Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coarse Aggregate Testing
2.1.1. Aggregate Impact Value (AIV)
2.1.2. Abrasion Test
2.1.3. Compaction Factor Test
2.2. Fine Aggregate Testing
2.2.1. Sieve Analysis
2.2.2. Soundness Test
2.2.3. Consistency Test
2.2.4. Setting Time Tests
2.2.5. Flow Table Test
- F = Flow of Mortar (in percentage);
- = Final flow traces of Mortar samples (in inches);
- = Initial flow traces of Mortar sample (usually the diameter of the mold, in inches).
2.2.6. Ultrasonic Pulse Velocity Test
2.2.7. SEM Analysis
2.2.8. Compressive Strength of the Concrete
- f′t is the target strength;
- f′c is the characteristic compressive strength;
- σ is the standard deviation of the concrete strength;
- 1.65 is a factor providing a one-sided tolerance that accounts for 95% probability (corresponding to the 5% defect rate).
3. Results
3.1. AIV of Recycled Aggregates
3.2. Compaction Factor Test
- w1 = 4.616 kg;
- w2 = 15.800 kg;
- w3 = 14.800 kg.
3.3. Abrasion Test
3.4. Sieve Analysis
3.5. Soundness Test
3.6. Consistency Test
3.7. Initial and Final Setting Time Tests
3.8. Flow Table Test
3.9. Ultrasonic Pulse Velocity (UPV) Test
3.10. SEM Analysis of Concrete with RS
3.11. Compressive Strength Test of Concrete (Prepared by the Mixing of Recycled Aggregate and RS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santamouris, M.; Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime-Adv. Electr. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- Cândido, L.F.; Lazaro, J.C.; Olivier de Freitas e Silva, A.; de Paula Barros Neto, J. Sustainability Transitions in the Construction Sector: A Bibliometric Review. Sustainability 2023, 15, 12814. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, H.; Zhang, P.; Chi, Y.; Feng, A. Material metabolism and lifecycle impact assessment towards sustainable resource management: A case study of the highway infrastructural system in Shandong Peninsula, China. J. Clean. Prod. 2017, 153, 195–208. [Google Scholar] [CrossRef]
- Silva, L.S.; Amario, M.; Stolz, C.M.; Figueiredo, K.V.; Haddad, A.N. A Comprehensive Review of Stone Dust in Concrete: Mechanical Behavior, Durability, and Environmental Performance. Buildings 2023, 13, 1856. [Google Scholar] [CrossRef]
- Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability 2022, 14, 13121. [Google Scholar] [CrossRef]
- Hwang, B.G.; Tan, J.S. Green building project management: Obstacles and solutions for sustainable development. Sustain. Dev. 2012, 20, 335–349. [Google Scholar] [CrossRef]
- Bakhoum, E.S.; Garas, G.L.; Allam, M.E. Sustainability analysis of conventional and eco-friendly materials: A step towards green building. ARPN J. Eng. Appl. Sci. 2015, 10, 788–796. Available online: https://www.researchgate.net/profile/Gihan-Garas/publication/282307106_Sustainability_analysis_of_conventional_and_eco-friendly_materials_A_step_towards_green_building/links/5665a7e908ae4931cd6248a2/Sustainability-analysis-of-conventional-and-eco-friendly-materials-A-step-towards-green-building.pdf (accessed on 23 January 2024).
- Makul, N.; Feduik, R.; Amran, N.; Zeyad, A.M.; Murali, G.; Vatin, N.; Klyuev, S.; Ozbakkaloglu, T.; Vasilev, Y. Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review. Crystals 2021, 11, 232. [Google Scholar] [CrossRef]
- Katar, I.; Ibrahim, Y.; Malik, M.A.; Khahro, S.H. Mechanical Properties of Concrete with Recycled Concrete Aggregate and Fly Ash. Recycling 2021, 6, 23. [Google Scholar] [CrossRef]
- Neupane, R.P.; Imjai, T.; Makul, N.; Garcia, R.; Kim, B.; Chaudhary, S. Use of recycled aggregate concrete in structural members: A review focused on Southeast Asia. J. Asian Archit. Build. Eng. 2023. [Google Scholar] [CrossRef]
- Infrastructure and Industrialization-United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/infrastructure-industrialization/ (accessed on 23 January 2024).
