials 2021, 14, 6273. [Google Scholar] [CrossRef]
- Adesina, A.; Das, S. Development of sustainable engineered cementitious composites using recycled concrete aggregates-feasibility study based on mechanical properties. ACI Mater. J. 2021, 118, 97–107. [Google Scholar] [CrossRef]
- Şahmaran, M.; Li, V.C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 2009, 39, 1033–1043. [Google Scholar] [CrossRef]
- Araujo, A.; Da Silva, N.; Sá, T.; Caldas, L.; Toledo Filho, R. Potential of Earth-Based Bamboo Bio-Concrete in the Search for Circular and Net-Zero Carbon Solutions to Construction Industry. IOP Conf. Ser. Earth Environ. Sci. Inst. Phys. 2022, 1122, 012043. [Google Scholar] [CrossRef]
- Li, Z.; Gong, J.; Du, S.; Wu, J.; Li, J.; Hoffman, D.; Shi, X. Nano-montmorillonite modified foamed paste with a high volume fly ash binder. RSC Adv. 2017, 7, 9803–9812. [Google Scholar] [CrossRef]
- Shirgir, B.; Hassani, A.; Khodadadi, A. Experimental study on permeability and mechanical properties of nanomodified porous concrete. Transp. Res. Rec. 2011, 2240, 30–35. [Google Scholar] [CrossRef]
- Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 2012, 34, 389–400. [Google Scholar] [CrossRef]
- Duran-Herrera, A.; De-León-Esquivel, J.; Bentz, D.P.; Valdez-Tamez, P. Self-compacting concretes using fly ash and fine limestone powder: Shrinkage and surface electrical resistivity of equivalent mortars. Constr. Build. Mater. 2019, 199, 50–62. [Google Scholar] [CrossRef]
- Raj, A.; Sathyan, D.; Mini, K.M. Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding. Adv. Concr. Constr. 2021, 11, 151–161. [Google Scholar]
- Sugandhini, H.K.; Nayak, G.; Shetty, K.K.; Kudva, L.P. The Durability of High-Volume Fly Ash-Based Cement Composites with Synthetic Fibers in a Corrosive Environment: A Long-Term Study. Sustainability 2023, 15, 11481. [Google Scholar] [CrossRef]
- Hashimoto, S.; Kubota, K.; Ando, K.; Diko, Y.; Honda, S.; Iwamoto, Y. Effect of Grinding Treatment of Fly Ash on Compressive Strength of Hardened Geopolymers using Warm Press Method. In Proceedings of the MATEC Web Confence Engineering Technology International Conference 2016 (ETIC 2016), Ho Chi Minh City, Vietnam, 5–6 August 2016; Volume 97, p. 01120. Available online: https://www.matec-conferences.org/articles/matecconf/abs/2017/11/matecconf_etic2017_01120/matecconf_etic2017_01120.html (accessed on 25 November 2023). [CrossRef]
- Singh, R.B.; Debbarma, S.; Kumar, N.; Singh, S. Hardened state behaviour of self-compacting concrete pavement mixes containing alternative aggregates and secondary binders. Constr. Build. Mater. 2021, 266, 120624. [Google Scholar] [CrossRef]
- Haque, M.N.; Kayali, O. Properties of high-strength concrete using a fine fly ash. Cem. Concr. Res. 1998, 28, 1445–1452. [Google Scholar] [CrossRef]
- Wongkeo, W.; Chaipanich, A. Compressive strength of blended Portland cement mortars incorporating fly ash and silica fume at high volume replacement. Chiang Mai Univ. J. Nat. Sci. 2013, 12, 121–130. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Mancio, M.; Mehta, P.K.; Monteiro, P.J.M. A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Constr. Build. Mater. 2014, 67, 14–19. [Google Scholar] [CrossRef]
- Jin, C.; Wu, C.; Feng, C.; Zhang, Q.; Shangguan, Z.; Pan, Z.; Meng, S. Mechanical properties of high-volume fly ash strain hardening cementitious composite (HVFA-SHCC) for structural application. Materials 2019, 12, 2607. [Google Scholar] [CrossRef]
- Fu, C.-H.; Ni, W.; Zhang, X.-F.; Wang, Z.-J.; Tian, M.-Y. Slag-fly ash based cementitious materials special for high performance concrete. Beijing Keji Daxue Xuebao/J. Univ. Sci. Technol. Beijing 2011, 33, 606–613. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957988067&partnerID=40&md5=c325a052128a24a196cccf7395ae8970 (accessed on 25 November 2023).
