Lignocellulosic-Based Sorbents: A Review
Abstract
:1. Introduction
2. Adsorption Process
3. Preparation of Sorbents from Lignocellulosic Biomass
3.1. Activation Process
3.2. Some Characteristics of Biosorbents
3.3. Activated Carbon
3.4. Biochar
3.5. Charcoal
3.6. Miscellaneous Lignocellulosic-Based Sorbents
4. Shortcomings about Biosorbent Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefinery 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Aliofkhazraei, M.; Caiado, M.; Farinha, J.; Castanheiro, J.E. Mesoporous Acid Catalysts for Renewable Raw-Material Conversion into Chemicals and Fuel; Comprehensive Guide for Mesoporous Materials. Volume 3: Properties and Development; Nova Science Pub. Inc.: New York, NY, USA, 2015; pp. 67–84. [Google Scholar]
- Del Campo, B.G. Production of Activated Carbon from Fast Pyrolysis Biochar and the Detoxification of Pyrolytic Sugars for Ethanol Fermentation. Ph.D. Thesis, Dept. Mechanical Engineering, Iowa State University, Ames, IA, USA, 2015. [Google Scholar]
- Demirbas, A.; Ozturk, T.; Demirbas, M.F. Recovery of Energy and Chemicals from Carbonaceous Materials. Energy Sources Part A Recover Util. Environ. Eff. 2006, 28, 1473–1482. [Google Scholar] [CrossRef]
- Nisticò, R.; Lavagna, L.; Versaci, D.; Ivanchenko, P.; Benzi, P. Chitosan and its char as fillers in cement-base composites: A case study. Bol. Soc. Esp. Cerámica Vidr. 2019, 59, 186–192. [Google Scholar] [CrossRef]
- Malhotra, P.; Jaina, A.; Kathal, R. Review on biobased mesoporous material and their application in waste water treatment. Curr. Trends Biomed. Eng. Biosci. 2017, 4, 23–25. [Google Scholar] [CrossRef]
- Stojanovic, M.; Lopičić, Z.; Milojković, J.; Lačnjevac, Č.; Mihajlović, M.; Petrović, M.; Kostic, A. Biomass waste material as potential adsorbent for sequestering pollutants. Zaštita Mater. 2012, 53, 231–237. [Google Scholar]
- Barakat, M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.J.; Chai, L.Y.; Min, X.B.; Tang, C.J.; Zhang, H.J.; Ke, Y. Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization. J. Hazard. Mater. 2012, 217, 307–314. [Google Scholar] [CrossRef]
- Atkinson, B.; Bux, F.; Kasan, H. Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 1998, 24, 129–135. [Google Scholar]
- Umar, S.I.; Kutty, S.R.M.; Isa, M.H.; Aminu, N.; Henry, E.; Rahim, A.F.B.A. Biomass as Low-Cost Adsorbents for Removal of Heavy Metals from Aqueous Solution: A Review of Some Selected Biomass; Hassan, R., Yusoff, M., Alisibramulisi, A., Mohd Amin, N., Ismail, Z., Eds.; Springer Science+Business Media: Singapore, 2015; pp. 973–987. [Google Scholar]
- Corapcioglu, M.; Huang, C. The adsorption of heavy metals onto hydrous activated carbon. Water Res. 1987, 21, 1031–1044. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Zouboulis, A.; Lazaridis, K.; Karapantsios, T.; Matis, K. Heavy metals removal from industrial wastewaters by biosorption. Int. J. Enviorn. Eng. Sci. 2010, 1, 57–78. [Google Scholar]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yu, S.-H.; Wang, K.; Liu, L.; Xu, X.-W. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Trans. 2008, 5414–5423. [Google Scholar] [CrossRef]
- Budarin, V.; Clark, J.H.; Luque, R.; White, R. Starbons®: Cooking up Nanostructured Mesoporous Materials. Mater. Matters 2009, 4, 19–22. [Google Scholar]
- Varma, R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. Sustain. Chem. Eng. 2019, 7, 6458–6470. [Google Scholar] [CrossRef]
- Lugue, R.; Budarin, V.; Shuttleworth, P.S.; Clark, J.H. Anew Star(ch) is Born: Starbons® as a Biomass-Derived Mesoporous Carbonaceous Materials. Available online: https://www.researchgate.net/publication/257945997_A_new_starch_is_born_Starbons_R_as_biomass-derived_mesoporous_carbonaceous_materials (accessed on 1 April 2021).
