Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag
Abstract
:1. Introduction
2. Thermal Analysis
3. Experiments
3.1. Thermal Properties
3.1.1. Activation Energy
3.1.2. Adiabatic Temperature Rise
3.1.3. Cube Testing (1.2-m)
4. Finite Element Analysis
4.1. Verification of User Subroutines (DFLUX and USDFLD)
4.2. Temperature Analysis
5. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riding, K.A.; Poole, J.L.; Schindler, A.K.; Juenger, M.C.; Folliard, K.J. Evaluation of Temperature Prediction Methods for Mass Concrete Members. ACI Mater. J. 2006, 103, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.N.; Kim, J.-S.; Lee, Y.; Kim, J.-K. Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cem. Concr. Res. 2009, 39, 154–164. [Google Scholar] [CrossRef]
- Ballim, Y. A numerical model and associated calorimeter for predicting temperature profiles in mass concrete. Cem. Concr. Compos. 2004, 26, 695–703. [Google Scholar] [CrossRef]
- Bobko, C.P.; Seracino, R.; Zia, P.; Edwards, A. Crack Free Mass Concrete Footings on Bridges in Coastal Environments. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2013. [Google Scholar]
- De Borst, R.; Boogaard, A.H.V.D. Finite-Element Modeling of Deformation and Cracking in Early-Age Concrete. J. Eng. Mech. 1994, 120, 2519–2534. [Google Scholar] [CrossRef] [Green Version]
- Do, T.A. Influence of Footing Dimensions on Early-Age Temperature Development and Cracking in Concrete Footings. J. Bridg. Eng. 2015, 20, 06014007. [Google Scholar] [CrossRef]
- Do, T.; Chen, H.; Leon, G.; Nguyen, T. A combined finite difference and finite element model for temperature and stress predictions of cast-in-place cap beam on precast columns. Constr. Build. Mater. 2019, 217, 172–184. [Google Scholar] [CrossRef]
- Lawrence, A.M.; Tia, M.; Ferraro, C.C.; Bergin, M. Effect of Early Age Strength on Cracking in Mass Concrete Containing Different Supplementary Cementitious Materials: Experimental and Finite-Element Investigation. J. Mater. Civ. Eng. 2012, 24, 362–372. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, H.-L. Thermal analysis and adiabatic calorimetry for early-age concrete members. J. Therm. Anal. Calorim. 2015, 122, 937–945. [Google Scholar] [CrossRef]
- Saeed, M.K.; Rahman, M.K.; Baluch, M.H. Early age thermal cracking of mass concrete blocks with Portland cement and ground granulated blast-furnace slag. Mag. Concr. Res. 2016, 68, 1–17. [Google Scholar] [CrossRef]
- Sargam, Y.; Faytarouni, M.; Riding, K.; Wang, K.; Jahren, C.; Shen, J. Predicting thermal performance of a mass concrete foundation—A field monitoring case study. Case Stud. Constr. Mater. 2019, 11, e00289. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Cho, H.-K.; Lee, H.-S. Prediction of temperature distribution in concrete incorporating fly ash or slag using a hydration model. Compos. Part B Eng. 2011, 42, 27–40. [Google Scholar] [CrossRef]
- Wu, S.; Huang, D.; Lin, F.-B.; Zhao, H.; Wang, P. Estimation of cracking risk of concrete at early age based on thermal stress analysis. J. Therm. Anal. Calorim. 2011, 105, 171–186. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lee, H.S. Prediction of compressive strength of slag concrete using a blended cement hydration model. Comput. Concr. 2014, 14, 247–262. [Google Scholar] [CrossRef]
- Yikici, T.A.; Chen, H.L. Numerical Prediction Model for Temperature Development in Mass Concrete Structures. J. Transp. Res. Board 2015, 2508, 102–110. [Google Scholar] [CrossRef]
- Klemczak, B.; Batog, M.; Giergiczny, Z.; Żmij, A. Complex Effect of Concrete Composition on the Thermo-Mechanical Behaviour of Mass Concrete. Materials 2018, 11, 2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.; Ramanathan, S.; Suraneni, P.; Shon, C.-S.; Lee, C.-J.; Chung, C.-W. Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials. Materials 2018, 11, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Schutter, G. Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete. Cem. Concr. Compos. 2004, 26, 437–443. [Google Scholar] [CrossRef]