- Supit, S.W.M.; Shaikh, F.U.A.; Sarker, P.K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Constr. Build. Mater. 2014, 51, 278–286. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P. Effect of fly ash on the durability properties of high strength concrete. Procedia Eng. 2011, 14, 1149–1156. [Google Scholar] [CrossRef]
- Swamy, R.N. High performance cement-based materials and holistic design for sustainability in construction (Part II). Indian Concr. J. 2008, 82, 7–20. [Google Scholar]
- Rakić, J.M.; Petrović, R.D.; Radojević, V.J.; Baščarević, Z.D. Effects of selected inorganic chemical activators on properties and hydration mechanism of high volume fly ash (HVFA) binders. Constr. Build. Mater. 2023, 391, 131833. [Google Scholar] [CrossRef]
FA Content % | Flexural Strength (MPa) | Source |
---|---|---|
50 | 8.58 | Swathi and Asadi (2002) FA50 |
50 | 5.0 | Li et al. (2019) FA50 |
55 | 5.6 | Rafat et al. (2009) FA55 |
60 | 15.3 | Babu et al. (2017) FA60 |
60 | 8.2 | Kumar and Ragul (2018) FA60 |
60 | 5.37 | Jayalin et al. (2019) FA60 |
60 | 6.1 | Katoh et al. (2006) FA60 |
65 | 5.1 | Hafiz (2016) FA65 |
70 | 4.6 | Altis (2003) FA70 |
70 | 9.28 | Turk and Nehdi (2018) FA70 |
80 | 5.07 | Myadaraboina et al. (2022) FA80 |
80 | 5.5 | Haung et al. (2013) FA80 |
80 | 9.8 | Yu et al. (2017) FA80 |
80 | 4.88 | Atis (2002) FA80 |
80 | 3.4 | Amassi and Ragul (2017) FA80 |
w/b Ratio | 28 dys Compressive Strength MPa | FA/Pc Ratio | Source |
---|---|---|---|
0.20 | 65 | 0.80 | Yu et al. (2017) |
0.22 | 80 | 0.65 | Poon (2000) |
0.22 | 45.4 | 0.80 | Leung and Cao (2010) |
0.24 | 25.3 | 0.85 | Yang et al. (2007) |
0.25 | 31.6 | 0.76 | Yang et al. (2007) |
0.25 | 32 | 0.76 | Yu et al. (2017) |
0.25 | 28.2 | 0.78 | Yang et al. (2007) |
0.25 | 41.8 | 0.80 | Zhu et al. (2014) |
0.25 | 25.0 | 0.80 | Zhang et al. (2014) |
0.26 | 25.0 | 0.81 | Huang et al. (2013) |
0.26 | 17.0 | 0.81 | Yu et al. (2015) |
0.30 | 58.9 | 0.55 | Lam et al. (2000) |
0.30 | 70 | 0.7 | Samtitha et al. (2019) |
0.30 | 43 | 0.70 | Swathi and Asadi (2022) |
0.35 | 24.1 | 0.70 | Babalu (2023) |
0.40 | 34.1 | 0.70 | Mohammed et al. (2022) |
Source | Mix | X-Days Strength Improvement as a Percentage | ||||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 28 | 56 | 90 | 360 | ||
Li (2004) | 50% FA, 4% Nano Silica | 81 | 59 | 69 | 39 | 19 | - | 10 |
Zhang et al. (2012) | 50% FA, 1% Nano Silica | 62.2 | 24.3 | 17.1 | 6.9 | - | 4.4 | - |
Zhang et al. (2012) | 50% FA, 2% Nano Silica | - | 30 | 25 | 13 | - | 18 | - |
Shaikh et al. (2015) | 70% FA, 2% Nano Silica | - | - | - | 56 * | - | - | - |
Shaikh et al. (2015) | 60% FA, 1% CaCO3 | - | 25 | - | 15 | - | 8 | - |
Hemalatha et al. (2017) * | 60% FA, 1% CaCO3 | - | - | - | 43 | - | 8 | - |
Hemalatha et al. (2017) ** | 60% FA, 1% CaCO3 | - | - | - | 11 | - | 26 | - |
Ramaswamy et al. (2017) | 57% FA, Silica Fume | 5 | 22 | 39 | 12 | 12 | 25 | 6 |
Zhang et al. (2012) | 50% FA, 1% Silica Fume | 14 | 15 | 10 | 4 | 1 | - | |
Hassan et al. (2013) | HVFA, 10% Silica Fume | 67 | - | 35 | - | 30 | - | - |
Rashad et at (2014) | 70% FA, 10% Silica Fume | - | 6 | - | 40 | - | - | - |
Silikin et al. (2013) | 50% FA, hydrated lime | - | - | - | 11 | - | 14 | - |
Roychand et al. (2008) | Hydrated lime + Nano Silica | - | - | −20 | −4 | - | - | - |