- Reza, M.S.; Yun, C.S.; Afroze, S.; Radenahmad, N.; Bakar, M.S.A.; Saidur, R.; Tweekun, J.; Azad, A. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab. J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- Chikri, R.; Elhadiri, N.; Benchanaa, M.; Maguana, Y.E. Efficiency of sawdust as low-cost adsorbent for dyes removal. J. Chem. 2020. [Google Scholar] [CrossRef]
- Mathew, B.B.; Jaishankar, M.; Biju, V.G.; Beeregowda, N.K. Role of bioadsorbents in reducing toxic metals. J. Toxicol. 2016, 2016, 4369604. [Google Scholar] [CrossRef] [Green Version]
- Fraissard, J.P. Physical Adsorption: Experiment, Theory, and Applications; Springer Science & Business Media: Berlin, Germany, 1997; Volume 491. [Google Scholar]
- Trapnell, B.M.W.; Hayward, D.O. Chemisorption; Butterworths: Oxford, UK, 1964. [Google Scholar]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Stephen, J. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Oxford, UK, 2015. [Google Scholar]
- Knicker, H. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 2011, 243, 251–263. [Google Scholar] [CrossRef]
- Reisser, M.; Purves, R.S.; Schmidt, M.W.I.; Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Levin, B.D.A.; Guzman, J.J.L.; Enders, A.; Muller, D.A.; Angenent, L.T.; Lehman, J. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 2017, 8, 14873. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesman, B.; Avarez, A.; Bae, S. Hydrothermal carbonization, Modeling, final properties design and applications, A review. Energies 2018, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Ani, J.U.; Akpomie, K.G.; Okoro, U.C.; Aneke, L.E.; Onukwuli, O.D.; Ujam, O.T. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl. Water Sci. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Weber, B.; Stadlbauer, E.A.; Eichenauer, S.; Koch, C.; Albert, K.; Kramer, M.; Steffens, D. Chemical Nature of Carbonaceous Materials from Biomass by Hydrothermal Carbonization and Low Temperature Conversion. J. Biobased Mater. Bioenergy 2013, 7, 367–375. [Google Scholar] [CrossRef]
- Odetoye, T.E.; Abu, B.M.S.; Titiloye, J.O. Pyrolysis and characterization of Jatropha curcas shell and seed coat. Niger. J. Technol. Dev. 2019, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Radenahmad, N.; Tasfiah, A.; Saghir, M.; Taweekun, J.; Saifullah, M.; Bakar, A.; Kalam, A. A review on biomass derived syngas for SOFC based combined heat and power application. Renew. Sustain. Energy Rev. 2020, 119, 109560. [Google Scholar] [CrossRef]
- Ukanwa, P.; Sakrabani, A.; Mandavgane, S. A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability 2019, 11, 6204. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, Z.Z.; Hamid, S.B.; Das, R.; Hasan, M.R.; Zain, S.M.; Khalid, K.; Uddin, M.N. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013, 8, 6523–6555. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, X.; Liu, Y.; Liu, S.; Li, M.; Gu, Y.; Zhang, P.; Ye, S.; Yang, Z.; Yang, Y. Biomass-Derived Porous Graphitic Carbon Materials for Energy and Environmental Applications. J. Mater. Chem. A 2020. [Google Scholar] [CrossRef]
- Smisek, M.; Cerny, S. Activated carbon. In Topics in Organic and General Chemistry; Elsevier Co.: New York, NY, USA, 1970. [Google Scholar]
- Stavropoulos, G.G.; Zabaniotou, A.A. Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater. 2005, 82, 79–85. [Google Scholar] [CrossRef]
- Lewis, W.K.; Metzner, A.B. Engineering, design and process development section, Activation of carbons. Ind Eng. Chem. 1954, 46, 849–858. [Google Scholar] [CrossRef]
- Dewar, J. The absorption and thermal evolution of gases occluded in charcoal at low temperatures. Proc. R. Soc. Lond. 1904, 74, 122–127. [Google Scholar] [CrossRef]
- Sheldon, H.H. Charcoal activation. Phys. Rev. 1920, 16, 165–172. [Google Scholar] [CrossRef]
- Weiser, H.B.; Sherrick, J. Adsorption by precipitates. J. Phys. Chem. 1919, 23, 205–252. [Google Scholar] [CrossRef] [Green Version]
- Chaney, N.K. Adsorptive Carbon and Process of Making the Same. U.S. Patent 1497543, 10 June 1924. [Google Scholar]
- Metalbank-Co. Zinc Chloride for Activating Charcoal. British Patent 238,889, 1924.
- Bayer-&-Co. Manufacture of Active Charcoal by Briquetting Charcoal Fines and Chemicals under Pressure. British Patents 195,390, 1923.