- Brodny, J.; Tutak, M. Assessing regional implementation of Sustainable Development Goal 9 ‘Build resilient infrastructure, promote sustainable industrialization and foster innovation’ in Poland. Technol. Forecast. Soc. Chang. 2023, 195, 122773. [Google Scholar] [CrossRef]
- Adamson, M.; Razmjoo, A.; Poursaee, A. Durability of concrete incorporating crushed brick as coarse aggregate. Constr. Build. Mater. 2015, 94, 426–432. [Google Scholar] [CrossRef]
- Roh, S.; Kim, R.; Park, W.J.; Ban, H. Environmental Evaluation of Concrete Containing Recycled and By-Product Aggregates Based on Life Cycle Assessment. Appl. Sci. 2020, 10, 7503. [Google Scholar] [CrossRef]
- Anjam, A.R.; Faghihmaleki, H.; Zhang, L.T. Laboratory Evaluation of the Performance of Recycled Aggregate Concrete Containing Construction and Stone Factories Waste in Terms of Compressive and Tensile Strength. Math. Probl. Eng. 2020, 2020, 2054836. [Google Scholar] [CrossRef]
- Serres, N.; Braymand, S.; Feugeas, F. Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. J. Build. Eng. 2016, 5, 24–33. [Google Scholar] [CrossRef]
- Restuccia, L.; Spoto, C.; Ferro, G.A.; Tulliani, J.M. Recycled Mortars with C&D Waste. Procedia Struct. Integr. 2016, 2, 2896–2904. [Google Scholar] [CrossRef]
- Kępniak, M.; Łukowski, P. Multicriteria Analysis of Cement Mortar with Recycled Sand. Sustainability 2024, 16, 1773. [Google Scholar] [CrossRef]
- Su, Y.; Yao, Y.; Wang, Y.; Zhao, X.; Li, L.; Zhang, J. Modification of Recycled Concrete Aggregate and Its Use in Concrete: An Overview of Research Progress. Materials 2023, 16, 7144. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Mayacela, M.; Chérrez, D.; Aldas, E.; Contreras, L.F. Comparison of Physical and Mechanical Properties of Stone Aggregates and Their Use in the Structure of a Flexible Pavement, from Mines in Ecuador. Buildings 2023, 13, 1632. [Google Scholar] [CrossRef]
- Guo, Z.; Tu, A.; Chen, C.; Lehman, D.E. Mechanical properties, durability, and life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates. J. Clean. Prod. 2018, 199, 136–149. [Google Scholar] [CrossRef]
- Nepomuceno, M.C.S.; Isidoro, R.A.S.; Catarino, J.P.G. Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Constr. Build. Mater. 2018, 165, 284–294. [Google Scholar] [CrossRef]
- Goal 11. Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal11 (accessed on 23 January 2024).