Roychand et al. (2008) | Hydrated lime + Silica Fume | - | - | 43 | 117 | - | - | - |
Solikin et al. (2011) | Ultra Fine Fly Ash | - | - | 6 | 4 | - | - | - |
Ling et al. (2004) | Ultra Fine Fly Ash | - | - | 32 | 52 | 40 | - | - |
Jia et al. (2012) | 50% FA, 10% Slag | - | - | −10 | −10 | - | - | - |
Test | Sample | Age of Test | Standard | Equipment/Materials Used | Findings |
---|---|---|---|---|---|
Compressive strength | 100 mm by 200 mm specimens | 3, 7, 14, 28, 56, and 90 days | ASTM C109 [20] | Cylindrical specimens are placed in a compression testing machine, and a gradually increasing load is applied until the specimen fractures. |
|
Flexural strength | prism specimens 100 × 500 mm. | 7, 14, 28, 56, and 90 days | ASTM C348 [20]; ASTM C78 [20]. | A two-point loading is applied to prisms at L/3 mm until the cracking point. |
|
Split tensile strength | 100 mm by 200 mm. | 3, 7, 14, 28, 56, and 90 days | IS 5816-1999 [20]; IS 10262-2009 [20]. | Cylindrical specimens are water treated for hydration. Specimen dimensions are measured and specimens are weighed before the test. Specimens are placed in the split tensile machine and gradually loaded at a rate of 0.6 to 1.5 MPa/m until breaking. | |
Sorptivity | 90, 180, and 270 days | ASTM C 1585 [20] | Water-cured samples are dried until constant mass is achieved and placed in contact with water on one surface (<5 mm deep) while the other is sealed to allow for uniaxial water absorption only, and the mass gain is measured at definite intervals for the first six hours. |
| |
Permeability | 90, 180, and 270 days | ASTM C 1585 [20] or other tests | Similar to sorptivity |
| |
Resistivity | 3, 7, 14, 28, 56, and 90 days | AASHTO TP 95 [20] | Two electrodes are placed on opposite ends of the specimen, and the electrical resistance between these electrodes is measured. |
| |
Cl− resistance | 7, 14, 28, 56, and 90 days | ASTM C1202-07 [20] | Water-saturated specimens are subjected to an electric current and the chloride penetration is expressed as the total charge passed during the test after 6 hrs. |
| |
Tortuosity | 7, 14, 28, 56, and 90 days | X-ray microtomography | Specimens are subjected to X-ray radiation from various angles, with a detector recording the intensity data from multiple angles, and a 3D image of the internal microstructure, including pores, voids, and aggregates, is reconstructed. |
| |
Microstructure analysis | 7, 14, 28, 56, and 90 days | SEM, BSE, XRD, MIP | Depends on test procedure |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Runganga, D.; Okonta, F.; Musonda, I. Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review. CivilEng 2024, 5, 435-460. https://doi.org/10.3390/civileng5020022
Runganga D, Okonta F, Musonda I. Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review. CivilEng. 2024; 5(2):435-460. https://doi.org/10.3390/civileng5020022
Chicago/Turabian StyleRunganga, Desire, Felix Okonta, and Innocent Musonda. 2024. "Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review" CivilEng 5, no. 2: 435-460. https://doi.org/10.3390/civileng5020022
APA StyleRunganga, D., Okonta, F., & Musonda, I. (2024). Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review. CivilEng, 5(2), 435-460. https://doi.org/10.3390/civileng5020022