- Freiesleben, H.P.; Pedersen, E.J. Måleinstrument til kontrol af betons haerdning. J. Nord. Concr. 1977, 1, 21–25. [Google Scholar]
- Poole, J.L.; Riding, K.A.; Folliard, K.J.; Juenger, M.C.G.; Schindler, A.K. Methods for Calculating Activation Energy for Portland Cement. ACI Mater. J. 2007, 104, 303–311. [Google Scholar]
- Robbins, M.E. Predicting the Early Age Temperature Response of Concrete Using Isothermal Calorimetry. Master Thesis, University of Toronto, Toronto, ON, Canada, 2007. [Google Scholar]
- Heat of Hydration Models for Cementitious Materials. ACI Mater. J. 2005, 102, 24–33. [CrossRef]
- Bougara, A.; Lynsdale, C.; Milestone, N. Reactivity and performance of blast furnace slags of differing origin. Cem. Concr. Compos. 2010, 32, 319–324. [Google Scholar] [CrossRef]
- Gruyaert, E.; Robeyst, N.; De Belie, N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2010, 102, 941–951. [Google Scholar] [CrossRef]
- Woo, H.-M.; Kim, C.-Y.; Yeon, J.H. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacements. J. Therm. Anal. Calorim. 2018, 132, 599–609. [Google Scholar] [CrossRef]
- Mills, R.H. Factors Influencing Cessation of Hydration in Water Cured Cement Pastes, Highway Research Board Special Report. 1966. Available online: https://trid.trb.org/view/101449 (accessed on 2 August 2019).
- Maekawa, K.; Ishida, T.; Kishi, T. Multi-Scale Modeling of Structural Concrete; Routledge: London, UK, 2008. [Google Scholar]
- Van Breugel, K. Prediction of temperature development in hardening concrete. In Prevention of Thermal Cracking in Concrete at Early Ages; CRC Press: Boca Raton, FL, USA, 1998; Volume 51, pp. 51–75. [Google Scholar]
- Chen, H.-L.R.; Mardmomen, S.; Leon, G. On-site measurement of heat of hydration of delivered mass concrete. Constr. Build. Mater. 2021, 269, 121246. [Google Scholar] [CrossRef]
- Krishnaiah, S.; Singh, D. Determination of thermal properties of some supplementary cementing materials used in cement and concrete. Constr. Build. Mater. 2006, 20, 193–198. [Google Scholar] [CrossRef]
- Aloia, L.D. Early Age Kinetics: Activation Energy, Maturity and Equivalent Age. In Early Age Cracking in Cementitious System-Report of RILEM Technical Committe 181-EAS—Early Age Shrinkage Induced Stress and Cracking in Cementitious Systems; RILEM Publications SARL: Paris, France, 2003; pp. 127–148. Available online: https://www.rilem.net/publication/publication/89?id_papier=56 (accessed on 28 May 2020).
- Xu, Q.; Ruiz, J.M.; Hu, J.; Wang, K.; Rasmussen, R.O. Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests. Thermochim. Acta 2011, 512, 76–85. [Google Scholar] [CrossRef]
- Kim, J.K.; Han, S.H.; Lee, K.M. Estimation of compressive strength by a new apparent activation energy function. Cem. Concr. Res. 2001, 31, 217–225. [Google Scholar] [CrossRef]
- Kada-Benameur, H.; Wirquin, E.; Duthoit, B. Determination of apparent activation energy of concrete by isothermal calorimetry. Cem. Concr. Res. 2000, 30, 301–305. [Google Scholar] [CrossRef]
- Riding, K.A.; Poole, J.L.; Folliard, K.J.; Juenger, M.C.; Schindler, A.K. New Model for Estimating Apparent Activation Energy of Cementitious Systems. ACI Mater. J. 2011, 108, 550–557. [Google Scholar] [CrossRef]
- Brooks, A.G.; Schindler, A.K.; Barnes, R.W. Maturity Method Evaluated for Various Cementitious Materials. J. Mater. Civ. Eng. 2007, 19, 1017–1025. [Google Scholar] [CrossRef]
- Riding, K.A.; Poole, J.L.; Schindler, A.K.; Juenger, M.C.G.; Folliard, K.J. Statistical Determination of Cracking Probability for Mass Concrete. J. Mater. Civ. Eng. 2014, 26, 04014058. [Google Scholar] [CrossRef]
- US Army Corps of Engineers. Method of Test for Thermal Diffusivity of Concrete. 1973. Available online: https://www.wbdg.org/ffc/army-coe/standards/crd-c36 (accessed on 2 August 2019).