- Sutcliffe, E.R. Absorbent and decolorising carbons. J. Soc. Chem. Ind. 1924, 43, 635–637. [Google Scholar] [CrossRef]
- Chaney, N. The activation of carbon. Trans. Am. Electron. Chem Soc. 1919, 3, 91. [Google Scholar]
- Helbig, W.A. Activated carbon. J. Chem. Educ. 1946, 23, 98. [Google Scholar] [CrossRef]
- Lowry, H.H. On the nature of active carbon. J. Phys. Chem. 1929, 34, 63–73. [Google Scholar] [CrossRef]
- Ruff, O.; Schmidt, G. Amorpher Kohlenstoff und Graphit. Z. Anorg. Allg. Chem. 1925, 148, 313–331. [Google Scholar] [CrossRef]
- Wright, W. Oxidations on charcoal. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1926; pp. 187–190. [Google Scholar]
- Alslaibi, T.M.; Abustan, I.; Ahmad, M.A.; Abu, F.A. Preparation of Activated Carbon From Olive Stone Waste: Optimization Study on the Removal of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ from Aqueous Solution Using Response Surface Methodology. J. Dispers Sci. Technol. 2014, 35, 913–925. [Google Scholar] [CrossRef]
- Alslaibi, T.M.; Abustan, I.; Ahmad, M.A.; Foul, A.A. Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater. Environ. Prog. Sustain. Energy 2014, 33, 1074–1085. [Google Scholar] [CrossRef]
- Galiatsatou, P.; Metaxas, M.; Kasselouri-Rigopoulou, V. Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J. Hazard. Mater. 2002, 91, 187–203. [Google Scholar] [CrossRef]
- Baçaoui, A.; Yaacoubi, A.; Dahbi, A.; Bennouna, C.; Phan, T.L.R.; Maldonado-Hodar, F.J.; Revera Ultrilla, J.; Moreno-Castila, C. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon N. Y. 2001, 39, 425–432. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C. Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product, Isotherm study in single and binary systems. J. Environ. Manag. 2015, 164, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, Z.; Simitzis, J. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products, Equilibrium and kinetic studies. Water Sci. Technol. 2013, 67, 1688–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temdrara, L.; Addoun, A.; Khelifi, A. Development of olivestones-activated carbons by physical, chemical and physicochemical methods for phenol removal: A comparative study. Desalin. Water Treat. 2015, 53, 452–461. [Google Scholar] [CrossRef]
- Rodríguez-Valero, M.A.; Martínez-Escandell, M.; Molina-Sabio, M.; Rodríguez-Reinoso, F. CO2 activation of olive stones carbonized under pressure. Carbon 2001, 39, 320–323. [Google Scholar] [CrossRef]
- El-Sheikh, A.H.; Alzawahreh, A.M.; Sweileh, J.A. Preparation of an efficient sorbent by washing then pyrolysis of olive wood for simultaneous solid phase extraction of chloro-phenols and nitro-phenols from water. Talanta 2011, 85, 1034–1042. [Google Scholar] [CrossRef]
- Abu-El-Sha’r, W.Y.; Gharaibeh, S.H.; Mahmoud, S. Removal of dyes from aqueous solutions using low-cost sorbents made of solid residues from olive-mill wastes (JEFT) and solid residues from refined Jordanian oil shale. Environ. Geol. 2000, 39, 1090–1094. [Google Scholar] [CrossRef]
- Ubago-Pérez, R.; Carrasco-Marín, F.; Fairén-Jiménez, D.; Moreno-Castilla, C. Granular and monolithic activated carbons from KOH-activation of olive stones. Microporous Mesoporous Mater. 2006, 92, 64–70. [Google Scholar] [CrossRef]
- Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Teodosiev, D.K.; Sarbu, A.; Sandu, T.; Ferhat, Y.M.; Sirkecioglu, A. Removal of detergents from water by adsorption on activated carbons obtained from various precursors. Desalin. Water Treat. 2014, 52, 3445–3452. [Google Scholar] [CrossRef]
- Menya, E.; Olupot, P.W.W.; Storz, H.; Lubwama, M.; Kiros, Y. Production and performance of activated carbon from rice husks for removal of natural organic matter from water, A review. Chem. Eng. Res. Des. 2018, 129, 271–286. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, Y.-M.; Kim, S.; Ryu, C.; Park, S.H.; Park, Y.-K.; Info, A. Review of the use of activated biochar for energy and environmental applications Review Articles. Carbon Lett. 2018, 26, 1–10. [Google Scholar]
- Budinova, T.; Petrov, N.; Razvigorova, M.; Parra, J.; Galiatsatou, P. Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind. Eng. Chem Res. 2006, 45, 1896–1901. [Google Scholar] [CrossRef]
- Yahya, M.A.; Mansor, M.H.; Zolkarnaini, W.A.A.W.; Rusli, N.S.; Aminuddin, A.; Mohamad, K.; Ozair, L.N. A brief review on activated carbon derived from agriculture by-product. AIP Conf. Proc. 2018, 1972, 030023. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Dai, J. Microwave assisted preparation of activated carbon from biomass, A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Fierro, V.; Jeder, A.; Ouederni, A.; Masson, E.; Celzard, A. High added-value products from the hydrothermal carbonisation of olive stones. Environ. Sci. Pollut. Res. 2017, 24, 9859–9869. [Google Scholar] [CrossRef]
- Aziz, A.; Elandaloussi, E.H.; Belhalfaoui, B.; Ouali, M.S.; De Ménorval, L.C. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Colloids Surfaces B Biointerfaces 2009, 73, 192–198. [Google Scholar] [CrossRef]
- Silvestre-Albero, A.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Ethanol removal using activated carbon, Effect of porous structure and surface chemistry. Microporous Mesoporous Mater. 2009, 120, 62–68. [Google Scholar] [CrossRef]
- Rashidi, N.A.; Yusup, S. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem. Eng. J. Biochem. Eng. J. 2017, 314, 277–290. [Google Scholar] [CrossRef]
- Hoseinzadeh, H.R.; Wan, D.W.M.A.; Sahu, J.N.; Arami- Niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrolysis. 2013, 100, 1–11. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Elia, I.; Petalas, A.V.; Halvadakis, C.P. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 2008, 160, 408–413. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mittal, A.; Malviya, A.; Mittal, J. Adsorption of Carmoisine o from Wastewater Using Waste Materials-Bottom Ash and Deoiled Soya. J. Colloid Interface Sci. 2010, 335, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S.; Gupta, D.V. Adsorption of phenol and 4- nitro phenol on granular activated carbon in basal salt medium, Equilibrium and kinetics. J. Hazard. Mater. 2007, 147, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Nartey, O.D.; Zhao, B. Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants, An Overview. Adv. Mater. Sci. Eng. 2014, 2014, 715398. [Google Scholar] [CrossRef] [Green Version]