- Mohammed, T.U.; Mahmood, A.H.; Apurbo, S.M.; Noor, M.A. Substituting brick aggregate with induction furnace slag for sustainable concrete. Sustain. Mater. Technol. 2021, 29, e00303. [Google Scholar] [CrossRef]
- Kolawole, J.T.; Babafemi, A.J.; Paul, S.C.; Plessis, A.D. Performance of concrete containing Nigerian electric arc furnace steel slag aggregate towards sustainable production. Sustain. Mater. Technol. 2020, 25, e00174. [Google Scholar] [CrossRef]
- Küfeoğlu, S. SDG-12: Responsible Consumption and Production; World Bank: Washington, DC, USA, 2022; pp. 409–428. [Google Scholar] [CrossRef]
- Chaiyasarn, K.; Poovarodom, N.; Ejaz, A.; Ng, A.W.M.; Hussain, Q.; Saingram, P.; Mohamad, H.; Joyklad, P. Influence of natural fiber rope wrapping techniques on the compressive response of recycled aggregate concrete circular columns. Results Eng. 2023, 19, 101291. [Google Scholar] [CrossRef]
- Polo-Mendoza, R.; Martinez-Arguelles, G.; Peñabaena-Niebles, R. Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques. Results Eng. 2023, 17, 100984. [Google Scholar] [CrossRef]
- Gerges, N.; Issa, C.A.; Antounn, M.; Sleiman, E.; Hallal, F.; Shamoun, P.; Hayek, J. Eco-friendly mortar: Optimum combination of wood ash, crumb rubber, and fine crushed glass. Case Stud. Constr. Mater. 2021, 15, e00588. [Google Scholar] [CrossRef]
- Sabzi, J.; Esfahani, M.R.; Ozbakkaloglu, T.; Gholampour, A.; Masoodi, A.R. Rehabilitation of reinforced concrete beam: Sustainable restoration mortar with waste materials. Case Stud. Constr. Mater. 2024, 20, e02827. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Gao, X.F.; Tam, C.M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 2005, 35, 1195–1203. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Constr. Build. Mater. 2017, 147, 803–814. [Google Scholar] [CrossRef]
- Jamellodin, Z.; Yi, L.Q.; Latif, Q.B.A.I.; Algaifi, H.A.; Hamdan, R.; Al-Gheethi, A. Evaluation of Fresh and Hardened Concrete Properties Incorporating Glass Waste as Partial Replacement of Fine Aggregate. Sustainability 2022, 14, 15895. [Google Scholar] [CrossRef]
- Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Mydin, M.A.O. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. [Google Scholar] [CrossRef]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Kumar, R.; Shrama, A.; Kanga, S. Finding Alternative to River Sand in Building Construction. Evergreen 2022, 9, 973–992. [Google Scholar] [CrossRef]
- Forbes, L.; Ahmed, S. Modern Construction: Lean Project Delivery and Integrated Practices. 2010. Available online: https://books.google.com/books?hl=en&lr=&id=sL2wXr7dPE0C&oi=fnd&pg=PP1&dq=Forbes,+L.H.+and+Ahmed,+S.M.,+2010.+Modern+construction:+lean+project+delivery+and+integrated+practices.+CRC+press.+24.+Fu,+Q.,+Bu,+M.,+Zhang,+Z.,+Xu,+W.,+Yuan,+Q.+and+Niu,+D.,+2021.+Hydration+characteristics+and+microstructure+of+alka-li-activated+slag+concrete:+a+review.+Engineering.&ots=X3dNlFmOGC&sig=DhItgaM-XQWsFUZ0THKNqwpMFC4 (accessed on 23 January 2024).
- Zhao, Z.; Remond, S.; Damidot, D.; Xu, W. Influence of fine recycled concrete aggregates on the properties of mortars. Constr. Build. Mater. 2015, 81, 179–186. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Li, L.; Xiao, H.; Chen, Z.; Mao, H. Experimental and Numerical Studies on the Direct Shear Behavior of Sand–RCA (Recycled Concrete Aggregates) Mixtures with Different Contents of RCA. Materials 2021, 14, 2909. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, T.R.; Manjupiya, S. Performance of Photocatalytic Concrete using Sinicon PP, Rice husk ash and Titanium-dioxide. Int. J. Recent Technol. Eng. (IJRTE) 2020, 8, 5719–5724. [Google Scholar] [CrossRef]
- IS 10262 (2009); Guidelines for Concrete Mix Design Proportioning. Bureau of Indian Standards: New Delhi, India, 2009.
- IS-12269-1987; 53 Grade Ordinary Portland Cement. Bureau of Indian Standards: New Delhi, India, 1987.
