The Influence of Moringa oleifera Biomass and Extraction Methods on Biogenic Synthesis of Iron Nanoparticles for Inhibition of Microbial Pollutants
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Moringa Oleifera Extract
2.3. Biogenic Synthesis
2.4. Extract Characterization
2.4.1. Determination of Flavonoid Concentration
2.4.2. Determination of Polyphenol Concentration
2.4.3. Determination of Protein Concentration
2.4.4. Determination of Total Carbohydrate Concentration
2.5. Characterization of Nanomaterials
2.6. Antimicrobial Activity Test
2.7. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Extract
3.2. Characterization of Iron Nanoparticles
3.3. Antibacterial Performance Against E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MO | Moringa oleifera |
| NPs | Nanoparticles |
| FeNPs-IH | Iron nanoparticles synthesized from infusion method using leaves |
| FeNPs-SH | Iron nanoparticles synthesized from salting out using leaves |
| FeNPs-SIH | Iron nanoparticles synthesized from infusion method & salting out using leaves |
| FeNPS-IS | Iron nanoparticles synthesized from infusion method using seeds |
| FeNPs-SS | Iron nanoparticles synthesized from salting out using seeds |
| FeNPs-SIS | Iron nanoparticles synthesized from infusion method & salting out using seeds |
References
- Cunha, F.A.; da C.S.O. Cunha, M.; da Frota, S.M.; Mallmann, E.J.J.; Freire, T.M.; Costa, L.S.; Paula, A.J.; Menezes, E.A.; Fechine, P.B.A. Biogenic Synthesis of Multifunctional Silver Nanoparticles from Rhodotorula Glutinis and Rhodotorula Mucilaginosa: Antifungal, Catalytic and Cytotoxicity Activities. World J. Microbiol. Biotechnol. 2018, 34, 127. [Google Scholar] [CrossRef]
- Al-Issai, L.; Elshorbagy, W.; Maraqa, M.A.; Hamouda, M.; Soliman, A.M. Use of Nanoparticles for the Disinfection of Desalinatedwater. Water 2019, 11, 559. [Google Scholar] [CrossRef]
- Madubuonu, N.; Aisida, S.O.; Ali, A.; Ahmad, I.; Zhao, T.k.; Botha, S.; Maaza, M.; Ezema, F.I. Biosynthesis of Iron Oxide Nanoparticles via a Composite of Psidium Guavaja-Moringa Oleifera and Their Antibacterial and Photocatalytic Study. J. Photochem. Photobiol. B 2019, 199, 111601. [Google Scholar] [CrossRef]
- Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Khan Shinwari, Z.; Maaza, M. Biosynthesis of Iron Oxide (Fe2O3) Nanoparticles via Aqueous Extracts of Sageretia thea (Osbeck.) and Their Pharmacognostic Properties. Green Chem. Lett. Rev. 2017, 10, 186–201. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B.; Serov, D.E.; Rebezov, D.A.; Semenova, M.B.; Lisitsyn, A.A.; et al. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 59–81. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, I.M.; Bandala, E.R. Photocatalytic Degradation of Estriol Using Iron-Doped TiO2 under High and Low UV Irradiation. Catalysts 2018, 8, 625. [Google Scholar] [CrossRef]
- Khan, Y.; Ahmad, A.; Ahmad, N.; Mir, F.R.; Schories, G. Biogenic Synthesis of a Green Tea Stabilized PPy/SWCNT/CdS Nanocomposite and Its Substantial Applications, Photocatalytic Degradation and Rheological Behavior. Nanoscale Adv. 2020, 2, 1634–1645. [Google Scholar] [CrossRef]
- Adeeyo, A.O.; Odiyo, J.O. Biogenic Synthesis of Silver Nanoparticle from Mushroom Exopolysaccharides and Its Potentials in Water Purification. Open Chem. J. 2018, 5, 64–75. [Google Scholar] [CrossRef]
- Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Ben Khedher, N.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Irum, S.; Jabeen, N.; Ahmad, K.S.; Shafique, S.; Khan, T.F.; Gul, H.; Anwaar, S.; Shah, N.I.; Mehmood, A.; Hussain, S.Z. Biogenic Iron Oxide Nanoparticles Enhance Callogenesis and Regeneration Pattern of Recalcitrant Cicer arietinum L. PLoS ONE 2020, 15, e0242829. [Google Scholar] [CrossRef]
- Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green Synthesis of Iron Oxide Nanoparticles Using Platanus Orientalis Leaf Extract for Antifungal Activity. Green Process. Synth. 2019, 8, 38–45. [Google Scholar] [CrossRef]
- Attallah, N.G.M.; Elekhnawy, E.; Negm, W.A.; Hussein, I.A.; Mokhtar, F.A.; Al-Fakhrany, O.M. In Vivo and In Vitro Antimicrobial Activity of Biogenic Silver Nanoparticles against Staphylococcus Aureus Clinical Isolates. Pharmaceuticals 2022, 15, 194. [Google Scholar] [CrossRef]
- Ortiz-Tirado, A.; Medina-Ganem, L.F.; Bandala, E.R.; Conejo-Davila, A.S.; Vega-Rios, A.; Goonetilleke, A.; Rodriguez-Narvaez, O.M. Biogenic Nanoparticles: Synthesis, Characterization, Applications and Scaling up Limitations in Water Treatment. J. Environ. Chem. Eng. 2025, 13, 117730. [Google Scholar] [CrossRef]
- Kiwumulo, H.F.; Muwonge, H.; Ibingira, C.; Lubwama, M.; Kirabira, J.B.; Ssekitoleko, R.T. Green Synthesis and Characterization of Iron-Oxide Nanoparticles Using Moringa Oleifera: A Potential Protocol for Use in Low and Middle Income Countries. BMC Res. Notes 2022, 15, 149. [Google Scholar] [CrossRef]
- Singh, K.; Nancy; Singh, G.; Singh, J. Sustainable Synthesis of Biogenic ZnO NPs for Mitigation of Emerging Pollutants and Pathogens. Environ. Res. 2023, 219, 114952. [Google Scholar] [CrossRef]
- Baruah, D.; Goswami, M.; Yadav, R.N.S.; Yadav, A.; Das, A.M. Biogenic Synthesis of Gold Nanoparticles and Their Application in Photocatalytic Degradation of Toxic Dyes. J. Photochem. Photobiol. B 2018, 186, 51–58. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Kala, S.M.J.; Pushparaj, T.L. Biogenic Synthesis of Gold Nanoparticles Using Jasminum Auriculatum Leaf Extract and Their Catalytic, Antimicrobial and Anticancer Activities. J. Drug. Deliv. Sci. Technol. 2020, 57, 101620. [Google Scholar] [CrossRef]
- Katata-Seru, L.; Moremedi, T.; Aremu, O.S.; Bahadur, I. Green Synthesis of Iron Nanoparticles Using Moringa Oleifera Extracts and Their Applications: Removal of Nitrate from Water and Antibacterial Activity against Escherichia coli. J. Mol. Liq. 2018, 256, 296–304. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Pungle, R.; Nile, S.H.; Makwana, N.; Singh, R.; Singh, R.P.; Kharat, A.S. Green Synthesis of Silver Nanoparticles Using the Tridax Procumbens Plant Extract and Screening of Its Antimicrobial and Anticancer Activities. Oxidative Med. Cell. Longev. 2022, 2022, 9671594. [Google Scholar] [CrossRef]
- Al-Karagoly, H.; Rhyaf, A.; Naji, H.; Albukhaty, S.; Almalki, F.A.; Alyamani, A.A.; Albaqami, J.; Aloufi, S. Green Synthesis, Characterization, Cytotoxicity, and Antimicrobial Activity of Iron Oxide Nanoparticles Using Nigella Sativa Seed Extract. Green Process. Synth. 2022, 11, 254–265. [Google Scholar] [CrossRef]
- Zhang, L.; Ravipati, A.S.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Smith, P.T.; Bartlett, J.; Shanmugam, K.; Münch, G.; Wu, M.J. Antioxidant and Anti-Inflammatory Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid Compounds. J. Agric. Food Chem. 2011, 59, 12361–12367. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin–Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 107–115. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. In The Protein Protocols Handbook; Humana Press: Totowa, NJ, USA, 2002; pp. 15–21. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method For Protein Quantitation. In The Protein Protocols Handbook; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. [Google Scholar] [CrossRef]
- Leyva, A.; Quintana, A.; Sánchez, M.; Rodríguez, E.N.; Cremata, J.; Sánchez, J.C. Rapid and Sensitive Anthrone–Sulfuric Acid Assay in Microplate Format to Quantify Carbohydrate in Biopharmaceutical Products: Method Development and Validation. Biologicals 2008, 36, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What Is Principal Component Analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Ayoko, G.A.; Singh, K.; Balerea, S.; Kokot, S. Exploratory Multivariate Modeling and Prediction of the Physico-Chemical Properties of Surface Water and Groundwater. J. Hydrol. 2007, 336, 115–124. [Google Scholar] [CrossRef]