- Soudani, N.; Najar-Souissi, S.; Abderkader-Fernandez, V.K.; Ouederni, A. Effects of nitrogen plasma treatment on the surface characteristics of olive stone-based activated carbon. Environ. Technol. 2017, 38, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; McNamara, P.J.; Mayer, B.K. Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environ. Sci. Water Res. Technol. 2019, 5, 821–838. [Google Scholar] [CrossRef]
- Schanz, J.J.; Parry, R.H. The activated carbon industry. Ind. Eng. Chem. 1962, 54, 24–28. [Google Scholar] [CrossRef]
- Smith, A. On the absorption of gases by charcoal. No I. Proc. R. Soc. Lon. 1862, 12, 424–426. [Google Scholar]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier Science: Amsterdam, The Netherlands, 2006; p. 554. [Google Scholar] [CrossRef]
- Grand-View-Research-Group. Activated Carbon Market Analysis by Product (Powdered Activated Carbon (pac), Granular Activated Carbon (gac)), by Application (Liquid Phase, Gas Phase), by End-Use (Water Treatment, Food & Beverages, Pharmaceutical & Medical, A. Available online: https://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html (accessed on 1 April 2021).
- Hussain, S.; Anjali, K.P.; Hassan, S.T.; Dwivedi, P.B. Waste tea as a novel adsorbent: A review. Appl. Water Sci. 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Peng, L.; Gao, X.; He, L.; Chen, K. One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives. RSC Adv. R. Soc. Chem. 2018, 8, 15762–15772. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yang, S.; Li, H.; Zan, Y.; Li, X.; Zhu, Y.; Dou, M.; Wang, F. Sustainable Carbonaceous Materials Derived from Biomass as Metal-Free Electrocatalysts. Adv. Mater. 2018, 31, 1805718. [Google Scholar] [CrossRef] [PubMed]
- Mezohegyi, G.; van der, Z.F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes, A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef]
- Zhao, F.; Rahunen, N.; Varcoe, J.R.; Chandra, A.; Avignone-Rossa, C.; Thumser, A.E.; Slade, R.C. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 2008, 42, 4971–4976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheng, S.; Pant, D.; Van, B.G.; Logan, B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun. 2009, 11, 2177–2179. [Google Scholar] [CrossRef]
- Shuttleworth, P.S.; Parker, J.; Budarin, V.L.; Breeden, S.W.; Macquarrie, D.J.; Lugue, R.L.; White, R.; Clark, J.H. Starbons®: Preparation, Applications and Transition from Laboratory curiosity to scalable product. NSTI-Nanotech. 2011, 3, 766–769. [Google Scholar]
- Clark, J.H.; Budarin, V.; Dugmore, T.; Luque, R.; Macquarrie, D.J.; Strelko, V. Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal. Commun. 2008, 9, 1709–1714. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Pignatello, J.J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol. 2005, 39, 2033–2041. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production, A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Thompson, K.A.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.; Summers, R.S.; Cook, S.M. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ. Sci. Technol. 2016, 50, 11253–11262. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Sci. Total Environ. 2017, 578, 16–33. [Google Scholar] [CrossRef]
- Shimabuku, K.K.; Kearns, J.P.; Martinez, J.E.; Mahoney, R.B.; Moreno-Vasquez, L.; Summers, R. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res. 2016, 96, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘terra preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Gerlach, H.; Schmidt, H-P. Biochar in poultry farming. Ithaka J. 2012, 2012, 262–264. [Google Scholar]
- Joseph, S.; Doug, P.; Dawson, K.; Mitchell, D.R.; Rawal, A.; James, H.; Taherymoosavi, S.; Van, Z.L.; Joshua, R.; Donne, S. Feeding biochar to cows, An innovative solution for improving soil fertility and farm productivity. Pedosphere 2015, 25, 666–679. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Hilber, I.; Bucheli, T.D. Activated carbon amendment to remediate contaminated sediments and soils: A review. Glob. Nest J. 2010, 12, 13. [Google Scholar]
- O’Toole, A.; Andersson, D.; Gerlach, A.; Glaser, B.; Kammann, C.; Kern, J.; Kuoppamaki, K.; MumMe, J.; Schmidt, H.P.; Schulze, M. Current and future applications for biochar. In Biochar in European Soils and Agriculture—Science and Practice; Routledge: Abingdon-on-Thames, UK; Taylor & Francis Group: Abingdon, UK, 2016; pp. 253–280. [Google Scholar]
- Schmidt, H.-P.; Wilson, K. 55 uses of biochar. Ithaka J. 2012, 29, 286–289. [Google Scholar]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Lehmann, J.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S.; Zimmerman, A.R.; Stephen, J. Persistence of biochar in soil. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: Oxford, UK, 2015. [Google Scholar]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Lee, D.R. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. 2016, 7, 13160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, A.; Sarmah, A.K. Novel biochar-concrete composites, Manufacturing, characterization and evaluation of the mechanical properties. Sci. Total Environ. 2018, 616–617, 408–416. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material, Critical review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- International Biochar Initiative (IBI). International Biochar Initiative—Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards) Version 2.0; International Biochar Initiative: Westerville, Ohio, 2014. [Google Scholar]
- Dorfer, L.; Moser, M.; Bahr, F.; Spindler, K.; Egarter-Vigl, E.; Giullén, S.; Dohr, G.; Kenner, T. A medical report from the stone age? Lancet 1999, 354, 1023–1025. [Google Scholar] [CrossRef]
- Spindler, K. The Man in the Ice; Hachette UK: London, UK, 2013. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Faostat—Forestry Production and Trade. Available online: https://fenixservices.fao.org/faostat/static/bulkdownloads/Forestry_E_All_Data.zip (accessed on 6 December 2017).