- Lin, Y.; Maghool, F.; Arulrajah, A.; Horpibulsuk, S. Engineering Characteristics and Environmental Risks of Utilizing Recycled Aluminum Salt Slag and Recycled Concrete as a Sustainable Geomaterial. Sustainability 2021, 13, 10633. [Google Scholar] [CrossRef]
- Pourkhorshidi, S.; Sangiorgi, C.; Torreggiani, D.; Tassinari, P. Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements. Sustainability 2020, 12, 9386. [Google Scholar] [CrossRef]
- Hulimka, J.; Kałuza, M. Basic Chemical Tests of Concrete during the Assessment of Structure Suitability—Discussion on Selected Industrial Structures. Appl. Sci. 2020, 10, 358. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Zhu, X.; Jiang, T.; Tufail, R.F. A Comprehensive Study on the Factors Affecting the Workability and Mechanical Properties of Ambient Cured Fly Ash and Slag Based Geopolymer Concrete. Appl. Sci. 2021, 11, 8722. [Google Scholar] [CrossRef]
- Rubio-Hernández, F.J. Rheological Behavior of Fresh Cement Pastes. Fluids 2018, 3, 106. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Pei, L.; Li, W.; Hao, X. Classification of Coarse Aggregate Particle Size Based on Deep Residual Network. Symmetry 2022, 14, 349. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, D.; Zhao, J.; Zhou, G.; Wang, Z. Mixture Design and Mechanical Properties of Recycled Mortar and Fully Recycled Aggregate Concrete Incorporated with Fly Ash. Materials 2022, 15, 8143. [Google Scholar] [CrossRef] [PubMed]
- Popławski, J.; Lelusz, M. Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars. Materials 2021, 14, 6654. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C. Evaluation of Setting Times of Concrete Using Electro-Mechanical Impedance Sensing Technique. Materials 2023, 16, 5618. [Google Scholar] [CrossRef] [PubMed]
- Karimaei, M.; Dabbaghi, F.; Dehestani, M.; Rashidi, M. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity. Materials 2021, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Vasanelli, E.; Colangiuli, D.; Calia, A.; Sileo, M.; Aiello, M.A. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 2015, 60, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, T.; Ahmed, A.; Hossain, M.D.S.; Faysal, M. Microstructure Analysis and Strength Characterization of Recycled Base and Sub-Base Materials Using Scanning Electron Microscope. Infrastructures 2020, 5, 70. [Google Scholar] [CrossRef]
- Ali, A.; Zhang, N.; Santos, R.M. Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Appl. Sci. 2023, 13, 12600. [Google Scholar] [CrossRef]
- Kamal, A.; Azfar, R.W.; Salah, B.; Saleem, W.; Abas, M.; Khan, R.; Pruncu, C.I. Quantitative Analysis of Sustainable Use of Construction Materials for Supply Chain Integration and Construction Industry Performance through Structural Equation Modeling (SEM). Sustainability 2021, 13, 522. [Google Scholar] [CrossRef]
- BS 812-110:1990; Testing Aggregates—Methods for Determination of Aggregate Crushing Value (ACV). British Standards Institution: London, UK, 1990.
- Rizvi, M.A.; Khan, A.H.; Rehman, Z.U.; Masoud, Z.; Inam, A. Effect of Fractured Aggregate Particles on Linear Stress Ratio of Aggregate and Resilience Properties of Asphalt Mixes—A Way Forward for Sustainable Pavements. Sustainability 2021, 13, 8630. [Google Scholar] [CrossRef]
- Rahmat, M.N.; Saleh, A.M. Strength and environmental evaluation of building bricks using industrial waste for liveable environments. Constr. Build. Mater. 2023, 403, 132864. [Google Scholar] [CrossRef]
- Sadati, S. High-Volume Recycled Materials for Sustainable Transportation Infrastructure. 2017. Available online: https://search.proquest.com/openview/c442ba0adfef99310bd4729329446434/1?pq-origsite=gscholar&cbl=18750 (accessed on 23 January 2024).
- Revilla-Cuesta, V.; Skaf, M.; Espinosa, A.B.; Ortega-López, V. Multi-criteria feasibility of real use of self-compacting concrete with sustainable aggregate, binder and powder. J. Clean. Prod. 2021, 325, 129327. [Google Scholar] [CrossRef]
- Denoncourt, J. Companies and UN 2030 Sustainable Development Goal 9 Industry, Innovation and Infrastructure. J. Corp. Law Stud. 2020, 20, 199–235. [Google Scholar] [CrossRef]
- Lotteau, M.; Loubet, P.; Pousse, M.; Dufrasnes, E.; Sonnemann, G. Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. Build. Environ. 2015, 93, 165–178. [Google Scholar] [CrossRef]
- Soares, N.; Bastos, J.; Dias Pereira, L.; Soares, A.; Amaral, A.R.; Asadi, E.; Lamas, F.; Rodrigues, E.; Monteiro, H.; Lopes, M.A.R.; et al. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860. [Google Scholar] [CrossRef]
- Org, C.; Gouldson, A.; Sudmant, A.; Khreis, H.; Papargyropoulou, E. The Economic and Social Benefits of Low-Carbon Cities: A Systematic Review of the Evidence. 7 June 2018. Available online: http://newclimateeconomy.net/content/cities-working-papers (accessed on 23 January 2024).