- Ayoko, G.A.; Morawska, L.; Kokot, S.; Gilbert, D. Application of Multicriteria Decision Making Methods to Air Quality in the Microenvironments of Residential Houses in Brisbane, Australia. Environ. Sci. Technol. 2004, 38, 2609–2616. [Google Scholar] [CrossRef]
- Bukhari, A.; Ijaz, I.; Gilani, E.; Nazir, A.; Zain, H.; Saeed, R.; Alarfaji, S.S.; Hussain, S.; Aftab, R.; Naseer, Y. Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. Coatings 2021, 11, 1374. [Google Scholar] [CrossRef]
- Patil, S.; Chandrasekaran, R. Biogenic Nanoparticles: A Comprehensive Perspective in Synthesis, Characterization, Application and Its Challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Adil, S.F.; Assal, M.E.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Liz-Marzán, L.M. Biogenic Synthesis of Metallic Nanoparticles and Prospects toward Green Chemistry. Dalton Trans. 2015, 44, 9709–9717. [Google Scholar] [CrossRef]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Cheng, S.; He, F.; Fu, L.; Zhang, Y. Polysaccharide from Rubescens: Extraction, Optimization, Characterization and Antioxidant Activities. RSC Adv. 2021, 11, 18974–18983. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, J.; Li, X.; Yang, J.; Wang, H. Optimization of the Process of Extracting Polysaccharides from Agrocybe Aegerita and In Vitro Antioxidant and Anti-Aging Tests. Molecules 2024, 29, 4992. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A.; Gieteling, J.; De Jong, G.A.H.; Boom, R.M.; Van Der Goot, A.J. Recovery of Protein from Green Leaves: Overview of Crucial Steps for Utilisation. Food Chem. 2016, 203, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Furia, K.A.; Majzoobi, M.; Torley, P.J.; Farahnaky, A. Innovative Approaches in Leaf Protein Extraction: Advancements, Challenges, and Applications in Sustainable Food Formulation and Design. Crit. Rev. Food Sci. Nutr. 2025, 1–33. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of Thermal Processing on Free and Bound Phenolic Compounds and Antioxidant Activities of Hawthorn. Food Chem. 2020, 332, 127429. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Jia, M.Z.; Fu, X.Q.; Deng, L.; Li, Z.L.; Dang, Y.Y. Phenolic Extraction from Grape (Vitis Vinifera) Seed via Enzyme and Microwave Co-Assisted Salting-out Extraction. Food Biosci. 2021, 40, 100919. [Google Scholar] [CrossRef]
- Lakshmnarayanan, S.; Shereen, M.F.; Niraimathi, K.L.; Brindha, P.; Arumugam, A. One-Pot Green Synthesis of Iron Oxide Nanoparticles from Bauhinia Tomentosa: Characterization and Application towards Synthesis of 1, 3 Diolein. Sci. Rep. 2021, 11, 8643. [Google Scholar] [CrossRef]
- Carvalho, S.S.F.; Carvalho, N.M.F. Dye Degradation by Green Heterogeneous Fenton Catalysts Prepared in Presence of Camellia Sinensis. J. Environ. Manag. 2017, 187, 82–88. [Google Scholar] [CrossRef]
- Jegadeesan, G.B.; Srimathi, K.; Santosh Srinivas, N.; Manishkanna, S.; Vignesh, D. Green Synthesis of Iron Oxide Nanoparticles Using Terminalia Bellirica and Moringa Oleifera Fruit and Leaf Extracts: Antioxidant, Antibacterial and Thermoacoustic Properties. Biocatal. Agric. Biotechnol. 2019, 21, 101354. [Google Scholar] [CrossRef]
- Biswas, A.; Vanlalveni, C.; Lalfakzuala, R.; Nath, S.; Rokhum, S.L. Mikania mikrantha Leaf Extract Mediated Biogenic Synthesis of Magnetic Iron Oxide Nanoparticles: Characterization and Its Antimicrobial Activity Study. Mater. Today Proc. 2020, 42, 1366–1373. [Google Scholar] [CrossRef]