- WorldAtlas. st.Laurent, qc Canada. Available online: https://www.Worldatlas.Com/articles/top-woodcharcoal-exporting-and-importing-countries.html (accessed on 6 December 2017).
- United Nations Security Council (UNSC). United Nations Security Council Resolution 2385; UNSC: New York, NY, USA, 2017. [Google Scholar]
- Destatis; Federal Statistical Office of Germany: Wiesbaden, Germany, 2016.
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie Aus Biomasse-Grundlagen, Techniken und Verfahren; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; NewYork, NY, USA, 2009. [Google Scholar]
- Brown, R.; del Campo, B.; Boateng, A.A.; Garcia-Perez, M.; Masek, O. Fundamentals of biochar production. In Biochar for Environmental Management: Science, Technology and Implementation, Lehmann, J., Joseph, S., Eds.; Routledge: Oxford, UK, 2015. [Google Scholar]
- Xu, F.; Zhu, T.T.; Rao, Q.Q.; Shui, S.W.; Li, W.W.; He, H.B.; Yao, R.S. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J. Environ. Sci. 2016, 53, 132–140. [Google Scholar] [CrossRef] [Green Version]
- García, A.M.; Hunt, A.J.; Budarin, V.L.; Parker, H.L.; Shuttleworth, P.S.; Ellis, G.J.; Clark, J.H. Starch-derived carbonaceous mesoporous materials (Starbon®) for the selective adsorption and recovery of critical metals. Green Chem. (RSC) 2015, 17, S1–S10. [Google Scholar]
- Dodson, J.R.; Budarin, V.L.; Hunt, A.J.; Shuttleworth, P.S.; Clark, J.H. Shaped mesoporous materials from fresh macroalgae. J. Mater. Chem. A. 2013, 1, 5203–5207. [Google Scholar] [CrossRef]
- Zhang, Z.; O’Hara, I.M.; Kent, G.A.; Doherty, W.O. Doherty. Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crop. Prod. 2013, 42, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, E.; Tran, H.T.; Ouédraogo, W.K.I.; Schmidt, C.; Zachmann, D.; Bahadir, M. Bahadir. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem. 2013, 138, 133–138. [Google Scholar] [CrossRef]
- Gusmão, K.A.G.; Gurgel, L.V.A.; Melo, T.M.S.; Carvalho, C.; Gil, L.F. Adsorption studies of etherdiamine onto modified sugarcane bagasses in aqueous solution. J. Environ. Manag. 2014, 133, 332–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyoucef, S.; Amrani, M. Removal of Phosphate from Aqueous Solution with Modified Sawdust. Procedia Eng. 2012, 33, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Ahile, U.J.; Iorav, H.N.; Dooga, L.; Terungwa, D.; Igbawase, S.D.; Asemave, K. Preparation, Characterization and Application of Rice Husk Adsorbent in the Removal of Ampicillin from Aqueous Solution. Int. J. Mod. Chem. 2019, 11, 28–39. [Google Scholar]
- Kutty, S.R.; Khaw, S.G.; Lai, C.L.; Isa, M.H. Removal of copper using microwave incinerated rice husk ash (MIRHA) in continuous flow activated sludge system. In Proceedings of the International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2012), Kuala Lumpur, Malaysia, 12–14 June 2012; Universiti Teknologi PETRONAS: Seri Iskandar, Malaysia, 2012. [Google Scholar]
- Li, D.W.; Zhu, X.F. Preparation and methylene blue adsorption characteristics of highly mesoporous rice husk active carbon prepared by an Alkali-saving and equipment-friendly method. Appl. Mech. Mater. 2014, 448, 182–187. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Mahammadunnisa, S.; Ramaraju, B.; Sreedhar, B.; Subrahmanyam, C. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution. Environ. Sci. Pollut. Res. 2013, 20, 4111–4124. [Google Scholar] [CrossRef]
- Junaid, M.; Khan, M.U.; Ahmad, F.; Malik, R.N.; Shinwari, Z.K. Rice husk as dyes removal from impregnated cotton wastes generated in sports industries of sialkot. Pak. J. Bot. 2014, 46, 293–297. [Google Scholar]
- Gupta, A.; Mote, S. A comparative study and kinetics for the removal of hexavalent chromium from aqueous solution by agricultural, timber and fruit wastes. Chem. Process. Eng. Res. 2014, 19, 49–56. [Google Scholar]
- Mohammed, R.R.; Chong, M.F. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent. J. Environ. Manag. 2014, 132, 237–249. [Google Scholar] [CrossRef]
- Abdulfatai, J.; Saka, A.A.; Afolabi, A.S.; Micheal, O. Micheal. Development of adsorbent from banana peel for wastewater treatment. Appl. Mech. Mater. 2013, 248, 310–315. [Google Scholar] [CrossRef]