- Bengtsson, M.; Alfredsson, E.; Cohen, M.; Lorek, S.; Schroeder, P. Transforming systems of consumption and production for achieving the sustainable development goals: Moving beyond efficiency. Sustain. Sci. 2018, 13, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- De Brito, J.; Ferreira, J.; Pacheco, J.; Soares, D.; Guerreiro, M. Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete. J. Build. Eng. 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Bravo, M.; De Brito, J.; Pontes, J.; Evangelista, L. Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Tseng, M.L.; Chiu, A.S.F.; Tan, R.R.; Siriban-Manalang, A.B. Sustainable consumption and production for Asia: Sustainability through green design and practice. J. Clean. Prod. 2013, 40, 1–5. [Google Scholar] [CrossRef]
- Dantas, T.E.T.; de-Souza, E.D.; Destro, I.R.; Hammes, G.; Rodriguez, C.M.T.; Soares, S.R. How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. Sustain. Prod. Consum. 2021, 26, 213–227. [Google Scholar] [CrossRef]
Grade Designation | M20 |
---|---|
Target Strength | 20 N/mm2 |
Type of Cement | OPC 53 grade conforming to IS-12269-1987 [42] |
Maximum Nominal Aggregate Size (RCA) | 20 mm |
Minimum Cement Content (MORT&H 1700-3 A) | 250 kg/m3 |
Maximum Water–Cement Ratio (MORT&H 1700-3 A) | 0.5 |
Workability (MORT&H 1700-4) | 25 mm (Slump) |
Exposure Condition | Normal |
Degree of Supervision | Good |
Type of Aggregate | Crushed Angular Aggregate |
Maximum Cement Content (MORT&H Cl. 1703.2) | 540 kg/m3 |
Physical Property of RS | Value |
---|---|
Water Absorption (%) | 6.2 |
Bulk Density (kg/m3) | 1740 |
Specific Gravity | 2.8 |
Moisture Content (%) | 0.5 |
AIV (%) | Suitability for Use |
---|---|
Less than 10% | Exceptionally strong |
10–20% | Strong |
20–30% | Satisfactory for road surfacing |
More than 30% | Weak for road surfacing |
Compaction Factor | Degree of Workability | Typical Use |
---|---|---|
0.78–0.85 | Very Low | Roads (using vibratory rollers) |
0.85–0.92 | Low | Lightly reinforced sections |
0.92–0.95 | Medium | Heavily reinforced sections with vibration |
0.95–1.00 | High | Thin sections, slip formwork |
LAA Value (%) | Classification | Typical Use |
---|---|---|
Less than 30% | Excellent | High-quality concrete, pavements, airfield runways |
30–35% | Good | Ordinary concrete pavements with moderate traffic |
35–40% | Satisfactory | Low-strength concrete, pavements with light traffic |
Above 40% | Doubtful | Generally considered unsuitable for most applications |
I.S. Sieve Size (mm) | Retained Weight | % of Weight Retained | Cumulative % of Weight Retained | Cumulative % of Passing |
---|---|---|---|---|
10 | 0 | 0 | 0 | 100 |
4.75 | 0 | 0 | 0 | 100 |
2.36 | 225 | 22.5 | 22.5 | 77.5 |
1.18 | 218 | 21.8 | 44.3 | 55.7 |
0.6 | 206 | 20.6 | 64.9 | 35.1 |
0.3 | 165 | 16.5 | 81.4 | 18.6 |
0.15 | 152 | 15.2 | 96.6 | 3.4 |