- Kirdat, P.N.; Dandge, P.B.; Hagwane, R.M.; Nikam, A.S.; Mahadik, S.P.; Jirange, S.T. Synthesis and Characterization of Ginger (Z. Officinale) Extract Mediated Iron Oxide Nanoparticles and Its Antibacterial Activity. Mater. Today Proc. 2021, 43, 2826–2831. [Google Scholar] [CrossRef]
- Minakshi, M.; Samayamanthry, A.; Whale, J.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Kumar Shrestha, L. Phosphorous—Containing Activated Carbon Derived From Natural Honeydew Peel Powers Aqueous Supercapacitors. Chem. Asian J. 2024, 19, e202400622. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green Synthesis of Iron Oxide Nanoparticle Using Carica Papaya Leaf Extract: Application for Photocatalytic Degradation of Remazol Yellow RR Dye and Antibacterial Activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M. Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; St, R.; Smart, C. Applied Surface Science Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Sharmila, M.; Mani, R.J.; Parvathiraja, C.; Kader, S.M.A.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.C. Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. Water 2022, 14, 2301. [Google Scholar] [CrossRef]
- Sundar, S.; Ganesh, V. Bio-Assisted Preparation of Efficiently Architectured Nanostructures of γ-Fe2O3 as a Molecular Recognition Platform for Simultaneous Detection of Biomarkers. Sci. Rep. 2020, 10, 15071. [Google Scholar] [CrossRef]
- Jubb, A.M.; Allen, H.C. Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition. ACS Appl. Mater. Interfaces 2010, 2, 2804–2812. [Google Scholar] [CrossRef]
- Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic Synthesis of Iron Oxide Nanorods Using Moringa Oleifera Leaf Extract for Antibacterial Applications. Appl. Nanosci. 2020, 10, 305–315. [Google Scholar] [CrossRef]
- van den Berg, J.; Kuipers, S. The Antibacterial Action of Moringa Oleifera: A Systematic Review. S. Afr. J. Bot. 2022, 151, 224–233. [Google Scholar] [CrossRef]








| Average Concentration, mg L−1 | ||||
|---|---|---|---|---|
| Sample | Flavonoids | Proteins | Carbohydrates | Polyphenols |
| IH | 64.136 | 0.187 | 49.498 | 115.849 |
| SH | 185.663 | 0.142 | 91.215 | 57.123 |
| SIH | 92.073 | 0.141 | 121.336 | 75.350 |
| IS | 8.173 | 0.261 | 296.650 | 25.088 |
| SS | 1.614 | 0.192 | 79.033 | 34.418 |
| SIS | 1.800 | 0.150 | 34.416 | 9.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Medina-Ganem, L.F.; Valencia-Espinoza, N.; Ayoko, G.A.; Bandala, E.; Conejo-Davila, A.S.; Vega-Rios, A.; Goonetilleke, A.; Rodriguez-Narvaez, O.M. The Influence of Moringa oleifera Biomass and Extraction Methods on Biogenic Synthesis of Iron Nanoparticles for Inhibition of Microbial Pollutants. Sustain. Chem. 2026, 7, 4. https://doi.org/10.3390/suschem7010004
Medina-Ganem LF, Valencia-Espinoza N, Ayoko GA, Bandala E, Conejo-Davila AS, Vega-Rios A, Goonetilleke A, Rodriguez-Narvaez OM. The Influence of Moringa oleifera Biomass and Extraction Methods on Biogenic Synthesis of Iron Nanoparticles for Inhibition of Microbial Pollutants. Sustainable Chemistry. 2026; 7(1):4. https://doi.org/10.3390/suschem7010004
Chicago/Turabian StyleMedina-Ganem, Luisa F., Neali Valencia-Espinoza, Godwin A. Ayoko, Erick Bandala, Alain Salvador Conejo-Davila, Alejandro Vega-Rios, Ashantha Goonetilleke, and Oscar M. Rodriguez-Narvaez. 2026. "The Influence of Moringa oleifera Biomass and Extraction Methods on Biogenic Synthesis of Iron Nanoparticles for Inhibition of Microbial Pollutants" Sustainable Chemistry 7, no. 1: 4. https://doi.org/10.3390/suschem7010004
APA StyleMedina-Ganem, L. F., Valencia-Espinoza, N., Ayoko, G. A., Bandala, E., Conejo-Davila, A. S., Vega-Rios, A., Goonetilleke, A., & Rodriguez-Narvaez, O. M. (2026). The Influence of Moringa oleifera Biomass and Extraction Methods on Biogenic Synthesis of Iron Nanoparticles for Inhibition of Microbial Pollutants. Sustainable Chemistry, 7(1), 4. https://doi.org/10.3390/suschem7010004