- Krishni, R.; Foo, K.; Hameed, B. Adsorptive removal of methylene blue using the natural adsorbent-banana leaves. Desalin. Water Treat. 2013, 52, 6104–6112. [Google Scholar] [CrossRef]
- Murthy, U.N. Experimental study on biosorption of Cr (VI) from water by banana peel based biosorbent. Res. Rev. J. Eng. Technol. 2013, 2, 37. [Google Scholar]
- Gönen, F.; Serin, D.S. Adsorption study on orange peel, removal of Ni (II) ions from aqueous solution. Afr. J. Biotechnol. 2014, 11, 1250–1258. [Google Scholar]
- Ahmed, M.M. Removal of uranium (VI) from aqueous solution using low cost and eco-friendly adsorbents. J. Chem Eng. Process. Technol. 2013, 4, 169. [Google Scholar]
- Mafra, M.; Igarashi-Mafra, L.; Zuim, D.; Vasques, É.; Ferreira, M. Adsorption of remazol brilliant blue on an orange peel adsorbent. Braz. J. Chem Eng. 2013, 30, 657–665. [Google Scholar] [CrossRef]
- Ong, S.A.; Ho, L.N.; Wong, Y.S.; Zainuddin, A. Adsorption behavior of cationic and anionic dyes onto acid treated coconut coir. Sep. Sci Technol. 2013, 48, 2125–2131. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Rao, R.; Chand, S.; Kumar, S.; Wasewar, K.; Yoo, C.K. Adsorption of lead from aqueous solution onto coir-pith activated carbon. Desalin. Water Treat. 2013, 51, 2529–2535. [Google Scholar] [CrossRef]
- Subha, R.; Namasivayam, C. Kinetics and isotherm studies for the adsorption of phenol using low cost micro porous ZnCl2 activated coir pith carbon. Can. J. Civ. Eng. 2013, 36, 148–159. [Google Scholar] [CrossRef]
- Durairaj, A.; Sakthivel, T.; Ramanathan, S.; Obadiah, A.; Vasanthkumar, S. Conversion of Laboratory Paper Waste into Useful Activated Carbon: A Potential Supercapacitor Material and a Good Adsorbent for Organic Pollutant and Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- ArifulAhsan, M.; Santiago, A.R.P.; FSanad, M.; Weller, J.M.; OliviaFernandez-Delgado, A.; Barrera, L.; Viridianamuturano, R.; BonifacioAvalrado, T.K.; Chan, C. Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts, Carbon-shell influence on the electrocatalytic behaviour. J. Colloid Interface Sci. 2021, 581, 905–918. [Google Scholar]
- Cai, Y.; Liu, L.; Tian, H.; Yang, Z.; Luo, X. Adsorption and Desorption Performance and Mechanism of Tetracycline Hydrochloride by Activated Carbon-Based Adsorbents Derived from Sugar Cane Bagasse Activated with ZnCl2. Molecules 2019, 24, 4534. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Ouali, M.S.; Elandaloussi, E.H.; De Menorval, L.C.; Lindheimer, M. Chemically modified olive stone, A low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J. Hazard. Mater. 2009, 163, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Guler, U.A.; Ersan, M.; Tuncel, E.; Dügenci, F. Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp. Process. Saf. Environ. Prot. 2016, 99, 194–206. [Google Scholar] [CrossRef]
- Bautista-Toledo, M.I.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Carrasco-Marín, F.; Sánchez-Polo, M. Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon N. Y. 2014, 73, 338–350. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, C.; Wu, J.; Luo, Y. Adsorptive removal of bisphenol A using N-doped biochar made of Ulva prolifera. Water Air Soil Pollut. 2017, 228, 327. [Google Scholar] [CrossRef]
- Tounsadi, H.; Khalidi, A.; Abdennouri, M.; Barka, N. Activated carbon from Diplotaxis Harra biomass, Optimization of preparation conditions and heavy metal removal. J. Taiwan Inst. Chem. Eng. 2016, 59, 348–358. [Google Scholar] [CrossRef]
- Tounsadi, H.; Khalidi, A.; Machrouhi, A.; Farnane, M.; Elmoubarki, R.; Elhalil, A.; Sadiq, M.; Barka, N. Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. J. Environ. Chem. Eng. 2016, 4, 4549–4564. [Google Scholar] [CrossRef]
- Baig, T.H.; Garcia, A.E.; Tiemann, K.J.; Gardea-Torresdey, J.L. Adsorption of heavy metal ions by the biomass of Solanum Elaeagnifolium (silverleaf night shade). Hazard. Waste Res. 1999, 131, 131–142. [Google Scholar]
- Bohli, T.; Ouederni, A. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environ. Sci. Pollut. Res. 2016, 23, 15852–15861. [Google Scholar] [CrossRef]