0.075 | 16 | 1.6 | 98.2 | 1.8 |
Pan | 18 | 1.8 | 100 | 0 |
1000 | 100 | 3.097 |
Specimen No. | |||
---|---|---|---|
1 | 2.3 | 2.7 | 0.4 |
2 | 2.1 | 2.9 | 0.8 |
3 | 2.4 | 2.8 | 0.4 |
Average | 0.53 |
Trial No. | Percentage by Water of Dry Cement (%) | Amount of Water Added (mL) | Penetration (mm) |
---|---|---|---|
1 | 13.75 | 55 | 5 |
2 | 16.25 | 65 | 7 |
3 | 18.75 | 75 | 9 |
4 | 21.25 | 85 | 10 |
5 | 23.75 | 95 | 11 |
6 | 26.25 | 105 | 13 |
7 | 28.75 | 115 | 15 |
8 | 30 | 120 | 18 |
9 | 31.25 | 125 | 20 |
10 | 32.5 | 130 | 22 |
11 | 35 | 140 | 23 |
12 | 36.25 | 145 | 25 |
13 | 37.5 | 150 | 26 |
14 | 38.75 | 155 | 29 |
15 | 40 | 160 | 32 |
16 | 41.25 | 165 | 34 |
17 | 53.75 | 215 | 36 |
18 | 56.25 | 225 | 39 |
Parameter | Description | Measurement/ Value |
---|---|---|
Initial Setting Time | Time at which Vicat plunger penetrates to a depth of 33 mm. Indicates the onset of loss of plasticity. | 40 min |
Final Setting Time | Time at which Vicat needle leaves a surface impression without further penetration. Indicates complete hardening. | 630 min |
Sample Number | (in) | (in) | Flow (%) |
---|---|---|---|
1 | 4.00 | 5.20 | 30.0 |
2 | 4.00 | 5.00 | 25.0 |
3 | 4.00 | 5.10 | 27.5 |
Mix | Specimen | Weight (gm) | Density (gm/cc) | Transit Time (μs) | Pulse Speed | Concrete Quality Grading |
---|---|---|---|---|---|---|
Cement + RS + RCA (1:1.5:3) | A | 8690 | 2.575 | 30 | 5.00 | Excellent |
B | 8760 | 2.606 | 32.5 | 4.62 | ||
C | 8000 | 2.572 | 33 | 4.55 | ||
Average | 8722 | 2.584 | 31.83 | 4.72 |
Sample No. | Weight (kg) | Density (kg/m3) | Applied Load (kN) | Compressive Strength (N/mm2) | Avg. Compressive Strength (N/mm2) | Target Compressive Strength (N/mm2) |
---|---|---|---|---|---|---|
1 | 8.208 | 2432 | 600 | 26.67 | 26.22 | 25 |
2 | 8.192 | 2427 | 580 | 25.78 | ||
3 | 8.130 | 2409 | 590 | 26.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Singh, S.K.; Mahgoub, M.; Mir, S.A.; Kanga, S.; Kumar, S.; Kumar, P.; Meraj, G. Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits. CivilEng 2024, 5, 461-481. https://doi.org/10.3390/civileng5020023
Singh S, Singh SK, Mahgoub M, Mir SA, Kanga S, Kumar S, Kumar P, Meraj G. Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits. CivilEng. 2024; 5(2):461-481. https://doi.org/10.3390/civileng5020023
Chicago/Turabian StyleSingh, Saurabh, Suraj Kumar Singh, Mohamed Mahgoub, Shahnawaz Ahmed Mir, Shruti Kanga, Sujeet Kumar, Pankaj Kumar, and Gowhar Meraj. 2024. "Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits" CivilEng 5, no. 2: 461-481. https://doi.org/10.3390/civileng5020023
APA StyleSingh, S., Singh, S. K., Mahgoub, M., Mir, S. A., Kanga, S., Kumar, S., Kumar, P., & Meraj, G. (2024). Evaluating Recycled Concrete Aggregate and Sand for Sustainable Construction Performance and Environmental Benefits. CivilEng, 5(2), 461-481. https://doi.org/10.3390/civileng5020023