- Ge, Z. Predicting Temperature and Strength Development of the Field Concrete. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2005. [Google Scholar]
- Schindler, A.K. Concrete Hydration, Temperature Development and Setting at Early-Ages. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2002. [Google Scholar]
- Henninger, J.H. Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal Control Coatings; NASA: Greenbelt, MD, USA, 1984.
Material | Quantity (kg/m3) |
---|---|
Cement | 150.7 |
GGBFS | 150.7 |
Water | 126.6 |
#57 Limestone Aggregate | 1064.9 |
Fine Aggregate | 809.2 |
Air entrainer (oz/cwt) | 0.65 |
Type B/D Water reducer/retarder (oz/cwt) | 3.0 |
w/cem | 0.42 |
Batch | Air Content, % | Slump, cm | Initial Temperature, °C |
---|---|---|---|
In-Lab | 6.0 | 13.3 | 21.66 |
Batch 1 | 5.5 | 12.7 | 26.0 |
Batch 2 | 6.5 | 20.3 | 29.0 |
Batch 3 | 6.8 | 15.2 | 22.0 |
Chemical Component | Portland Cement | Grade 100 GGBFS |
---|---|---|
CaO | 63.86% | 47.48% |
SiO2 | 20.34% | 28.89% |
Al2O3 | 4.78% | 8.27% |
Fe2O3 | 3.19% | 1.93% |
SO3 | 3.01% | 0.73% |
MgO | 2.41% | 8.34% |
Na2O | 0.06% | - |
K2O | 0.65% | 0.66% |
Blaine fineness | 372 | 325 |
Hydration Parameters | Two-Term | One-Term |
---|---|---|
0.56685 | 0.8552 | |
14.1090 | 28.62 | |
0.78485 | 0.609 | |
0.28839 | - | |
166.985 | - | |
0.97925 | - | |
0.8552 | 0.8552 |
Thermal Properties | ||||||
---|---|---|---|---|---|---|
Value | 301.4 | 473,050 | 39,778 | 1.65 | 0.8552 | 0.42 |
Batch | Maximum Temperature (°C) | Maximum Temperature Difference (°C) | ||||
---|---|---|---|---|---|---|
Experiment | FEM Model | % Error | Experiment | FEM Model | % Error | |
1 | 50 at 20 h | 50.2 at 21.75 h | 0.4% | 18 at 21 h | 17.1 at 23.5 h | 0.56% |
2 | 53 at 20 h | 53.6 at 18.25 h | 1.13% | 20 at 20 h | 19.86 at 18 h | 0.7% |
3 | 44 at 20 h | 44.4 at 19.75 h | 0.91% | 16 at 19 h | 18.41 at 20 h | 15.1% |
Thermal Property | Maximum Temperature (°C) | Time of Maximum Temperature (hr) | Maximum Temperature Difference (°C) | Time of Maximum Temperature Difference (hr) |
---|---|---|---|---|
Thermal conductivity (±10%) | 44.4 ± 0.85 | 19.75 ± 1.0 | 18.41 ± 0.70 | 20.0 ± 0.25 |
Activation energy (±10%) | 44.4 ± 0.85 | 19.75 ± 0.0 | 18.41 ± 0.65 | 20.0 ± 0.00 |
ATR (±10%) | 44.4 ± 2.95 | 19.75 ± 0.25 | 18.41 ± 1.69 | 20.0 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, G.; Chen, H.-L. Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag. CivilEng 2021, 2, 254-270. https://doi.org/10.3390/civileng2010014
Leon G, Chen H-L. Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag. CivilEng. 2021; 2(1):254-270. https://doi.org/10.3390/civileng2010014
Chicago/Turabian StyleLeon, Guadalupe, and Hung-Liang (Roger) Chen. 2021. "Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag" CivilEng 2, no. 1: 254-270. https://doi.org/10.3390/civileng2010014
APA StyleLeon, G., & Chen, H. -L. (2021). Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag. CivilEng, 2(1), 254-270. https://doi.org/10.3390/civileng2010014