- Safari, E.; Rahemi, N.; Kahforoushan, D.; Allahyari, S. Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology. J. Environ. Chem. Eng. 2019, 7, 102847. [Google Scholar] [CrossRef]
- Van, T.T.; Bui, Q.T.P.; Nguyen, T.D.; Le, N.T.H.; Bach, L.G. A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorpt Sci. Technol. 2017, 35, 72–85. [Google Scholar] [CrossRef]
- Kyzas, G.Z. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions. Materials 2012, 5, 1826–1840. [Google Scholar] [CrossRef]
- Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalin. Water Treat. 2015, 53, 1082–1088. [Google Scholar] [CrossRef]
- Sreelatha, S.; Jeyachitra, A.; Padma, P. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 2011, 49, 1270–1275. [Google Scholar] [CrossRef]
- Malakahmad, A.; Tan, S.; Yavari, S. Valorization of Wasted Black Tea as a Low-Cost Adsorbent for Nickel and Zinc Removal from Aqueous Solution. J. Chem. 2016, 2016, 5680983. [Google Scholar] [CrossRef] [Green Version]
- Soudani, N.; Souissi-Najar, S.; Ouederni, A. Influence of nitric acid concentration on characteristics of olive stone based activated carbon. Chin. J. Chem Eng. 2013, 21, 1425–1430. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon, Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jena, H.M. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J. Clean Prod. 2016, 137, 1246–1259. [Google Scholar] [CrossRef]
- Chatterjee, S.; Kumar, A.; Basu, S.; Dutta, S. Application of Response Surface Methodology for Methylene Blue dye removal from aqueous solution using low cost adsorbent. Chem. Eng. J. 2012, 181–182, 289–299. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar] [CrossRef]
- Hernáinz, F.; Calero, M.; Blázquez, G.; Martín-Lara, M.A.; Tenorio, G. Comparative study of the biosorption of cadmium(II), chromium (III), and lead(II) by olive stone. Environ. Prog. 2008, 27, 469–478. [Google Scholar] [CrossRef]
- El Nemr, A.; El-Sikaily, A.; Khaled, A.; Abdelwahab, O. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab. J. Chem. 2015, 8, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, B.; Paul, D. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar. J. Environ. Chem. Eng. 2018, 6, 2335–2343. [Google Scholar] [CrossRef]
- Jeyaseelan, C.; Gupta, A. Green Tea Leaves as a Natural Adsorbent for the Removal of Cr(VI) From Aqueous Solutions. Air Soil Water Res. 2016, 9, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Peres, E.C.; Cunha, J.M.; Dortzbacher, G.F.; Pavan, F.A.; Lima, É.; Foletto, E.L.; Dotto, G.L. Treatment of leachates containing cobalt by adsorption on Spirulina sp. and activated charcoal. J. Environ. Chem. Eng. 2018, 6, 677–685. [Google Scholar] [CrossRef]
- Mohammed, R.R. Removal of Heavy Metals from Waste Water Using Black Teawaste. Arab. J. Sci. Eng. 2012, 37, 1505–1520. [Google Scholar] [CrossRef]
- Anoop, K.K.; Sreejalekshmi, K.G.; Vimexen, V.; Dev, V.V. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions. Ecotoxicol. Environ. Saf. 2016, 124, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Petrov, N.; Budinova, T.; Razvigorova, M.; Parra, J.; Galiatsatou, P. Conversion of olive wastes to volatiles and carbon adsorbents. Biomass Bioenergy. 2008, 32, 1303–1310. [Google Scholar] [CrossRef]
- Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A. Methylene blue and iodine adsorption onto an activated desert plant. Bioresour Technol. 2008, 99, 8441–8444. [Google Scholar] [CrossRef]
- Saka, C. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrolysis. 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; da Silva, M.L.C.P.; Alvarez-Mendes, M.O.; Coutinho, A.R.; Thim, G.P. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 2011, 174, 49–57. [Google Scholar] [CrossRef]
- Larous, S.; Meniai, A.-H. The use of sawdust as by product adsorbent of organic pollutant from wastewater: Adsorption of phenol. Energy Procedia 2012, 18, 905–914. [Google Scholar]
- Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef] [Green Version]
- Meneghel, A.P.; Gonçalves, A.C.J.; Tarley, C.R.T.; Stangarlin, J.R.; Rubio, F.; Nacke, H. Studies of Pb2+ adsorption by Moringa oleifera Lam. seeds from an aqueous medium in a batch system. Water Sci. Technol. 2014, 69, 163–169. [Google Scholar] [CrossRef]
- Meneghel, A.P.; Gonçalves, A.C.J.; Rubio, F.; Dragunski, D.C.; Lindino, C.A.; Strey, L. Biosorption of cadmium from water using moringa (moringa oleifera lam.) seeds. Water Air Soil Pollut. 2013, 224, 1–13. [Google Scholar] [CrossRef]
- Marques, T.L.; Alves, V.N.; Coelho, L.M.; Coelho, N.M. Assessment of the use of moringa oleifera seeds for removal of manganese ions from aqueous systems. BioResources 2013, 8, 2738–2751. [Google Scholar] [CrossRef] [Green Version]
- Bhadra, B.N.; Vinu, A.; Serre, C.; Jhung, S.H. MOF-derived carbonaceous materials enriched with nitrogen, Preparation and applications in adsorption and catalysis. Mater. Today 2018, 25, 88–111. [Google Scholar] [CrossRef]
- Zhao, L.; Bacsik, Z.; Hedin, N.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M.M. Carbon Dioxide Capture on Amine-Rich Carbonaceous Materials Derived from Glucose. ChemSusChem 2010, 3, 840–845. [Google Scholar] [CrossRef]
- Xu, G.; Han, J.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H.; Zhang, X. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668–1674. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2016, 5, 69–88. [Google Scholar] [CrossRef]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wang, X.; Gu, Z.; Polin, J. Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 2013, 236, 285–292. [Google Scholar] [CrossRef]
Adsorbate | Adsorbent (Adsorption Capacity, mg/g) | Ref. Respectively |
---|---|---|
Safranin | Olive stone (526); Spirulina sp. Algae (54); | [149,150] |
Bisphenol A | Olive stone (2.7); Ulva prolifera (9); | [151,152] |
Cadmium | Olive stone (200); Diplotaxis harra (32); Glebionis coronaria (58); Solanum elaeagnifolium (18.9) | [71,153,154,155] |
Copper | Olive stone (34); Orange peel (9); Sugarcane bagasse (13); Coffee residues (70); Corn cob (31.35); Sal bark (51.4); mango (42.6); Jackfruit (17.4); Peanut shell (25.39); Papaya Seeds (212) | [22,156,157,158,159] |
Lead | Olive stone (149); Moringa oleifere (12.24); Solanum elaeagnifolium (20.6); Banana Peel (7.97) | [22,155,160,161] |
Nickel | Olive stone (24), Brown algae (64), Green algae (92); Waste black tea (90.91); Solanum elaeagnifolium (6.5) | [155,160,162] |
Methylene blue dye | Olive stone (667); Bamboo (454); Fox nutshell (968); Biochar (114); Milled biochar (354); Banana peels (109.89) | [137,163,164,165,166,167] |
Chromium | Olive stone (7); Alga Pterocladia (66); Biochar (21); Rice husk (16.94); saw dust (4.56); Coffee residues (45); Green tea leaves (99%); Peanut shell (27.86) | [22,134,159,168,169,170,171] |
Cobalt | Olive stone (16); Diplotaxis harra (26); Glebionis coronaria (46); Spirulina sp (96); Activated charcoal (50); Black Tea Waste (15.39) | [153,154,156,172,173] |
Zinc | Olive stone (16); Bagasse pith (147); Waste black tea (166.67); Solanum elaeagnifolium (7); Black Tea Waste (12.24) | [55,155,162,173,174] |
Iodine | Olive stone (1540); Desert plant (1178); Acorn shell (1209); | [175,176,177] |
Phenol | Olive stone (635); Fox nutshell (75); Avocado kernel AC (90); Sawdust | [79,165,178,179] |
Chlorophenol | Olive stone (11); Wheat husk biochar (93); | [1,61] |
Hg (II) | Desiccated Coconut waste (500) | [143] |
As (V) | Sugarcane bagasse (22.1) | [126] |
Reactive black 5; Congo red | Coffee waste (77.52; 34.36) | [180] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asemave, K.; Thaddeus, L.; Tarhemba, P.T. Lignocellulosic-Based Sorbents: A Review. Sustain. Chem. 2021, 2, 271-285. https://doi.org/10.3390/suschem2020016
Asemave K, Thaddeus L, Tarhemba PT. Lignocellulosic-Based Sorbents: A Review. Sustainable Chemistry. 2021; 2(2):271-285. https://doi.org/10.3390/suschem2020016
Chicago/Turabian StyleAsemave, Kaana, Ligom Thaddeus, and Philip T. Tarhemba. 2021. "Lignocellulosic-Based Sorbents: A Review" Sustainable Chemistry 2, no. 2: 271-285. https://doi.org/10.3390/suschem2020016
APA StyleAsemave, K., Thaddeus, L., & Tarhemba, P. T. (2021). Lignocellulosic-Based Sorbents: A Review. Sustainable Chemistry, 2(2), 271-285. https://doi.org/10.3390/suschem2020016